

Abstract—Recommender systems are an effective solution to

address the issue of information overload and a thriving

research field. This paper focuses on the efficient mining of

user-item relationships and the aggregation of neighborhood

information in bipartite graph-based recommender systems.

Therefore, a Graph Contrastive Learning recommendation

model with Feature Perturbation (GCL-FP) is proposed in this

work. The proposed model utilizes a graph convolutional

encoder with a residual structure, simplifying the feature

transformation and the nonlinear activation in graph con-

volution. This approach helps alleviate the over-smoothing

problem of node representation. Furthermore, a data

augmentation method, incorporating graph convolution

aggregation information into the random noise, is designed. By

perturbing the graph node feature matrix in this way when

generating the contrastive learning view, we ensure that the

noise does not excessively alter the semantic information of

node features. Finally, experiments on three benchmark

datasets, namely Yelp2018, Douban-Book, and Alibaba-

iFashion, were conducted. The experimental results show that

our proposed model outperforms the baseline model Simple

Graph Contrastive Learning (SimGCL) by improving the

Recall evaluation metric by 2.2%, 5.4%, and 1.9%,

respectively as well as the Normalized Discounted Cumulative

Gain (NDCG) evaluation metric increases by 1.8%, 3.0%, and

1.8%, respectively.

Index Terms—recommender systems, graph contrastive

learning, graph convolutional network, data augmentation

I. INTRODUCTION

ECOMMENDER systems are information filtering systems

that select items of interest based on the user behavior,

aiming to maximize the user attraction and improve his

engagement. Moreover, the key to achieve higher-level

Manuscript received May 16, 2023; revised September 5, 2023. This

paper is supported by Foundation of Guangdong Educational committee

under the Grant No. 2022ZDZX4052, 2021ZDJS082, No.2019KQNCX148.

Peihang Du is a postgraduate student of the school of Computer and

Software Engineering, University of Science and Technology Liaoning,

Anshan, 114051, Liaoning, China (e-mail: 1012134821@qq.com).
Jie Wu is an associate professor of the School of Computer and

Software Engineering, University of Science and Technology Liaoning,

Anshan, 114051, Liaoning, China (*corresponding author to provide e-
mail:wujieaa@163.com).

Chi Ma is an associate professor of the School of Computer Science and

Engineering, Huizhou University, Huizhou, 516007, Guangdong, China (e-
mail: machi@hzu.edu.cn).

Hui Hu is an associate professor of the School of Computer Science and

Engineering, Huizhou University, Huizhou, 516007, Guangdong, China (e-
mail: Huhui@hzu.edu.cn).

Yuenai Chen is a lecturer of the School of Mathematics and Statistics,

Huizhou University, Huizhou, 516007, Guangdong, China (e-mail:
chenyuenai@163.com).

Jingyan Li is a lecturer of the School of Computer Science and

Engineering, Huizhou University, Huizhou, 516007, Guangdong, China (e-
mail: LJY@hzu.edu.cn).

recommendations is learning high-quality representations of

users and items [1-5]. As this topic is not new, early

recommendation algorithms, such as matrix factorization,

relied on collaborative filtering to mine the relationships

between users and items [6-8]. These algorithms resulted in

effective representations. However, for the past few years,

Graph Convolutional Networks (GCN) have received

increasing attention in the recommendation field due to their

ability to apply high-order connectivity between nodes in

order to learn high-quality representations [9, 10], leading to

even better recommendation performance.

Although GCNs have achieved advanced performance,

there are still many unresolved issues within this approach.

The most two relevant limitations are listed here below:

(1) Over-smoothing phenomenon: Stacking multiple

graph convolutional modules will make the node features, in

the same connected area, much more similar, reducing

therefore the discriminability of the node representations

and causing the model to degrade. To solve this problem,

researchers have introduced residual structures in the graph

convolutional models, where the shallow and deep outputs

are added as inputs for the next stage of learning to enhance

the over-smoothing problem;

(2) Noise and sparsity in recommendation data:

Recommendation data is constructed from the users' implicit

feedback (e.g., clicks, likes, purchases) [6, 11], which can be

noisy due to the user errors. To address this issue,

researchers have introduced self-supervised learning, where

the models are trained on a series of auxiliary tasks without

the need for human-labeled labels [12, 13]. Furthermore,

contrastive learning is a self-supervised learning algorithm

that can alleviate difficulties in data labeling, noise

interference, and data sparsity [14]. For instance, Wu et al.

[15] proposed the Self-supervised Graph Learning (SGL)

model, which uses contrastive learning as an auxiliary task

to supplement the recommendation task. They achieved this

by forming a contrasting view through random deletion of

edges or nodes, effectively altering the graph structure in

self-supervised tasks. However, the graph augmentation

contrastive learning may not be generalized to various

scenarios and may lose important structural information in

the graph, such as changing the structure of a molecule.

Therefore, Yu et al. [16] proposed a feature- augmentation

Graph Contrastive Learning (GCL) method. This approach

introduces random noise into the feature matrix to achieve

augmentation at the graph representation level. While this

approach preserves the graph structure, adding noise may

alter the node features and lead to negative effects, such as

the change of semantic information.

To address the aforementioned limitations, this paper

introduces a novel recommendation model that integrates

A Graph Contrastive Learning with Feature

Perturbation for Recommender Systems

Peihang Du, Jie Wu*, Chi Ma, Hui Hu, Yuenai Chen, and Jingyan Li

R

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

mailto:1012134821@qq.com
mailto:wujieaa@163.com
mailto:machi@hzu.edu.cn
mailto:Huhui@hzu.edu.cn
mailto:chenyuenai@163.com
mailto:LJY@hzu.edu.cn

GCNs with GCL methods. In the GCL task, a feature

perturbation data augmentation method is designed to

incorporate aggregated information, preserving the structure

of the graph while minimizing the variations in the semantic

information of node features.

Therefore, the main contributions of this work are as

follows:

1) For the recommendation task, we design a GCN

encoder with residual structures, which effectively alleviates

the over-smoothing problem of the graph convolution and

improves the performance of the model.

2) For the self-supervised auxiliary task, we design the

GCL recommendation method on the basis of feature

augmentation. This method applies random noise with an

aggregated information to the feature matrix to form

contrastive views, enabling the model to learn consistent

embeddings while preserving the feature information

without perturbance.

3) We conduct experimental studies on three benchmark

datasets and evaluate the superiority of our proposed method.

II. RELATED WORK

A. Graph Convolutional Networks

The GCN technique has been widely applied in several

engineering domains, such as computer vision and natural

language processing, due to its excellent performance in

learning from graph data [17, 18]. Moreover, GCN lever-

ages the graph structure to capture the complex relationships

between objects. Its main focus is to perform convolutional

operations on the graph to identify the node features, and

update each node's feature representation by using the

features of its neighbor nodes as filters [19]. The graph

convolution operation is defined as follows:

1 1

(1) 2 2()l l lH D AD H W
− −

+ = (1)

where, D is the degree matrix, A represents the

adjacency matrix,  indicates the non-linear activation

function, W presents the weight matrix of the linear

transformation, and H represents the feature representation

at each layer.

In recommender systems, extracting collaborative signals

from massive user and item interaction information is a

challenging problem. The use of high-order connectivity to

encode collaborative signals in the interaction graph

structure is particularly suitable for the representation of

recommendation relationships [20]. In addition, GCN was

first applied in recommendation systems by Wang et al. [21]

with their Neural Graph Collaborative Filtering (NGCF)

method, which explicitly injects collaborative signals into

node embeddings to improve the recommendation

performance. Moreover, He et al. [22] proposed the

recommendation algorithm LightGCN, which also applies

the graph convolutional techniques to the recommendation

systems and removes the feature transformation and the

non-linear activation operations of the graph convolutional

algorithm. Nevertheless, subsequent experiments have

demonstrated that these operations have no substantial effect

on the model, and the LightGCN model, not only improves

recommendation performance, but also makes the whole

model algorithm more lightweight.

B. Graph Contrastive Learning

In recent years, contrastive learning has achieved

remarkable results in various engineering fields such as

computer vision and natural language processing.

Contrastive learning consists of a self-supervised learning

method that mainly mines additional information from

unsupervised data through a series of auxiliary tasks, to

learn valuable representations for downstream tasks. This

method has been applied in numerous scenarios, including

social networks, protein interaction networks, molecular

structures, and academic citation networks. As for GCL,

which preserves the characteristics of graph data, it mainly

consists of three modules: data augmentation, shared Graph

Neural Network (GNN) encoder for learning graph

representations, and contrastive loss. In the graph

classification domain, You et al. [23] proposed the Graph

Contrastive Learning (GraphCL) model. This model

incorporates four graph contrastive learning data

augmentation methods, including node dropping, edge

perturbation, random walk, and attribute masking. The

objective is to identify node embeddings by maximizing the

similarity between two randomly perturbed versions of the

same node's local subgraph representation. In addition, Zhu

et al. [24] proposed the Graph Contrastive learning with

Adaptive augmentation (GCA) model, which assigns larger

removal probabilities to unimportant edges and larger mask

probabilities to unimportant node feature dimensions. This

will help in implementing contrastive learning and

preserving important nodes and edges in the graph.

Furthermore, the recommended data is typically re-

presented as a graph structure; however, it faces challenges,

such as data sparsity and the long-tail effect caused by

power-law distributions [25, 26]. As for the data

augmentation techniques in GCL, it can effectively alleviate

data sparsity, expand data volume, and serve as auxiliary

tasks in recommendations to addressing such issues and

enhancing node feature learning for improved model

performance. In addition, the SGL model introduces GCL to

the recommendation domain, proposing a new learning

paradigm that employs graph data augmentation techniques,

including node dropout and edge perturbation, to augment

input data. This augmentation approach aims to reduce bias

and enhance robustness to interaction noise. SimGCL also

replaces the graph augmentation contrastive learning

approach with a simple and efficient feature augmentation

method. Referring to the experimental results, graph

augmentation is not necessary; instead, using feature

augmentation methods can produce more uniformly

embedded representations of nodes, improving thereby the

recommendation performance.

C. Residual Networks

In the computer vision domain, as model depth increases,

the problem of model degradation often arises, where

increasing network depth leads to a decrease at the level of

performance. To address this issue, He et al. [27] proposed

the Residual Network (ResNet), which introduces skip

connections that add the input directly to the output. Even if

the feature information is distorted or lost, the network can

still recover the original feature information based on the

residual connection. Introducing residual connections not

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

only solves the problem of gradient vanishing but also

enables networks, with hundreds of layers, to converge

toward the optimal solution. Therefore, the equation that

models the residual connection is represented as follows:

 ()y F x x= + (2)

where the input to the residual block is denoted by x, the

transformed input is represented by ()F x , and y indicates

the output of the residual connection.

 In the field of natural language processing, Jiang et al.

[28] proposed the Attention-based Relational Graph

Convolutional Network (ARGCN) model, which combines

GCNs with residual networks for Target-Oriented Opinion

Words Extraction (TOOWE). The use of residual structures

enhances the over-smoothing problem of convolutional

graphs, thus improving the model performance. For instance,

Dang et al. [29] proposed the Multi-Scale Residual Graph

Convolution Network (MSR-GCN) model, which uses the

Residual Graph Convolutional Network (RGCN) to predict

the human motion by gradually abstracting the complex

high-scale pose into low-scale poses and applying the

residual structure between various input and output scales,

resulting in a significant improvement in the model

performance. To sum up, these studies suggest that

incorporating residual structures into GCN can improve the

overall performance of the system.

III. PROPOSED MODEL

A. Problem Statement

In recommendation systems, the relationship between

users and items is usually defined as a bipartite graph

(, ,)G U V = , where 1 2{ , ,..., }nU u u u= represents the

set of users, 1 2 m{ , ,..., }V v v v= represents the set of items,

and  represents the set of edges. Let
(0) d

ue  and
(0) d

ie  be the initial embeddings of user u and item i,

respectively. n mR  is the matrix that records the

interactions between users and items, where 1uiR = indicates

that user u has interacted with item i, and 0uiR = indicates

that there is no interaction between user u and item i. (0)E

represents the initial feature matrix, (0) ()m n dE +  , which

serves as the input of the model. A graph convolutional

based recommendation model can be represented as
(1) () ()(,{ : })k k k

u u i ue AGG e e i N+ =  , which obtains the final

node embeddings after n layers of graph convolutions. The

model predicts the score 1 2
{ , ,..., }

n
y y y y= by computing the

inner product of user nodes and item nodes after applying

several graph convolution layers. Based on the scores, the

top-k items are selected as the recommended items for the

user.

B. Overview

In this study, we propose a model consisting of two

modules, namely the recommendation task module and the

contrastive learning task module. For these two modules, we

design a lightweight RGCN with a shared GCN encoder to

extract node features for score prediction. In the graph

contrastive learning auxiliary task, we integrate random

noise carrying aggregated information into the node features

to create a contrastive view, resulting in the feature-level

data augmentation. Note that in order to obtain high quality

node representations, the contrastive learning task serves as

an auxiliary task to complement the recommendation task.

Finally, the overall architecture of the model is illustrated in

Figure 1.

Graph Conv

Graph Conv

Final Embeddings Final Embeddings

Graph Conv

Node Embeddings

Avg

Recommendation Contrastive Task

+

+

Graph Conv

…

+

Avg

Graph Conv

Graph Conv

Noise+

+

+

+

Final Embeddings

Graph Conv

Avg

Graph Conv

Graph Conv

Noise+

+

+

+Noise

Noise

Noise

Noise

Noise

Noise

……

Fig. 1 The architecture of GCL-FP. The solid arrow refers the normal graph convolution information passing, and the

dotted arrow refers to the graph convolution information passing after adding noise.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

C. Recommendation Task

For the recommendation task, we designed a lightweight

RGCN that serves as an encoder to extract node features. In

the graph convolutional calculation, feature transformation

and nonlinear activation were eliminated and residual

structures were introduced, allowing the output of each layer

to be added to the input of the subsequent one. After

obtaining the node embeddings at each layer, a weighted

average aggregator was used to generate the final

representations for user and item nodes. Therefore, the

graph convolution calculation is represented by the

following equations:

 (1) () ()1
()

u

k k k

u i u

i N u i

e e F e
N N

+



= + (3)

 (1) () ()1
()

i

k k k

i u i

u N i u

e e F e
N N

+



= + (4)

Referring to Eq. (3), the left summation term serves as the

inter-layer aggregation propagation term whereas the

symmetric normalization term 1/ u iN N addresses the

problem of the embedding becoming excessively large due

to the increase in the number of layers in the graph

convolution operation. Also, the embedding representation

of item i, obtained after k-layer GCN propagation, is

denoted as
()k

ie , where uN represents the set of items that

user u has interacted with, while iN represents the set of

users who have interacted with item i. In addition,
()()k

uF e represents the residual operation and ()F  is a

standardization function, the output of the k-th GCN layer is

passed through the Leaky Rectified Linear Unit

(LeakyReLU) activation function and a standardization

function. In a further stage, the result is added to the inter-

layer aggregation information of the k-th GCN layer to

generate the output of the (k+1)-th layer. After n layers of

GCN aggregation, the final representation of each node is

obtained.

Moreover, the model prediction is defined as the inner

product of the final representations of the user and the item

nodes. Therefore, the calculation formula is represented as

follows:

 T

u iui
y e e= (5)

 The score, calculated using Eq. (5), is considered as the

final predicted ranking score.

D. Graph Contrastive Learning Auxiliary Task

(1) Creating contrast views

For the graph contrastive learning auxiliary task, a feature

perturbation data augmentation method is proposed. This

method incorporates the aggregation information. In this

work, we added random noise to the feature vectors to adjust

the uniform representation of features within a certain range

[16]. Additionally, we incorporated the neighborhood

information, obtained through the graph convolutional layer

aggregation, to ensure that the magnitude of the noise does

not adversely affect the semantic information of the node

features.

It should be noted that, in creating views for the graph

contrastive learning task using a lightweight RGCN encoder,

the strategy of consistently is adopted. This strategy

integrates the residual connections into the embedding

representations after the first layer of graph convolution

calculation before adding noise. This is done, rather than

integrating the residual connections into the embedding

representation of the previous layer. Due to the modification

of the original feature matrix caused by the introduction of

noise, the performance is adversely affected.

Moreover, a graph representation-level data augmentation

method is adopted. This method requires generating a

random noise matrix after each layer of graph convolution

computation and fuse it with the information obtained from

the graph convolution aggregation of the current layer.

Formally, a random noise matrix, with the same dimensions

as the feature matrix after the k-th layer of graph convolution

computation, is generated and added to the information

obtained through the graph convolution aggregation using a

certain fusion strategy. The calculation formula for this

fusion process can be expressed as follows:

 () ()k kE =  + (6)

where ()kE represents the output of the k-th GCN layer,

with () ()k n m dE +  . Meanwhile, ()k denotes the randomly

generated noise matrix for the k-th layer, which also satisfies
() ()k n m d+   and η indicates the hyperparameter that

controls the amount of incorporating aggregated information
()kE ; moreover  is the final generated noise matrix. The

purpose of incorporating the aggregated information ()kE

into the random noise matrix is to ensure that the noise does

not have an excessive impact on the semantic interpretation

of the feature matrix. After creating the noise matrix, it is

added to the feature matrix in the k-th layer to get the

perturbed feature representation. Therefore, the calculation

formula is modelled as follows:

 () ()()k kE F E =  + (7)

where ()F  is the normalization function, ()kE is the

feature matrix of the k-th layer GCN with added noise,

aiming to achieve slight feature perturbation for each feature

vector in
()kE . By adding the random noise as a layer

embedding after each graph convolution, a weighted

average aggregator is used to get the comparison view E .

Similarly, another contrast view E is created，and it is

considered as the input for the contrastive loss.

 (2) Noise control

Adding excessive noise to the feature matrix can alter the

information carried by the features, so the noise matrix

needs to satisfy ()sign E =  ,
() ~ (0,1)m n d U+   . In

addition, taking the feature vector ie of item i as an example,

i
 and

i
 are two noise vectors that perturb ie on two

different views, it is required that 2i  = and i are

numerically equivalent to points on a hypersphere with a

radius of  , and that ie , i
 , and i

 are in the same

hyperoctant. The noise satisfying the above conditions does

not lead to significant bias, equivalent to rotating the vectors

by two small angles in the vector space, and each rotation

corresponds to the deviation of the vector [16]. After

generating noise and integrating graph convolution

aggregation information to generate i


 and i


 , resulting in

rotating the vectors towards ie direction, getting ie and ie .

This process controls the effect of noise on the features. Fig.

2 illustrates the difference between adding random noise

(ine , ine) and adding noise with aggregated information (ie ,

ie).

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

i


i


r =

je

ie
ie

ie

ine

ine

Fig. 2 The representation of features fused with different

forms of noise in the vector space.

E. Module Training

The Graph Convolutional Learning with Feature

Perturbation (GCL-FP) model adopts a multi-task training

strategy, consisting of the recommendation task and the

GCL auxiliary task. Each task has a separate loss function

and is trained jointly with the other task.

Concerning the recommendation task, we used the

Bayesian Personalized Ranking (BPR) loss function, which

represents the user's historical behavior as a triplet. Given a

user u and two items i and j, where i represents the item that

the user has interacted with (i.e., the positive sample) and j

is an item that the user has not interacted with (i.e., a

negative sample), the goal is to make the predicted score for

the positive sample i higher than that for the negative

sample j. The BPR loss function is computed as follows:

 2

(, ,)

log ()rec ui uj

u i j O

L y y 


= − − +  (8)

 For the Eq. (8), {(, ,) (,) , (,) }O u i j u i O u j O+ −=   , O+

represents the observed interactions, while O− represents

the unobserved interactions. The  indicates the sigmoid

function and  is the coefficient controlling L2

regularization. After obtaining the final predicted score, we

optimize the model parameters using pairwise BPR loss,

denoted as { , , }u i u U i I =   . In this model, the only

trainable parameter is (0)E , that is
(0){ }E = . Therefore,

the formula can be derived as follows:

 2
(0)

(, ,)

log ()rec ui uj

u i j O

L y y E 


= − − + (9)

 In the graph contrastive learning auxiliary task, the

Information Noise Contrastive Estimation (InfoNCE)

contrastive loss function is used to maximize the

consistency between positive samples and minimize the

consistency between negative samples. In other words, the

distance between the positive samples becomes closer and

the distance between negative samples becomes farther in

the vector space. The equation that models the user's self-

supervised loss calculation is as follows:

 exp((,) /)
log

exp((,) /)

user u u
ssl

u U u vv U

s z z
L

s z z



 

 
= −

 



 (10)

 where u and v represent a user and an item in a sampled

batch, uz and uz are the data-augmented representations of

user u, ()s  represents the cosine similarity, and  is a

hyperparameter defined as the temperature coefficient.

Similarly, the self-supervised loss calculation formula for

item
item

sslL can be obtained. Adding the two losses together

gives the objective function of the self-supervised task,

denoted by
user item

ssl ssl sslL L L= + .

 By adopting a multi-task learning strategy, the

recommendation task loss and the self-supervised auxiliary

task loss are jointly optimized for both tasks. Hence, the

calculation formula is expressed as follows:

2

(0)

2loss rec sslL L L E= + + (11)

For the Eq. (11), as a complete contrastive learning loss

function.

IV. EXPERIMENTS

A. Datasets

We conducted experiments on three public benchmark

datasets to evaluate the performance of our model. These

datasets are described below:

Yelp2018 [22]: Yelp is a well-known business review

website in the United States, where users can rate and

review businesses, and share shopping experiences with

others.

Douban-Book [16]: This dataset is a collection of user-

generated book reviews and ratings from the popular

Chinese social networking site, Douban. The dataset

regroups books in various languages, including Chinese and

English, and is commonly used for natural language

sentiment analysis as well as recommendation system

research.

Alibaba-iFashion [15]: The third dataset is a large-scale

fashion image dataset created by researchers at Alibaba

Group. It supports research in the fields of fashion image

analysis and recommendation retrieval. Despite its sparsity,

this dataset is still large in scale.

TABLE Ⅰ

THE STATISTICS OF THE DATASETS.

Dataset #User #Item #Interaction

Yelp2018 31,668 38,048 1,561,406

Douban-Book 13,024 22,347 792,062

Alibaba-iFashion 300,000 81,614 1,607,813

The statistical data for the three datasets is shown in

Table Ⅰ

B. Baseline

We compare our proposed GCL-FP model to the

following models:

1) LightGCN [22] proposes a lightweight graph convolution

approach that stops feature transformation and non-linear

activation, yielding to a great reduction in the number of

parameters and improvement in the training efficiency.

2) DNN+SSL [30] proposes a large-scale self-supervised

learning framework for recommendations. This approach

employs a Deep Neural Net (DNN) as the item encoder

and applies two types of enhancement methods, namely

the feature masking and the feature dropout, to the

existing item features.

3) SGL [15] introduces GCL into the recommendation

domain by using three types of graph data augmentation

to construct the contrastive views for recommendation.

4) BUIR [31] has a dual-branch architecture consisting of a

target network and an online network. Moreover, it only

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

uses positive examples for self-supervised learning while

ignoring long-tail items.

5) MixGCF [32] designs a single-hop mixing to combine

local graph messages to generate informative negatives

samples and improve recommendation generalization.

6) NCL [33] is a novel contrastive model that proposes a

prototype contrastive objective to capture the relevance

between the relationship of users/items and their context.

7) SimGCL [16] is a simple graph contrastive learning

framework that doesn’t use graph augmentation but adds

random noise to node features.

C. Settings

The performance of our model was evaluated using two

popular metrics in the recommendation field, namely

Recall@20 and NDCG@20, to assess the performance of

the proposed model. Multiple experiments were conducted

on the GCL-FP model, To ensure a fair comparison of

different models, the optimal hyperparameter settings were

used based on the original papers that served as reference.

Among all the baseline models, the embeddings were

initialized using the Xavier initialization method with a size

of 64 and L2 regularization parameter set to 410− to mitigate

overfitting. Moreover, the batch size was set to 2048. To

optimize all models, we used the Adam optimizer with a

learning rate of 0.001 to achieve the best performance.

Finally, concerning the SimGCL and SGL models, 0.2 =

was initiated as the temperature value.

D. Comparison with Baseline Methods

All methods were evaluated using two popular evaluation

metrics in the recommendation field; moreover, the

experimental results are presented in Table Ⅱ. The SGL

model employed the edge-dropout method, which achieved

the best performance in its original paper. However, the

obtained results showed that the performance of the GCL-

FP model outperformed other baseline models, confirming

the rationality and effectiveness of introducing the residual

structure graph convolutional encoder as well as the feature

perturbation graph contrastive learning method along with

the aggregated information.

Based on the evaluation results proposed in Table Ⅱ, we

can observe the performance of other recommendation

strategies. Firstly, MixGCF shows significant improvement

in the evaluation of the metrics by enhancing the negative

sampling strategy based on the LightGCN model,

demonstrating therefore its superiority. Secondly, SGL

performs better than LightGCN, reflecting that the use of

GCL methods is efficient in the recommendation domain.

Thirdly, NCL proposes a novel graph contrastive learning

perspective that considers the neighbors of users (or items)

from both the graph structure and the semantic space,

achieving a comparable performance to SGL. Lastly,

SimGCL uses feature augmentation to generate contrastive

views, outperforming the SGL model on all three datasets

while training faster, which confirms the theoretical

proposition in the SimGCL paper that graph augmentation is

unnecessary.

Our GCL-FP model did not add more parameters; thus,

the training efficiency is comparable to SimGCL. By adding

residual connections in the graph convolutional encoder, the

network can identify the residual between the input and

output, instead of trying to learn the complete representation

of each layer from scratch. This would help to enhance the

over-smoothing problem and stack more GCN layers to

improve the model performance. Additionally, incorporating

aggregate information in random noise can effectively

achieve feature perturbation without changing the semantic

information, while avoiding the time complexity of

reconstructing the graph and without damaging its structure.

Therefore, the data augmentation method has a positive

impact on model learning.

In general, incorporating graph self-supervised learning as

an auxiliary task in recommendation models performs better

than using GCNs alone for recommendation. Thus, our

proposed GCL-FP model achieved the best performance on

both evaluation metrics across all three datasets.

E. Ablation Study

We conducted ablation experiments to compare our

proposed GCL-FP model with the GCL-FPN that only adds

random noise as well as the lightweight graph convolutional

encoder GCL-FPGCN that does not include residual

information. The experimental results, displayed in Table Ⅲ,

show that the performance of the GCL-FP model is superior

to those of GCL-FPN and GCL-FPGCN. This indicates that

the effectiveness of incorporating residual structures and

aggregated noise to improve recommendation performance

is validated.

TABLE Ⅱ
MAIN EXPERIMENTAL RESULTS

Methods
Yelp2018 Douban-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

LightGCN 0.0639 0.0525 0.1501 0.1282 0.1053 0.0505

DNN+SSL 0.0483 0.0382 0.1366 0.1148 0.0818 0.0375

SGL-ED 0.0675 0.0555 0.1732 0.1551 0.1093 0.0531

BUIR 0.0487 0.0404 0.1127 0.0938 0.0830 0.0384

MixGCF 0.0713 0.0589 0.1731 0.1552 0.1085 0.0520

NCL 0.0670 0.0562 0.1723 0.1545 0.1088 0.0528

SimGCL 0.0722 0.0598 0.1772 0.1578 0.1145 0.0548

GCL-FP 0.0738 0.0609 0.1868 0.1643 0.1167 0.0558

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

TABLE Ⅲ
PERFORMANCE COMPARISON OF DIFFERENT ARCHITECTURES

Methods
Yelp2018 Douban-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

GCL-FPN 0.0730 0.0602 0.1818 0.1596 0.1160 0.0554

GCL-FPGCN 0.0733 0.0603 0.1806 0.1595 0.1155 0.0553

GCL-FP 0.0738 0.0609 0.1868 0.1643 0.1167 0.0558

F. Comparison of Training Efficiency

In this section, we compared the required epochs and the

total running time for model training on three datasets. The

reported data is based on pytorch version 1.10 and it was

collected using a GeForce RTX 3080Ti GPU. We set the

number of layers in the graph convolution module to three.

As shown in Fig. 3, the LightGCN model requires

significantly more training epochs compared to other models.

Although SGL-ED requires considerably fewer training

epochs than LightGCN, it still needs a higher number of

epochs than other models when being applied on the

Yelp2018 and Alibaba-iFashion datasets. Therefore, our

GCL-FP model, in comparison to SimGCL, achieves a

reduced number of epochs on the Yelp2018 and Douban-

Book datasets, while maintaining a comparable number of

training epochs when being applied on the Alibaba-iFashion

dataset.

286

261

71

28

45

1317

46

9
16

42

9

Yelp2018 Douban iFashion
0

60

120

180

240

300

E
p

o
ch

 N
u

m
b

er

 LightGCN

 SGL-ED

 SimGCL

 GCL-FP

Fig. 3 The training epochs of compared methods.

6237

1164

3088

1693

543

1623

1086

565

1416

1074

556

1586

Yelp2018 Douban iFashion
0

1200

2400

3600

4800

6000

T
im

e(
se

co
n

d
s)

 LightGCN

 SGL-ED

 SimGCL

 GCL-FP

Fig. 4 The training time of compared methods.

Referring to Fig. 4, in terms of the total training time,

LightGCN also requires a significantly longer time

compared to other models, taking approximately twice their

needed time or even more. As for SGL-ED, its total training

duration on the Yelp2018 and Alibaba-iFashion datasets is

longer than that of our model, while it is roughly on par with

our model when dealing with the Douban-Book dataset. To

sum up, our GCL-FP model, when being compared to

SimGCL, exhibits similar training epochs on Alibaba-

iFashion; however, its total training time is slightly higher

than that of SimGCL. On the other hand, for the two other

datasets, the total training time is almost the same between

both models.

Based on these findings, it can be observed that

employing graph contrastive learning for recommendation

can accelerate the model’s convergence and reduce the

training time. In addition, it is evident that the use of feature

augmentation not only enhances the recommendation

performance of the model but also results in higher training

efficiency and faster convergence speed. Compared to

SimGCL, which also uses the feature augmentation, our

proposed model exhibits superior performance without

adding any extra burden to the training process.

G. Hyperparameter Studies

In this paper, a lightweight graph convolutional network

with residual connectivity is proposed to help improve the

over-smoothing problem. However, too many GCN layers

can still lead to low performance or significantly slower

convergence. Therefore, hyperparameter experiments were

conducted by varying the number of GCN layers from 1 to 7

to observe the effect on the model performance. As shown

in Fig. 5, the experimental results indicate that the Yelp2018

dataset achieved the best performance when the GCN layers

were set to five, while the Douban-Book dataset reached its

peak performance with four GCN layers. Finally, the

optimal performance for the Alibaba-iFashion dataset

corresponded to three GCN layers, , which may be due to its

sparsity.

Moreover, η as a hyperparameter controlling the amount

of aggregated information fused with noise, we found that

the size of the aggregated information incorporated into the

noise can affect the model's learning ability for different

datasets. To be more exact, if too much aggregated in-

formation is added, the generated contrastive views may

have too little diversity, leading to a poor performance. On

the other hand, if the value is too small, it may alter the

semantic information of the features. Therefore, we adjust

the parameter value η to observe changes in performance.

As shown in Fig. 6, we found that a unit value for η achieves

the optimal performance for Yelp2018 dataset, while a value

of 0.8 for Douban-Book dataset and 0.4 for Alibaba-

iFashion dataset reached the best performances.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

0 1 2 3 4 5 6 7
0.08

0.10

0.12

0.14

0.16

0.18

0.20

GCNlayers

 Recall

 NDCG

Douban-Book

0 1 2 3 4 5 6 7
0.02

0.04

0.06

0.08

0.10

0.12

GCNlayers

 Recall

 NDCG

Alibaba-iFashion

0 1 2 3 4 5 6 7
0.050

0.055

0.060

0.065

0.070

0.075

GCNlayers

 Recall

 NDCG

Yelp2018

Fig. 5 Influence of the magnitude GCN layers on model performance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.145

0.150

0.155

0.160

0.165

0.170

0.175

0.180

0.185

0.190

η

 Recall

 NDCG

Douban-Book

NDCG

Recall

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

η

 Recall

 NDCG

Alibaba-iFashion

Recall

NDCG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.056

0.060

0.064

0.068

0.072

0.076

η

 Recall

 NDCG

Yelp2018

Recall

NDCG

Fig. 6 Influence of the magnitude η of CL.

V. CONCLUSION

In this work, we propose a recommendation method

based on graph convolutional networks and graph

contrastive learning. For the shared GCN encoder, we

design a lightweight graph convolutional neural network

with residual structure that serves as an encoder to extract

node features. This encoder accelerates the model con-

vergence speed and improves its performance. Moreover,

we incorporate random noise as the aggregation

information into the feature matrix to create contrastive

views. The random noise introduces slight perturbations to

the feature matrix, not only enabling the node features to

learn uniform representations but also preserving the

semantic information of the features; thus, it may assist the

recommendation task in learning high-quality re-

presentations. Finally, the experimental results show that

the GCL-FP model outperforms other representative

models and effectively improves the recommendation

performance.

REFERENCES

[1] P. Gu, Y. Han, W. Gao, G. Xu, and J. Wu, “Enhancing session-based

social recommendation through item graph embedding and

contextual friendship modeling,” Neurocomputing, vol.419, pp. 190-
202, 2021.

[2] A. S. Tewari, and A. G. Barman, “Sequencing of items in

personalized recommendations using multiple recommendation
techniques,” Expert Systems with Applications, vol.97, pp. 70-82,

2018.

[3] X. Wu, Y. Li, J. Wang, Q. Qian, and Y. Guo, “UBAR: User
Behavior-Aware Recommendation with knowledge graph,”

Knowledge-Based Systems, vol.254, pp. 109661, 2022.

[4] W. Pan, and K. Yang, “Enhanced Multi-Head Self-Attention Graph

Neural Networks for Session-based Recommendation,” Engineering

Letters, vol.30, no.1, pp. 37-44, 2022.

[5] Y.-E. Hou, W. Gu, K. Yang, and L. Dang, “Deep reinforcement

learning recommendation system based on gru and attention
mechanism,” Engineering Letters, vol.31, no.2, pp. 695-701, 2023.

[6] M. F. Aljunid, and M. D. Huchaiah, “Multi-model deep learning

approach for collaborative filtering recommendation system,” Caai
Transactions on Intelligence Technology, vol.5, no.4, pp. 268-275,

2020.

[7] L. J. M. P. I. E. Xueting, “Personalized Recommendation Algorithm
of Tourist Attractions Based on Transfer Learning,” Mathematical

Problems in Engineering, vol.2022, 2022.

[8] K. Miura, M. Takeuchi, and Y. Okada, “A recommender system
based on an improved simultaneous selection method of query items

and neighbors,” IAENG International Journal of Computer Science,

vol.43, no.4, pp. 406-410, 2016.
[9] L. Huang, Y. Ma, Y. Liu, B. Danny Du, S. Wang, and D. J. a. T. O. I.

S. Li, “Position-enhanced and time-aware graph convolutional

network for sequential recommendations,” ACM Transactions on
Information Systems, vol.41, no.1, pp. 1-32, 2023.

[10] K. Liu, F. Xue, X. N. He, D. Guo, and R. C. Hong, “Joint Multi-

Grained Popularity-Aware Graph Convolution Collaborative
Filtering for Recommendation,” IEEE Transactions on

Computational Social Systems, vol.10, no.1, pp. 72-83, 2023.

[11] J. F. Wang, Z. Y. Fu, M. X. Niu, P. B. Zhang, and Q. L. Zhang,
“Multi-feedback Pairwise Ranking via A dversarial Training for

Recommender,” Chinese Journal of Electronics, vol.29, no.4, pp.

615-622, 2020.
[12] S. Chen, J. H. Xue, J. L. Chang, J. Z. Zhang, J. F. Yang, and Q. Tian,

“SSL plus plus : Improving Self-Supervised Learning by Mitigating

the Proxy Task-Specificity Problem,” IEEE Transactions on Image
Processing, vol.31, pp. 1134-1148, 2022.

[13] Y. H. Tao, M. Gao, J. L. Yu, Z. W. Wang, Q. Y. Xiong, and X.

Wang, “Predictive and Contrastive: Dual-Auxiliary Learning for
Recommendation,” IEEE Transactions on Computational Social

Systems pp. 1-12, 2022.

[14] X. Chen, Y. H. Pan, and B. Luo, “Research on power-law
distribution of long-tail data and its application to tourism

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

recommendation,” Industrial Management & Data Systems, vol.121,
no.6, pp. 1268-1286, 2021.

[15] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, et al., “Self-

supervised graph learning for Recommendation,” Proceedings of the
44th international ACM SIGIR conference on research and

development in information retrieval, pp. 726-735, 2021

[16] J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen, “Are
graph augmentations necessary? simple graph contrastive learning

for Recommendation,” Proceedings of the 45th International ACM

SIGIR Conference on Research and Development in Information
Retrieval, pp. 1294-1303, 2022

[17] L. Q. Chen, P. Shi, G. H. Li, and T. Qi, “Traffic flow prediction

using multi-view graph convolution and masked attention
mechanism,” Computer Communications, vol.194, pp. 446-457,

2022.

[18] J. H. Wang, Y. Guo, Z. H. Wang, Q. F. Tang, and X. X. Wen,
“Advancing Graph Convolution Network with Revised Laplacian

Matrix,” Chinese Journal of Electronics, vol.29, no.6, pp. 1134-1140,

2020.
[19] L. Pasa, N. Navarin, and A. Sperduti, “Polynomial-based graph

convolutional neural networks for graph classification,” Machine

Learning, vol.111, no.4, pp. 1205-1237, 2022.
[20] Z. Q. Pan, and H. H. Chen, “Efficient Graph Collaborative Filtering

via Contrastive Learning,” Sensors, vol.21, no.14, 2021.

[21] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information
Retrieval, pp. 165-174, 2019

[22] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn:

Simplifying and powering graph convolution network for
Recommendation,” Proceedings of the 43rd International ACM

SIGIR conference on research and development in Information

Retrieval, pp. 639-648, 2020
[23] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph

contrastive learning with augmentations,” Advances in neural

information processing systems, vol.33, pp. 5812-5823, 2020.
[24] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph

contrastive learning with adaptive augmentation,” Proceedings of the

Web Conference 2021, pp. 2069-2080, 2021
[25] J. W. Niu, L. Wang, X. T. Liu, and S. Yu, “FUIR: Fusing user and

item information to deal with data sparsity by using side information

in recommendation systems,” Journal of Network and Computer

Applications, vol.70, pp. 41-50, 2016.

[26] S. W. Wu, F. Sun, W. T. Zhang, X. Xie, and B. Cui, “Graph Neural

Networks in Recommender Systems: A Survey,” Acm Computing
Surveys, vol.55, no.5, 2023.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778, 2016

[28] J. Jiang, A. Wang, and A. Aizawa, “Attention-based relational graph

convolutional network for target-oriented opinion words extraction,”
Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Main Volume, pp. 1986-

1997, 2021

[29] L. Dang, Y. Nie, C. Long, Q. Zhang, and G. Li, “Msr-gcn: Multi-

scale residual graph convolution networks for human motion
prediction,” Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 11467-11476, 2021

[30] T. Yao, X. Yi, D. Z. Cheng, F. Yu, T. Chen, A. Menon, et al., “Self-
supervised learning for large-scale item recommendations,”

Proceedings of the 30th ACM International Conference on

Information & Knowledge Management, pp. 4321-4330, 2021
[31] D. Lee, S. Kang, H. Ju, C. Park, and H. Yu, “Bootstrapping user and

item representations for one-class collaborative filtering,”

Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 317-326,

2021

[32] T. Huang, Y. Dong, M. Ding, Z. Yang, W. Feng, X. Wang, et al.,
“Mixgcf: An improved training method for graph neural network-

based recommender systems,” Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
665-674, 2021

[33] Z. Lin, C. Tian, Y. Hou, and W. X. Zhao, “Improving graph

collaborative filtering with neighborhood-enriched contrastive
learning,” Proceedings of the ACM Web Conference 2022, pp. 2320-

2329, 2022

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_25

Volume 50, Issue 4: December 2023

__

