
 

  

Abstract—Recommender systems are an effective solution to 

address the issue of information overload and a thriving 

research field. This paper focuses on the efficient mining of 

user-item relationships and the aggregation of neighborhood 

information in bipartite graph-based recommender systems. 

Therefore, a Graph Contrastive Learning recommendation 

model with Feature Perturbation (GCL-FP) is proposed in this 

work. The proposed model utilizes a graph convolutional 

encoder with a residual structure, simplifying the feature 

transformation and the nonlinear activation in graph con- 

volution. This approach helps alleviate the over-smoothing 

problem of node representation. Furthermore, a data 

augmentation method, incorporating graph convolution 

aggregation information into the random noise, is designed. By 

perturbing the graph node feature matrix in this way when 

generating the contrastive learning view, we ensure that the 

noise does not excessively alter the semantic information of 

node features. Finally, experiments on three benchmark 

datasets, namely Yelp2018, Douban-Book, and Alibaba-

iFashion, were conducted. The experimental results show that 

our proposed model outperforms the baseline model Simple 

Graph Contrastive Learning (SimGCL) by improving the 

Recall evaluation metric by 2.2%, 5.4%, and 1.9%, 

respectively as well as the Normalized Discounted Cumulative 

Gain (NDCG) evaluation metric increases by 1.8%, 3.0%, and 

1.8%, respectively. 

 
Index Terms—recommender systems, graph contrastive 

learning, graph convolutional network, data augmentation 

 

I. INTRODUCTION 

ECOMMENDER systems are information filtering systems 

that select items of interest based on the user behavior, 

aiming to maximize the user attraction and improve his 

engagement. Moreover, the key to achieve higher-level 
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recommendations is learning high-quality representations of 

users and items [1-5]. As this topic is not new, early 

recommendation algorithms, such as matrix factorization, 

relied on collaborative filtering to mine the relationships 

between users and items [6-8]. These algorithms resulted in 

effective representations. However, for the past few years, 

Graph Convolutional Networks (GCN) have received 

increasing attention in the recommendation field due to their 

ability to apply high-order connectivity between nodes in 

order to learn high-quality representations [9, 10], leading to 

even better recommendation performance. 

Although GCNs have achieved advanced performance, 

there are still many unresolved issues within this approach. 

The most two relevant limitations are listed here below: 

(1) Over-smoothing phenomenon: Stacking multiple 

graph convolutional modules will make the node features, in 

the same connected area, much more similar, reducing 

therefore the discriminability of the node representations 

and causing the model to degrade. To solve this problem, 

researchers have introduced residual structures in the graph 

convolutional models, where the shallow  and deep outputs 

are added as inputs for the next stage of learning to enhance 

the over-smoothing problem;  

(2) Noise and sparsity in recommendation data: 

Recommendation data is constructed from the users' implicit 

feedback (e.g., clicks, likes, purchases) [6, 11], which can be 

noisy due to the user errors. To address this issue, 

researchers have introduced self-supervised learning, where 

the models are trained on a series of auxiliary tasks without 

the need for human-labeled labels [12, 13]. Furthermore, 

contrastive learning is a self-supervised learning algorithm 

that can alleviate difficulties in data labeling, noise 

interference, and data sparsity [14]. For instance, Wu et al. 

[15] proposed the Self-supervised Graph Learning (SGL) 

model, which uses contrastive learning as an auxiliary task 

to supplement the recommendation task. They achieved this 

by forming a contrasting view through random deletion of 

edges or nodes, effectively altering the graph structure in 

self-supervised tasks. However, the graph augmentation 

contrastive learning may not be generalized to various 

scenarios and may lose important structural information in 

the graph, such as changing the structure of a molecule. 

Therefore, Yu et al. [16] proposed a feature- augmentation 

Graph Contrastive Learning (GCL) method. This approach 

introduces random noise into the feature matrix to achieve 

augmentation at the graph representation level. While this 

approach preserves the graph structure, adding noise may 

alter the node features and lead to negative effects, such as 

the change of semantic information. 

To address the aforementioned limitations, this paper 

introduces a novel recommendation model that integrates 
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GCNs with GCL methods. In the GCL task, a feature 

perturbation data augmentation method is designed to 

incorporate aggregated information, preserving the structure 

of the graph while minimizing the variations in the semantic 

information of node features. 

Therefore, the main contributions of this work are as 

follows: 

1) For the recommendation task, we design a GCN 

encoder with residual structures, which effectively alleviates 

the over-smoothing problem of the graph convolution and 

improves the performance of the model. 

2) For the self-supervised auxiliary task, we design the 

GCL recommendation method on the basis of feature 

augmentation. This method applies random noise with an 

aggregated information to the feature matrix to form 

contrastive views, enabling the model to learn consistent 

embeddings while preserving the feature information 

without perturbance. 

3) We conduct experimental studies on three benchmark 

datasets and evaluate the superiority of our proposed method. 

II. RELATED WORK 

A. Graph Convolutional Networks 

The GCN technique has been widely applied in several 

engineering domains, such as computer vision and natural 

language processing, due to its excellent performance in 

learning from graph data [17, 18]. Moreover, GCN lever- 

ages the graph structure to capture the complex relationships 

between objects. Its main focus is to perform convolutional 

operations on the graph to identify the node features, and 

update each node's feature representation by using the 

features of its neighbor nodes as filters [19]. The graph 

convolution operation is defined as follows: 

 
1 1

( 1) 2 2( )l l lH D AD H W
− −

+ =  (1) 

where, D  is the degree matrix, A  represents the 

adjacency matrix,   indicates the non-linear activation 

function, W presents the weight matrix of the linear 

transformation, and H represents the feature representation 

at each layer. 

In recommender systems, extracting collaborative signals 

from massive user and item interaction information is a 

challenging problem. The use of high-order connectivity to 

encode collaborative signals in the interaction graph 

structure is particularly suitable for the representation of 

recommendation relationships [20]. In addition, GCN was 

first applied in recommendation systems by Wang et al. [21] 

with their Neural Graph Collaborative Filtering (NGCF) 

method, which explicitly injects collaborative signals into 

node embeddings to improve the recommendation 

performance. Moreover, He et al. [22] proposed the 

recommendation algorithm LightGCN, which also applies 

the graph convolutional techniques to the recommendation 

systems and removes the feature transformation and the 

non-linear activation operations of the graph convolutional 

algorithm. Nevertheless, subsequent experiments have 

demonstrated that these operations have no substantial effect 

on the model, and the LightGCN model, not only improves 

recommendation performance, but also makes the whole 

model algorithm more lightweight. 

B. Graph Contrastive Learning 

In recent years, contrastive learning has achieved 

remarkable results in various engineering fields such as 

computer vision and natural language processing. 

Contrastive learning consists of a self-supervised learning 

method that mainly mines additional information from 

unsupervised data through a series of auxiliary tasks, to 

learn valuable representations for downstream tasks. This 

method has been applied in numerous scenarios, including 

social networks, protein interaction networks, molecular 

structures, and academic citation networks. As for GCL, 

which preserves the characteristics of graph data, it mainly 

consists of three modules: data augmentation, shared Graph 

Neural Network (GNN) encoder for learning graph 

representations, and contrastive loss. In the graph 

classification domain, You et al. [23] proposed the Graph 

Contrastive Learning (GraphCL) model. This model 

incorporates four graph contrastive learning data 

augmentation methods, including node dropping, edge 

perturbation, random walk, and attribute masking. The 

objective is to identify node embeddings by maximizing the 

similarity between two randomly perturbed versions of the 

same node's local subgraph representation. In addition, Zhu 

et al. [24] proposed the Graph Contrastive learning with 

Adaptive augmentation (GCA) model, which assigns larger 

removal probabilities to unimportant edges and larger mask 

probabilities to unimportant node feature dimensions. This 

will help in implementing contrastive learning and 

preserving important nodes and edges in the graph. 

Furthermore, the recommended data is typically re- 

presented as a graph structure; however, it faces challenges, 

such as data sparsity and the long-tail effect caused by 

power-law distributions [25, 26]. As for the data 

augmentation techniques in GCL, it can effectively alleviate 

data sparsity, expand data volume, and serve as auxiliary 

tasks in recommendations to addressing such issues and 

enhancing node feature learning for improved model 

performance. In addition, the SGL model introduces GCL to 

the recommendation domain, proposing a new learning 

paradigm that employs graph data augmentation techniques, 

including node dropout and edge perturbation, to augment 

input data. This augmentation approach aims to reduce bias 

and enhance robustness to interaction noise. SimGCL also 

replaces the graph augmentation contrastive learning 

approach with a simple and efficient feature augmentation 

method. Referring to the experimental results, graph 

augmentation is not necessary; instead, using feature 

augmentation methods can produce more uniformly 

embedded representations of nodes, improving thereby the 

recommendation performance. 

C. Residual Networks 

In the computer vision domain, as model depth increases, 

the problem of model degradation often arises, where 

increasing network depth leads to a decrease at the level of 

performance. To address this issue, He et al. [27] proposed 

the Residual Network (ResNet), which introduces skip 

connections that add the input directly to the output. Even if 

the feature information is distorted or lost, the network can 

still recover the original feature information based on the 

residual connection. Introducing residual connections not 
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only solves the problem of gradient vanishing but also 

enables networks, with hundreds of layers, to converge 

toward the optimal solution. Therefore, the equation that 

models the residual connection is represented as follows: 

 ( )y F x x= +  (2) 

where the input to the residual block is denoted by x, the 

transformed input is represented by ( )F x , and y indicates 

the output of the residual connection. 

 In the field of natural language processing, Jiang et al. 

[28] proposed the Attention-based Relational Graph 

Convolutional Network (ARGCN) model, which combines 

GCNs with residual networks for Target-Oriented Opinion 

Words Extraction (TOOWE). The use of residual structures 

enhances the over-smoothing problem of convolutional 

graphs, thus improving the model performance. For instance, 

Dang et al. [29] proposed the Multi-Scale Residual Graph 

Convolution Network (MSR-GCN) model, which uses the 

Residual Graph Convolutional Network (RGCN) to predict 

the human motion by gradually abstracting the complex 

high-scale pose into low-scale poses and applying the 

residual structure between various input and output scales, 

resulting in a significant improvement in the model 

performance. To sum up, these studies suggest that 

incorporating residual structures into GCN can improve the 

overall performance of the system. 

III. PROPOSED MODEL 

A. Problem Statement 

In recommendation systems, the relationship between 

users and items is usually defined as a bipartite graph 

( , , )G U V = , where 1 2{ , ,..., }nU u u u=  represents the 

set of users, 1 2 m{ , ,..., }V v v v=  represents the set of items, 

and   represents the set of edges. Let 
(0) d

ue   and 
(0) d

ie   be the initial embeddings of user u and item i, 

respectively. n mR   is the matrix that records the 

interactions between users and items, where 1uiR =  indicates 

that user u has interacted with item i, and 0uiR =  indicates 

that there is no interaction between user u and item i. (0)E  

represents the initial feature matrix, (0) ( )m n dE +  , which 

serves as the input of the model. A graph convolutional 

based recommendation model can be represented as 
( 1) ( ) ( )( ,{ : })k k k

u u i ue AGG e e i N+ =  , which obtains the final 

node embeddings after n layers of graph convolutions. The 

model predicts the score 1 2
{ , ,..., }

n
y y y y=  by computing the 

inner product of user nodes and item nodes after applying 

several graph convolution layers. Based on the scores, the 

top-k items are selected as the recommended items for the 

user. 

B. Overview 

In this study, we propose a model consisting of two 

modules, namely the recommendation task module and the 

contrastive learning task module. For these two modules, we 

design a lightweight RGCN with a shared GCN encoder to 

extract node features for score prediction. In the graph 

contrastive learning auxiliary task, we integrate random 

noise carrying aggregated information into the node features 

to create a contrastive view, resulting in the feature-level 

data augmentation. Note that in order to obtain high quality 

node representations, the contrastive learning task serves as 

an auxiliary task to complement the recommendation task. 

Finally, the overall architecture of the model is illustrated in 

Figure 1. 
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Fig. 1  The architecture of GCL-FP. The solid arrow refers the normal graph convolution information passing, and the 

dotted arrow refers to the graph convolution information passing after adding noise. 
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C. Recommendation Task 

For the recommendation task, we designed a lightweight 

RGCN that serves as an encoder to extract node features. In 

the graph convolutional calculation, feature transformation 

and nonlinear activation were eliminated and residual 

structures were introduced, allowing the output of each layer 

to be added to the input of the subsequent one. After 

obtaining the node embeddings at each layer, a weighted 

average aggregator was used to generate the final 

representations for user and item nodes. Therefore, the 

graph convolution calculation is represented by the 

following equations: 

 ( 1) ( ) ( )1
( )

u

k k k

u i u

i N u i

e e F e
N N

+



= +  (3) 

 ( 1) ( ) ( )1
( )

i

k k k

i u i

u N i u

e e F e
N N

+



= +  (4) 

Referring to Eq. (3), the left summation term serves as the 

inter-layer aggregation propagation term whereas the 

symmetric normalization term 1/ u iN N addresses the 

problem of the embedding becoming excessively large due 

to the increase in the number of layers in the graph 

convolution operation. Also, the embedding representation 

of item i, obtained after k-layer GCN propagation, is 

denoted as 
( )k

ie , where uN  represents the set of items that 

user u has interacted with, while iN  represents the set of 

users who have interacted with item i. In addition, 
( )( )k

uF e represents the residual operation and ( )F   is a 

standardization function, the output of the k-th GCN layer is 

passed through the Leaky Rectified Linear Unit 

(LeakyReLU) activation function and a standardization 

function. In a further stage, the result is added to the inter-

layer aggregation information of the k-th GCN layer to 

generate the output of the (k+1)-th layer. After n layers of 

GCN aggregation, the final representation of each node is 

obtained. 

Moreover, the model prediction is defined as the inner 

product of the final representations of the user and the item 

nodes. Therefore, the calculation formula is represented as 

follows: 

 T

u iui
y e e=  (5) 

 The score, calculated using Eq. (5), is considered as the 

final predicted ranking score. 

D. Graph Contrastive Learning Auxiliary Task 

(1) Creating contrast views 

For the graph contrastive learning auxiliary task, a feature 

perturbation data augmentation method is proposed. This 

method incorporates the aggregation information. In this 

work, we added random noise to the feature vectors to adjust 

the uniform representation of features within a certain range 

[16]. Additionally, we incorporated the neighborhood 

information, obtained through the graph convolutional layer 

aggregation, to ensure that the magnitude of the noise does 

not adversely affect the semantic information of the node 

features. 

It should be noted that, in creating views for the graph 

contrastive learning task using a lightweight RGCN encoder, 

the strategy of consistently is adopted. This strategy 

integrates the residual connections into the embedding 

representations after the first layer of graph convolution 

calculation before adding noise. This is done, rather than 

integrating the residual connections into the embedding 

representation of the previous layer. Due to the modification 

of the original feature matrix caused by the introduction of 

noise, the performance is adversely affected. 

Moreover, a graph representation-level data augmentation 

method is adopted. This method requires generating a 

random noise matrix after each layer of graph convolution 

computation and fuse it with the information obtained from 

the graph convolution aggregation of the current layer. 

Formally, a random noise matrix, with the same dimensions 

as the feature matrix after the k-th layer of graph convolution 

computation, is generated and added to the information 

obtained through the graph convolution aggregation using a 

certain fusion strategy. The calculation formula for this 

fusion process can be expressed as follows: 

 ( ) ( )k kE =  +  (6) 

where ( )kE  represents the output of the k-th GCN layer, 

with ( ) ( )k n m dE +  . Meanwhile, ( )k  denotes the randomly 

generated noise matrix for the k-th layer, which also satisfies 
( ) ( )k n m d+    and η indicates the hyperparameter that 

controls the amount of incorporating aggregated information 
( )kE ; moreover   is the final generated noise matrix. The 

purpose of incorporating the aggregated information ( )kE  

into the random noise matrix is to ensure that the noise does 

not have an excessive impact on the semantic interpretation 

of the feature matrix. After creating the noise matrix, it is 

added to the feature matrix in the k-th layer to get the 

perturbed feature representation. Therefore, the calculation 

formula is modelled as follows: 

 ( ) ( )( )k kE F E =  +  (7) 

where ( )F   is the normalization function, ( )kE is the 

feature matrix of the k-th layer GCN with added noise, 

aiming to achieve slight feature perturbation for each feature 

vector in 
( )kE . By adding the random noise as a layer 

embedding after each graph convolution, a weighted 

average aggregator is used to get the comparison view E . 

Similarly, another contrast view E  is created，and it is 

considered as the input for the contrastive loss. 

 (2) Noise control 

Adding excessive noise to the feature matrix can alter the 

information carried by the features, so the noise matrix 

needs to satisfy ( )sign E =  ,
( ) ~ (0,1)m n d U+   . In 

addition, taking the feature vector ie  of item i as an example, 

i
 and

i
  are two noise vectors that perturb ie on two 

different views, it is required that 2i  =  and i  are 

numerically equivalent to points on a hypersphere with a 

radius of  , and that ie , i
 , and i

  are in the same 

hyperoctant. The noise satisfying the above conditions does 

not lead to significant bias, equivalent to rotating the vectors 

by two small angles in the vector space, and each rotation 

corresponds to the deviation of the vector [16]. After 

generating noise and integrating graph convolution 

aggregation information  to generate i


  and i


 , resulting in 

rotating the vectors towards ie  direction, getting ie  and ie . 

This process controls the effect of noise on the features. Fig. 

2 illustrates the difference between adding random noise 

( ine , ine ) and adding noise with aggregated information ( ie , 

ie ). 
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Fig. 2  The representation of features fused with different 

forms of noise in the vector space. 

E. Module Training 

The Graph Convolutional Learning with Feature 

Perturbation (GCL-FP) model adopts a multi-task training 

strategy, consisting of the recommendation task and the 

GCL auxiliary task. Each task has a separate loss function 

and is trained jointly with the other task. 

Concerning the recommendation task, we used the 

Bayesian Personalized Ranking (BPR) loss function, which 

represents the user's historical behavior as a triplet. Given a 

user u and two items i and j, where i represents the item that 

the user has interacted with (i.e., the positive sample) and j 

is an item that the user has not interacted with (i.e., a 

negative sample), the goal is to make the predicted score for 

the positive sample i higher than that for the negative 

sample j. The BPR loss function is computed as follows: 

 2

( , , )

log ( )rec ui uj

u i j O

L y y 


= − − +   (8) 

 For the Eq. (8), {( , , ) ( , ) , ( , ) }O u i j u i O u j O+ −=   , O+  

represents the observed interactions, while O−  represents 

the unobserved interactions. The   indicates the sigmoid 

function and   is the coefficient controlling L2 

regularization. After obtaining the final predicted score, we 

optimize the model parameters using pairwise BPR loss, 

denoted as { , , }u i u U i I =   . In this model, the only 

trainable parameter is (0)E , that is 
(0){ }E = . Therefore, 

the formula can be derived as follows: 

 2
(0)

( , , )

log ( )rec ui uj

u i j O

L y y E 


= − − +  (9) 

 In the graph contrastive learning auxiliary task, the 

Information Noise Contrastive Estimation (InfoNCE) 

contrastive loss function is used to maximize the 

consistency between positive samples and minimize the 

consistency between negative samples. In other words, the 

distance between the positive samples becomes closer and 

the distance between negative samples becomes farther in 

the vector space. The equation that models the user's self-

supervised loss calculation is as follows: 

 exp( ( , ) / )
log

exp( ( , ) / )

user u u
ssl

u U u vv U

s z z
L

s z z



 

 
= −

 



 (10) 

 where u and v represent a user and an item in a sampled 

batch, uz  and uz  are the data-augmented representations of 

user u, ( )s   represents the cosine similarity, and   is a 

hyperparameter defined as the temperature coefficient. 

Similarly, the self-supervised loss calculation formula for 

item 
item

sslL  can be obtained. Adding the two losses together 

gives the objective function of the self-supervised task, 

denoted by 
user item

ssl ssl sslL L L= + . 

 By adopting a multi-task learning strategy, the 

recommendation task loss and the self-supervised auxiliary 

task loss are jointly optimized for both tasks. Hence, the 

calculation formula is expressed as follows: 

 
2

(0)

2loss rec sslL L L E= + +  (11) 

For the Eq. (11), as a complete contrastive learning loss 

function. 

IV. EXPERIMENTS 

A. Datasets 

We conducted experiments on three public benchmark 

datasets to evaluate the performance of our model. These 

datasets are described below: 

Yelp2018 [22]: Yelp is a well-known business review 

website in the United States, where users can rate and 

review businesses, and share shopping experiences with 

others. 

Douban-Book [16]: This dataset is a collection of user-

generated book reviews and ratings from the popular 

Chinese social networking site, Douban. The dataset 

regroups books in various languages, including Chinese and 

English, and is commonly used for natural language 

sentiment analysis as well as recommendation system 

research. 

Alibaba-iFashion [15]: The third dataset is a large-scale 

fashion image dataset created by researchers at Alibaba 

Group. It supports research in the fields of fashion image 

analysis and recommendation retrieval. Despite its sparsity, 

this dataset is still large in scale. 

TABLE Ⅰ 

THE STATISTICS OF THE DATASETS.  

Dataset #User #Item #Interaction 

Yelp2018 31,668 38,048 1,561,406 

Douban-Book 13,024 22,347 792,062 

Alibaba-iFashion 300,000 81,614 1,607,813 

The statistical data for the three datasets is shown in 

Table Ⅰ 

B. Baseline 

We compare our proposed GCL-FP model to the 

following models: 

1)  LightGCN [22] proposes a lightweight graph convolution 

approach that stops feature transformation and non-linear 

activation, yielding to a great reduction in the number of 

parameters and improvement in the training efficiency. 

2)  DNN+SSL [30] proposes a large-scale self-supervised 

learning framework for recommendations. This approach 

employs a Deep Neural Net (DNN) as the item encoder 

and applies two types of enhancement methods, namely 

the feature masking and the feature dropout, to the 

existing item features. 

3)  SGL [15] introduces GCL into the recommendation 

domain by using three types of graph data augmentation 

to construct the contrastive views for recommendation. 

4)  BUIR [31] has a dual-branch architecture consisting of a 

target network and an online network. Moreover, it only 
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uses positive examples for self-supervised learning while 

ignoring long-tail items. 

5)  MixGCF [32] designs a single-hop mixing to combine 

local graph messages to generate informative negatives 

samples and improve recommendation generalization. 

6)  NCL [33] is a novel contrastive model that proposes a 

prototype contrastive objective to capture the relevance 

between the relationship of users/items and their context. 

7)  SimGCL [16] is a simple graph contrastive learning 

framework that doesn’t use graph augmentation but adds 

random noise to node features. 

C. Settings 

The performance of our model was evaluated using two 

popular metrics in the recommendation field, namely 

Recall@20 and NDCG@20, to assess the performance of 

the proposed model. Multiple experiments were conducted 

on the GCL-FP model, To ensure a fair comparison of 

different models, the optimal hyperparameter settings were 

used based on the original papers that served as reference. 

Among all the baseline models, the embeddings were 

initialized using the Xavier initialization method with a size 

of 64 and L2 regularization parameter set to 410−  to mitigate 

overfitting. Moreover, the batch size was set to 2048. To 

optimize all models, we used the Adam optimizer with a 

learning rate of 0.001 to achieve the best performance. 

Finally, concerning the SimGCL and SGL models, 0.2 =  

was initiated as the temperature value. 

D. Comparison with Baseline Methods 

All methods were evaluated using two popular evaluation 

metrics in the recommendation field; moreover, the 

experimental results are presented in Table Ⅱ. The SGL 

model employed the edge-dropout method, which achieved 

the best performance in its original paper. However, the 

obtained results showed that the performance of the GCL-

FP model outperformed other baseline models, confirming 

the rationality and effectiveness of introducing the residual 

structure graph convolutional encoder as well as the  feature 

perturbation graph contrastive learning method along with 

the aggregated information. 

Based on the evaluation results proposed in Table Ⅱ, we 

can observe the performance of other recommendation 

strategies. Firstly, MixGCF shows significant improvement 

in the evaluation of the metrics by enhancing the negative 

sampling strategy based on the LightGCN model, 

demonstrating therefore its superiority. Secondly, SGL 

performs better than LightGCN, reflecting that the use of 

GCL methods is efficient in the recommendation domain. 

Thirdly, NCL proposes a novel graph contrastive learning 

perspective that considers the neighbors of users (or items) 

from both the graph structure and the semantic space, 

achieving a comparable performance to SGL. Lastly, 

SimGCL uses feature augmentation to generate contrastive 

views, outperforming the SGL model on all three datasets 

while training faster, which confirms the theoretical 

proposition in the SimGCL paper that graph augmentation is 

unnecessary. 

Our GCL-FP model did not add more parameters; thus, 

the training efficiency is comparable to SimGCL. By adding 

residual connections in the graph convolutional encoder, the 

network can identify the residual between the input and 

output, instead of trying to learn the complete representation 

of each layer from scratch. This would help to enhance the 

over-smoothing problem and stack more GCN layers to 

improve the model performance. Additionally, incorporating 

aggregate information in random noise can effectively 

achieve feature perturbation without changing the semantic 

information, while avoiding the time complexity of 

reconstructing the graph and without damaging its structure. 

Therefore, the data augmentation method has a positive 

impact on model learning. 

In general, incorporating graph self-supervised learning as 

an auxiliary task in recommendation models performs better 

than using GCNs alone for recommendation. Thus, our 

proposed GCL-FP model achieved the best performance on 

both evaluation metrics across all three datasets. 

E. Ablation Study 

We conducted ablation experiments to compare our 

proposed GCL-FP model with the GCL-FPN that only adds 

random noise as well as the lightweight graph convolutional 

encoder GCL-FPGCN that does not include residual 

information. The experimental results, displayed in Table Ⅲ, 

show that the performance of the GCL-FP model is superior 

to those of GCL-FPN and GCL-FPGCN. This indicates that 

the effectiveness of incorporating residual structures and 

aggregated noise to improve recommendation performance 

is validated. 

TABLE Ⅱ 
MAIN EXPERIMENTAL RESULTS 

Methods 
Yelp2018 Douban-Book Alibaba-iFashion 

Recall NDCG Recall NDCG Recall NDCG 

LightGCN 0.0639 0.0525 0.1501 0.1282 0.1053 0.0505 

DNN+SSL 0.0483 0.0382 0.1366 0.1148 0.0818 0.0375 

SGL-ED 0.0675 0.0555 0.1732 0.1551 0.1093 0.0531 

BUIR 0.0487 0.0404 0.1127 0.0938 0.0830 0.0384 

MixGCF 0.0713 0.0589 0.1731 0.1552 0.1085 0.0520 

NCL 0.0670 0.0562 0.1723 0.1545 0.1088 0.0528 

SimGCL 0.0722 0.0598 0.1772 0.1578 0.1145 0.0548 

GCL-FP 0.0738 0.0609 0.1868 0.1643 0.1167 0.0558 
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TABLE Ⅲ 
PERFORMANCE COMPARISON OF DIFFERENT ARCHITECTURES 

Methods 
Yelp2018 Douban-Book Alibaba-iFashion 

Recall NDCG Recall NDCG Recall NDCG 

GCL-FPN 0.0730 0.0602 0.1818 0.1596 0.1160 0.0554 

GCL-FPGCN 0.0733 0.0603 0.1806 0.1595 0.1155 0.0553 

GCL-FP 0.0738 0.0609 0.1868 0.1643 0.1167 0.0558 

F. Comparison of Training Efficiency 

In this section, we compared the required epochs and the 

total running time for model training on three datasets. The 

reported data is based on pytorch version 1.10 and it was 

collected using a GeForce RTX 3080Ti GPU. We set the 

number of layers in the graph convolution module to three. 

As shown in Fig. 3, the LightGCN model requires 

significantly more training epochs compared to other models. 

Although SGL-ED requires considerably fewer training 

epochs than LightGCN, it still needs a higher number of 

epochs than other models when being applied on the 

Yelp2018 and Alibaba-iFashion datasets. Therefore, our 

GCL-FP model, in comparison to SimGCL, achieves a 

reduced number of epochs on the Yelp2018 and Douban-

Book datasets, while maintaining a comparable number of 

training epochs when being applied on the Alibaba-iFashion 

dataset. 
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Fig. 3 The training epochs of compared methods. 
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Fig. 4 The training time of compared methods. 

Referring to Fig. 4, in terms of the total training time, 

LightGCN also requires a significantly longer time 

compared to other models, taking approximately twice their 

needed time or even more. As for SGL-ED, its total training 

duration on the Yelp2018 and Alibaba-iFashion datasets is 

longer than that of our model, while it is roughly on par with 

our model when dealing with the Douban-Book dataset. To 

sum up, our GCL-FP model, when being compared to 

SimGCL, exhibits similar training epochs on Alibaba-

iFashion; however, its total training time is slightly higher 

than that of SimGCL. On the other hand, for the two other 

datasets, the total training time is almost the same between 

both models. 

Based on these findings, it can be observed that 

employing graph contrastive learning for recommendation 

can accelerate the model’s convergence and reduce the 

training time. In addition, it is evident that the use of feature 

augmentation not only enhances the recommendation 

performance of the model but also results in higher training 

efficiency and faster convergence speed. Compared to 

SimGCL, which also uses the feature augmentation, our 

proposed model exhibits superior performance without 

adding any extra burden to the training process. 

G. Hyperparameter Studies 

In this paper, a lightweight graph convolutional network 

with residual connectivity is proposed to help improve the 

over-smoothing problem. However, too many GCN layers 

can still lead to low performance or significantly slower 

convergence. Therefore, hyperparameter experiments were 

conducted by varying the number of GCN layers from 1 to 7 

to observe the effect on the model performance. As shown 

in Fig. 5, the experimental results indicate that the Yelp2018 

dataset achieved the best performance when the GCN layers 

were set to five, while the Douban-Book dataset reached its 

peak performance with four GCN layers. Finally, the 

optimal performance for the Alibaba-iFashion dataset 

corresponded to three GCN layers, , which may be due to its 

sparsity. 

Moreover, η as a hyperparameter controlling the amount 

of aggregated information fused with noise, we found that 

the size of the aggregated information incorporated into the 

noise can affect the model's learning ability for different 

datasets. To be more exact, if too much aggregated in- 

formation is added, the generated contrastive views may 

have too little diversity, leading to a poor performance. On 

the other hand, if the value is too small, it may alter the 

semantic information of the features. Therefore, we adjust 

the parameter value η to observe changes in performance. 

As shown in Fig. 6, we found that a unit value for η achieves 

the optimal performance for Yelp2018 dataset, while a value 

of 0.8 for Douban-Book dataset and 0.4 for Alibaba-

iFashion dataset reached the best performances. 
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Fig. 5  Influence of the magnitude GCN layers on model performance. 
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Fig. 6  Influence of the magnitude η of  CL. 

V. CONCLUSION 

In this work, we propose a recommendation method 

based on graph convolutional networks and graph 

contrastive learning. For the shared GCN encoder, we 

design a lightweight graph convolutional neural network 

with residual structure that serves as an encoder to extract 

node features. This encoder accelerates the model con- 

vergence speed and improves its performance. Moreover, 

we incorporate random noise as the aggregation 

information into the feature matrix to create contrastive 

views. The random noise introduces slight perturbations to 

the feature matrix, not only enabling the node features to 

learn uniform representations but also preserving the 

semantic information of the features; thus, it may assist the 

recommendation task in learning high-quality re-

presentations. Finally, the experimental results show that 

the GCL-FP model outperforms other representative 

models and effectively improves the recommendation 

performance. 
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