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Abstract—As urbanization progresses, urban road conges-
tion has intensified, highlighting the need for effective vehicle
and pedestrian detection as a cornerstone of public safety
transportation. This area holds significant relevance in video
surveillance and public safety domains. Despite its importance,
achieving precise vehicle and pedestrian detection in complex
road environments remains challenging. This paper presents a
vehicle-pedestrian detection algorithm based on the improved
YOLOv5. Key modifications include the integration of a small
target detection layer and alterations to the feature pyramid
using the feature fusion technique inherent to the weighted Bi-
directional Feature Pyramid Network (BIFPN). This ensures
efficient multi-scale feature fusion. A coordinated attention
mechanism is introduced to preserve accurate target location
data. Furthermore, the paper incorporates the SIOU metric to
refine the localization loss function, bolstering both speed and
edge regression accuracy. Experimental outcomes indicate that
our improved YOLOv5 algorithm augments detection accuracy
by 1.9% and achieves a detection speed of 67 FPS, which
surpasses many competing target detection algorithms.

Index Terms—KITTI, Feature fusion, Attention mechanism,
SIoU loss function,YOLOv5.

I. INTRODUCTION

VEHICLE and pedestrian detection holds pivotal impor-
tance in the realms of intelligent transportation and

autonomous vehicles. As modern technology has advanced,
vehicles have transitioned from merely assisted driving to
capabilities of full autonomous operation. Within the intricate
urban traffic environment, vehicles and pedestrians are two
key elements. For safety considerations, intelligent vehicles
employ on-board cameras to gather road data [1]. Sub-
sequently, target detection technologies autonomously and
accurately identify vehicles and pedestrians, pinpointing their
locations and highlighting them with predictive frames. This
provides real-time feedback and early warnings, enhancing
the driver’s awareness of the traffic surroundings and im-
proving the vehicle’s obstacle avoidance during autonomous
operations. Such advancements not only fortify the safety of
vehicular movement and pedestrian crossings but also play a
crucial role in mitigating traffic incidents. Hence, the research
and refinement of vehicle and pedestrian detection algorithms
bear significant relevance.

The crux of target detection hinges on feature extraction.
Broadly, the methodologies can be bifurcated into traditional
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target detection algorithms and those rooted in deep learning,
based on their feature extraction techniques. Traditional
object detection algorithms first process an image, followed
by a sliding window traversal over the input image. This op-
eration builds targets employing manually designed features
such as HOG [2] and Haar [3]. Despite their foundational
importance, these traditional techniques, reliant on manually
designed features, often suffer from limited robustness and
weak feature representation, leading to suboptimal outcomes.
With the advent of deep learning, achieving breakthroughs
across myriad domains, target detection underwent signif-
icant transformations. Deep learning-based target detection
algorithms primarily fall into two categories. The first is two-
stage target detection algorithms, which are exemplified by
R-CNN [4], Fast R-CNN [5], and Faster R-CNN [6]. These
algorithms typically commence by generating candidate re-
gions that might encompass targets, using candidate region
networks. Subsequent steps involve neural networks extract-
ing features from these regions, culminating in target classifi-
cation and location regression. While these algorithms boast
commendable accuracy, their need to extract and process an
extensive array of candidate regions translates to protracted
computation times and diminished efficiency. The other is
known as one-stage target detection algorithms. Eschewing
the extraction of candidate regions, these algorithms directly
feed images into networks for feature extraction, followed by
bounding box regression. YOLO [7] and SSD [8] stand out
as archetypal representations. While this class of algorithm
excels in detection speed, it falls short of being optimal for
target detection purposes.

In this paper, we present an enhanced YOLOv5 algorithm
specifically tailored for vehicle and pedestrian detection. Our
primary contributions include the design of a multi-scale
feature fusion module, which adds a small target detection
layer atop the original three-scale layer and integrates a jump
connection between the backbone network and output layers.
This refines the existing feature pyramid structure, improving
both detection and feature fusion capabilities. To account
for the relationship between channels and positions, we’ve
embedded a coordinate attention mechanism, allowing the
model to pinpoint targets with greater accuracy. Moreover,
we’ve adopted SIOU in place of CIOU in the loss func-
tion, addressing issues of reduced detection accuracy and
excessive background interference, which resulted in more
accurate prediction outcomes.

II. RELATED STUDIES

As deep learning techniques continue to evolve, deep
neural networks have emerged as the predominant method-
ology in target detection. The Convolutional Neural Network
(CNN), in particular, has gained immense popularity due
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Fig. 1: Improved YOLOv5 network aechitecture

to its superiority over traditional algorithms in image data
processing and its capacity to autonomously extract and
learn features. This makes it highly applicable to vehi-
cle and pedestrian detection. Cao et al. [9] introduced a
multi-branched advanced network. This network leverages
branches of varying resolutions and perceptual fields to
extract sophisticated semantic features. By cross-linking lay-
ers and employing Atrous Convolution, they augmented the
resolution of the feature map, thereby enhancing spatial
information crucial for pinpointing small-target pedestrians.
In a different vein, Nguyen et al. [10] unveiled an enhanced
framework rooted in Faster-RCNN. By deploying Depth-
Separable convolution in crafting convolutional layers and
integrating a context-aware pooling layer, targets are resized
to specific dimensions without compromising vital contex-
tual data. This technique outstrips several traditional target
detection algorithms in performance metrics. Chen et al. [11]
put forth an optimized SSD algorithm, tailored for rapid
vehicle detection in traffic scenarios. This algorithm employs
MobileNetV2 as its foundational network and incorporates
a channel attention mechanism for feature weighting. By
utilizing a deconvolution module to establish a feature fusion
structure, the method achieved a commendable 84.83% ac-
curacy on the KITTI dataset. Guo et al. [12], while adopting
the SSD model with ResNet50 as the backbone, integrated an
attention mechanism. Notably, while this approach elevated
detection accuracy, it encountered challenges with multiple
vehicle targets and pronounced occlusion scenarios. The
fusion of diverse output size feature maps, combined with
the addition of convolutional layers, escalated the model’s
complexity, rendering it unsuitable for real-time applica-
tions. Yuan et al. [13] presented an enhanced YOLOv4-
based vehicle detection algorithm. This modification replaces

YOLOv4’s original backbone network, CSPDarknet53, with
MobileNetv3 and substitutes 3×3 convolution in the original
network’s feature extraction segment with DepthSeparable
convolution. By innovatively redesigning the loss function
using a weighting technique, the refined approach amplifies
accuracy by 0.53% and curtails the model parameters by a
staggering 78%.

While existing methodologies have made notable strides in
vehicle and pedestrian detection, the dynamic and evolving
nature of traffic scenarios necessitates continual exploration
of innovative techniques and approaches. Given the intricate
nature of actual road traffic scenarios, many prevalent target
detection algorithms struggle to accurately identify small-
sized targets. Complications such as mutual occlusions fur-
ther compromise the model’s detection precision, resulting in
issues like false detections and missed targets. Consequently,
this accentuates the need for more sophisticated detection
algorithms. This study endeavors to holistically address these
challenges—specifically the accurate detection of smaller
targets and managing occlusions—whilst ensuring real-time
responsiveness. Our ultimate aim is to strike an optimal
balance between detection precision and processing speed.

III. YOLOV5 ALGORITHM PRINCIPLE
YOLOv5 stands out as a single-stage target detection

algorithm, boasting faster training and inference times than
its predecessor, YOLOv4, alongside marked enhancements
in detection speed and efficiency. The YOLOv5 models
are categorized into five versions based on their weight
sizes: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x, with each subsequent model having increased
width and depth. For our study, we opted for YOLOv5s
due to its compact weight file, offering the fastest process-
ing speed and minimal computational resource consumption
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among the variants. Structurally, the model comprises three
primary components: the Backbone network, the Neck fea-
ture fusion layer, and the Head output layer, as illustrated
in Fig. 2. These parts collaboratively ensure optimal target
detection efficacy.

The backbone network primarily comprises three compo-
nents: the feature extraction module (C3), the convolution
module (Conv), and the spatial pyramid pooling (SPPF).
This network encompasses five standard convolutional layers,
labeled as Conv, which are instrumental in extracting features
from the input image. Within the C3 module, the input

Fig. 2: YOLOv5 network aechitecture

feature map is channeled through two distinct branches. The
first branch is processed through a Conv module before
undergoing feature learning via a stacked Bottleneck module;
the second branch serves as a residual connection and solely
passes through a Conv module. Upon processing, these
branches are channel-wise concatenated and subsequently
output through another Conv module. After each convolution,
the C3 module performs feature stacking, which enriches the
model’s representational capability. Positioned at the back-
bone network’s terminal feature layer is the SPPF structure.
Here, input feature maps undergo convolution before being
sequentially processed by three maximum pooling layers,

each sized 5 × 5. This arrangement amplifies the model’s
perceptual prowess.

The Neck layer is comprised of both a Feature Pyramid
Network (FPN) and a Path Aggregation Network (PAN).
The FPN’s top-down feature pyramid is integrated with the
PAN’s bottom-up feature pyramid. This integration facilitates
the fusion of features from different stages of the feature
maps, minimizing information loss. As a result, the model’s
proficiency in detecting targets across varying scales is
significantly bolstered.

The Head output layer initiates its process by performing
convolution operations on the 20×20, 40×40, and 80×80
feature maps, which are the outputs from the Neck layer.
These operations are vital for detecting the class and location
of the target. Additionally, the non-maximum suppression
algorithm is employed to select among the prediction frames
from all detection layers. The frame with the utmost confi-
dence is retained, culminating the entire detection process.

IV. IMPROVEMENT STRATEGY

A. Multi-scale enhanced feature fusion

The original YOLOv5 network model conducts detection
across three different scales of feature maps, allocating three
distinct detection frames to each scale. By doing so, it aims
to detect large, medium, and small targets using the scales
20×20, 40×40, and 80×80. However, real roads often present
numerous small, distant targets. Given that the perceptual
field of the 80×80 detection layer in the original model
is limited to 8×8, the model struggles to identify targets
in the original image if their size is less than 8 pixels.
Consequently, the original 80×80 detection layer, designed
for small targets, often misses these even smaller targets,
reducing the YOLOv5 network’s detection efficacy.

To enhance the YOLOv5s’ detection capability for small
targets, we incorporated an additional 160×160 scale layer
specifically designed for detecting these diminutive entities.
Originating from the backbone network, this new branch
upsamples the 80×80 feature map to facilitate feature fusion.
Fig. 3 offers a schematic representation of this multiscale
detection. By amalgamating deep and shallow insights, the
model enriches its expression of the semantic features and
spatial data pertaining to small targets. The refined feature
layer is then forwarded to the newly introduced detection
head for decoding. Consequently, the original three-scale
detection has evolved into a four-scale system, with final
output feature maps sized at 160×160, 80×80, 40×40, and
20×20. This expansion in the detectable size range equips our
model to more adeptly identify small distant targets, leading
to an improved overall detection outcome.

YOLOv5s employs the structure of FPN [14], illustrated
in Fig. 4(a). This configuration forms a top-down channel
fusion to seamlessly integrate the image semantic layer with
its feature layer. However, it is hindered by a unidirectional
flow of information. To counter this limitation, the PAN
structure, showcased in Fig. 4(b), [15] is introduced. By
integrating a bottom-up channel to the existing FPN, it
ensures the prediction feature layer imbibes both upper and
lower semantic information. Building on PAN, the BIFPN
structure optimizes the network by removing less contributive
nodes and introducing new jump connections between nodes
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Fig. 3: Multi-scale extended structure diagram

at equivalent levels [16]. As shown in the Fig. 4(c), P3-
P7 signify feature maps across varied layers, with P4-P6 as
intermediates. The blue arrows highlight top-down semantic
flow, the red arrows show bottom-up location flow, and
purple arrows signify new pathways linking input-output
nodes. This BIFPN arrangement interprets each bidirectional
path as a distinct feature layer, facilitating fusion of infor-
mation from varying layer feature maps. Such a mechanism
reduces resource usage, effectively manages image noise and
disturbances, and even assigns weights based on input feature
significance, normalizing them within a [0, 1] range.

(a) FPN (b) PANet (c) BiFPN

Fig. 4: Feature fusion method.

Drawing inspiration from BIFPN, this study incorporates
its feature fusion approach while omitting the weight aspect,
aiming to elevate the model’s feature integration and target
recognition capabilities. In the YOLOv5’s PAN structure, we
integrated three novel feature fusion pathways, depicted by
the red line in Fig. 1. This ensures each node within the
fusion architecture maintains a connection to the original
feature layer stemming from the backbone network, fos-
tering consistent engagement with the original feature data
and enhancing inter-part feature fusion. Such modifications
not only heighten the model’s sensitivity to various target
scenarios but also bolster detection accuracy without signifi-
cantly escalating computational demands. Consequently, this
optimized model is more adept at tackling intricate target
detection challenges.

B. Attentional mechanisms
At its core, the attention mechanism seeks to emulate

human perception and attention within machines. By inte-
grating this mechanism, neural networks learn to prioritize
essential data pertinent to the recognition task while filtering
out irrelevant information, such as background elements.
This strategic focus subsequently enhances the overall per-
formance of the model.

To bolster the model’s detection capabilities, attention
mechanisms have become increasingly integrated into tar-
get detection. Prominent mechanisms like the Squeeze and
Excite attention (SE) [17], the former focusing primarily on
channel information while often overlooking spatial struc-
tures, and the latter, the Convolutional Block Attention
Module (CBAM) [18], amalgamating spatial and channel in-
formation by using global pooling, but capturing only partial
location details. In this study, we introduce a coordinated
attention mechanism post-SPPF. This approach not only
uncovers more nuanced, distance-dependent correlations but
also assimilates the target’s spatial structure. Consequently,
it amplifies the model’s feature learning prowess, steering
it towards more pertinent information for enhanced target
recognition.

Fig. 5: Coordinate attention mechanisms

The coordinated attention mechanism, depicted in Fig.
5, represents an innovative attention module. Central to its
design is the incorporation of candidate frame location infor-
mation into channel attention, facilitating rapid pinpointing
of interest areas. This mitigates the need for two-dimensional
global pooling which typically reduces a feature tensor to a
single vector, leading to location data loss [19]. Specifically,
the mechanism averages all input feature map channels along
the horizontal and vertical coordinates, yielding C×H×1 and
C×1×W feature maps. After concat operations and 1×1 con-
volution, results are split into horizontal and vertical tensors
for further 1×1 convolution, followed by Sigmoid activation.
This multiplies with the input feature map, optimizing model
detection without raising computational demands and pre-
serving both location and cross-channel information.

C. Optimization of loss function

Non-maximum suppression (NMS) is a prevalent post-
processing technique in object detection. Essentially, NMS
is a method of iteratively refining the set of detection candi-
dates. Initially, each candidate bounding box, along with its
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associated classification score, is generated by the classifier.
These scores are then sorted, and a confidence threshold
for the bounding boxes is established. The Intersection over
Union (IoU) between every box and the one with the highest
score is computed. If the IoU exceeds a certain threshold, the
corresponding candidate box is removed. IoU is a widely-
used metric in object detection. Its purpose is to assess the
accuracy of the predicted bounding box’s location compared
to the actual location. Essentially, it calculates the overlap
between the predicted and ground truth bounding boxes. This
is done by dividing the intersection area of the predicted and
true boxes by their union area. The formula for IoU can be
found in Fig. 6.

Fig. 6: IOU calculation method

The loss function quantifies the discrepancy between a
model’s predicted frame and the actual frame, playing a
pivotal role in shaping the model’s performance. In YOLOv5,
there are three different loss functions: category loss, con-
fidence loss, and localization loss. Within the localization
loss, CIOU is employed as the loss function to measure
the similarity between the predicted frame and the true
frame. However, CIOU does not account for the orientation
mismatch between the predicted and actual frames, leading
to a slower convergence during model training. To rectify
this, our study introduces the SIOU loss function [20], as
depicted in Fig. 7. Superior to CIOU, SIOU not only factors
in overlap, frame distance, and aspect ratio but also inte-
grates the vector angle between actual and predicted frames.
This refined approach not only accelerates training but also
elevates inference accuracy. Specifically, SIOU amalgamates
four components: angle loss, distance loss, shape loss, and
IOU loss, with the respective equations presented in Equa-
tions (1) through (4).

Fig. 7: Schematic diagram of angular costing

Λ = 1− 2 ∗ sin2(arcsin(ch
σ

− π

4
)) (1)

In the equation above, σ denotes the distance between the
center points of the true bounding box and the predicted one,
and ch represents the height difference between the center
points of these two boxes.

∆ =
∑
t=x,y

(1− e−γρt) (2)

ρx = (
bgtcx − bcx

cw
) (3)

ρy = (
bgtcy − bcy

ch
) (4)

In the equations, cw and ch refer to the width and height,
respectively, of the smallest enclosing rectangle formed by
the centers of the actual and predicted frames. The parameter
”γ” is given by γ = 2 − Λ, here bgtcx and bgtcy represent
the coordinates of the center of the actual frame, while bcx
and bcy denote the coordinates of the center of the predicted
frame.

The shape loss quantifies the discrepancy between the
central positions of the predicted and actual frames. Its
purpose is to achieve the most accurate prediction frame.
The specifics of this deviation are elaborated in Equations
(5), (6), and (7).

Ω =
∑

t=w,h

(
1− e−wt

)θ
(5)

ww =
|w − wgt|

max (w,wgt)
(6)

wh =
|h− hgt|

max (h, hgt)
(7)

Where, w, h,wgt, hgt refer to the width and height of the
predicted and real frames, respectively, and θ controls the
degree of attention to shape loss. To summarize, the calcu-
lation of the SIOU loss function is illustrated by Equation
(8).

LossSIOU = 1− IOU +
∆+Ω

2
(8)

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the enhanced YOLOv5 algo-
rithm. We begin by detailing the dataset selection process
for our experiment and outlining the configuration of ex-
perimental parameters. Subsequently, we compare the P-R
curves of the unimproved and improved YOLOv5 models,
allowing us to quantify the detection accuracy for each
category during the model evaluation phase. Moving for-
ward, we conduct a comparative experiment on the KITTI
dataset, juxtaposing the improved model against different
target detection algorithms, and subsequently assessing its
performance. Concluding our evaluation, we input select
images from the test set into YOLOv5 using our enhanced
model, thereby facilitating a direct comparison of detection
outcomes. Additionally, we perform ablation experiments
on the enhanced model, providing insights into the effects
of integrating distinct modules on the model’s detection
performance.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_28

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



A. Dataset Selection

In this experiment, we opted to utilize the publicly avail-
able KITTI dataset both as our training and testing samples.
Renowned as one of the largest international datasets, KITTI
offers an invaluable resource for evaluating computer vision
algorithms in autonomous driving scenarios. The dataset’s
images encompass a diverse array of challenges, ranging
from a substantial count of diminutive targets to varying
degrees of occlusion, thereby presenting a formidable testbed
for prevailing target detection algorithms. To facilitate com-
patibility with YOLO format, we undertook the conversion of
the KITTI dataset into a text-tagged file, while also refining
the Labels tag structure into two primary classes. This reclas-
sification involved merging ’Car,’ ’Van,’ ’Truck,’ and ’Tram’
into the ’Car’ class, and consolidating ’Pedestrian,’ ’Person
sitting,’ and ’Cyclist’ into the ’Person’ class. Concurrently,
we omitted the ’Misc’ and ’DontCare’ classes. Within our
dataset, we allocated 7,491 images, distributing them into a
training set and a test set with a 9:1 ratio. To offer visual
context, a subset of sample images from the experimental
dataset can be observed in Fig. 8.

Fig. 8: An image from a portion of an experimental dataset

Fig. 9 illustrates the distribution of label sizes across all
categories within the dataset. The horizontal axis represents
the width of the label box, while the vertical axis corresponds
to the height of the label box. It is evident that a concentration
of points is observed in the lower left corner of the graph.
This clustering signifies a substantial prevalence of small
targets within the KITTI dataset, aligning cohesively with
the primary focus of our research problem addressed in this
paper.

Fig. 9: Schematic diagram of the distribution location of
labels in the KITTI dataset

B. Experimental Results and Analysis

The experimental framework within this paper encom-
passes both a hardware and a software platform. The hard-
ware setup was established on an NVIDIA GeForce GTX
3090, operating within the CUDA 10.2 environment. The
model training process was expedited through GPU acceler-
ation. The software platform, on the other hand, is anchored
in the PyTorch 1.9.0 deep learning framework, facilitated by
the Windows 10 operating system, and executed within the
PyCharm community IDE. We employed pre-trained weights
from the COCO dataset as the initial weights. To mitigate the
risk of the model converging to a local optimum solution, the
Stochastic Gradient Descent (SGD) optimizer was harnessed
to iteratively update the network parameters. In this context,
the model’s initial learning rate was configured at 0.01, and
the momentum parameter was set to 0.937. Each training
round incorporated a batch size of 32, spanning 200 rounds.

(a) P-R curve of the YOLOv5 algorithm

(b) P-R curve of the improved YOLOv5 algorithm

Fig. 10: Comparison of P–R curves of two models.

The core focus of this experiment pertains to the evalu-
ation of the algorithm’s recognition speed and recognition
capability. The assessment of recognition speed is based on
the number of images recognized per second, quantified as
Frames Per Second (FPS). Meanwhile, recognition ability
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is gauged through selected metrics, including accuracy (P),
recall (R), and mean Average Precision (mAP). Accuracy
serves as a measure of the model’s detection precision,
whereas recall appraises the comprehensiveness of model
detection, and mAP, encapsulating both accuracy and recall,
furnishes an amalgamated perspective. Its value positively
correlates with model detection efficacy. The formulations
of these metrics are as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =

∫ 1

0

P (R)dR (11)

mAP =
1

n

n∑
i=0

APi (12)

Here, the notation breakdown is as follows: ’TP ’ denotes
the count of positive samples correctly identified as positive
classes, ’FP ’ represents the count of negative samples
erroneously classified as positive classes, ’FN ’ signifies the
count of positive samples incorrectly recognized as negative
classes, and ’n’ symbolizes the total number of classes within
the dataset. ’AP ’ corresponds to the average accuracy within
the same category, and the area under the Precision-Recall
(P-R) curve, delineated by accuracy ’P ’ and recall ’R’, deter-
mines the ’AP ’ value. ’mAP ’ stands for the mean Average
Precision, denoting the average of the ’AP ’ values across
all categories present in the dataset. Additionally, ’mAP 0.5’
signifies the ’AP ’ value when Intersection over Union (IOU)
is set at 0.5. To validate the efficacy of both YOLOv5 and
our enhanced target detection algorithm, we conducted tests
using the Kitti dataset. The resulting Precision-Recall (P-R)
curves are visually portrayed in Figure 10.

A comparison of the data depicted in the figure reveals
a distinct trend: the enhanced algorithm consistently demon-
strates significantly superior detection results when compared
to the YOLOv5 algorithm on the KITTI dataset. Notably,
the improved algorithm showcases a substantial enhancement
in ’mAP 0.5,’ escalating from 92.4% to 94.3%, reflecting
a noteworthy advancement of 1.9 percentage points. This
progress is especially prominent at the category level: the
’AP ’ for the vehicle category witnesses a 0.4 percentage
point increase, rising from 97.8% to 98.2%. Similarly, the

TABLE I: comparative experiment of attentional
mechanisms

Method Parameters mAP 0.5

SPPF 7.01M 92.4

SPPF+CBAM 7.05M 92.4

SPPF+SE 7.04M 92.5

SPPF+CA 7.04M 92.7

’AP ’ for the pedestrian category exhibits a substantial 2.9
percentage point improvement, up from 87.1% to 90.4%.
This discernible elevation in detection accuracy applies to
both vehicle and pedestrian categories, highlighting the al-
gorithm’s efficacy in rectifying the oversight of small pedes-
trian targets within complex road scenarios. Moreover, the
proposed algorithm excels in robustly identifying vehicles
and pedestrians even amidst occlusion scenarios.

To substantiate the enhancement in model detection stem-
ming from the incorporation of a coordinate attention mech-
anism subsequent to SPPF, we conducted a series of at-
tention comparison experiments. Specifically, we introduced
three widely adopted attention mechanisms—CA, SE and
CBAM—into the SPPF structure. The structure of the re-
maining components was retained across all variants. A thor-
ough comparison was then undertaken on the KITTI dataset.
The ensuing experimental outcomes are comprehensively
presented in Table I.

To further substantiate the efficacy and superiority of
the algorithm presented in this paper, we conducted an
experimental comparison between the prevailing mainstream
target detection algorithms and our proposed algorithm using
the KITTI dataset, as shown in Table II.

Upon comparing the experimental outcomes of distinct
algorithmic models detailed in Table II, a conspicuous pat-
tern emerges. The enhanced YOLOv5 model emerges as
the pacesetter in terms of detection accuracy, surpassing
the performance of contemporary mainstream algorithms.
Notably, YOLO-X manages to achieve a detection accuracy
comparable to ours, yet its substantial size impedes real-
time detection, rendering it impractical for certain applica-
tions. Meanwhile, YOLOv4-tiny, heralded for its lightweight
design, exhibits the swiftest detection speed. However, its
detection accuracy, standing at a mere 64.2%, renders it

(a) Original image (b) YOLOv5 (c) Improved YOLOv5

(a) Original image (b) YOLOv5 (c) Improved YOLOv5

Fig. 11: Visualization results of the KITTI dataset.
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TABLE II: Comparison of different detection algorithms based on KITTI dataset

Algorithm Model Size/MB P/% R/% mAP 0.5/% FPS

Faster R-CNN 107.8 64.5 84.5 83.4 21
SSD 100.6 89.2 63.0 70.8 56

YOLOv4 244.9 90.4 78.3 86.5 33
YOLOv4-Tiny 24.1 78.1 54.8 64.2 103

YOLOX-X 378.3 92.6 87.4 93.9 25
YOLOv5 13.6 93.2 86.8 92.4 79

Improved-YOLOv5 14.8 93.5 87.7 94.3 67

less applicable to intricate road scenarios. To sum up, the
algorithm advocated in this paper adeptly balances height-
ened detection accuracy with its lightweight design, de-
livering robust overall performance. The inference speed
remains commendably satisfactory, successfully fulfilling the
pragmatic requirements of vehicle and pedestrian detection
tasks. To offer a more visually intuitive demonstration of
the algorithm’s superiority, Fig. 11 juxtaposes the detection
outcomes of the enhanced model pre- and post-improvement
on the KITTI dataset.

Fig. 11(a) depicts the original image, while Fig. 11(b)
presents the detection outcomes obtained from the unmod-
ified YOLOv5 algorithm. In contrast, Fig. 11(c) showcases
the detection results derived from our enhanced model. A
discernible comparison between the figures yields valuable
insights. The YOLOv5 algorithm detected six vehicles, each
with a confidence level exceeding 0.5. However, this scenario
exposes potential instances of missed detection within the
YOLOv5 results. In stark contrast, our improved algorithm
successfully identified a total of eight vehicles with confi-
dence levels surpassing 0.5. This encompassed both distant
small target vehicles and heavily obscured vehicles situated
in the lower right. For the small target pedestrian situated
adjacent to the tree on the left-hand side of the figure, the
YOLOv5 algorithm registered a detection confidence of 0.90.
Remarkably, our algorithm attained an elevated detection
confidence of 0.97 for the same pedestrian. This disparity
highlights our algorithm’s pronounced proficiency in de-
tecting diminutive targets and targets subject to occlusions.
Overall, our algorithm demonstrates remarkable efficacy in
detecting KITTI dataset scenarios, outperforming the original
YOLOv5 algorithm and concurrently exhibiting substantial
reduction in the missed detection rate.

C. Analysis of ablation experiment

This paper introduces three distinct improvement strate-
gies. To validate the efficacy of each proposed module and
to dissect the influence of each module on the YOLOv5
algorithm, we have designed an ablation experiment section.
Our approach involves a stepwise integration of individual
modules into the original YOLOv5 algorithm. This process
permits a systematic evaluation of the effects arising from
various module combinations on the final model’s detection
performance. The outcomes of these ablation experiments are
presented in Table III. Here, the numerical labels assigned
to each module serve to distinguish their respective contribu-
tions: 1 signifies the enhanced multi-scale feature fusion
module, 2 designates the coordinate attention mechanism

module, and 3 represents the SIOU optimized loss func-
tion module.

TABLE III: Ablation experiments

Experiment Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7

1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

mAP 0.5 93.2 92.6 92.7 93.4 93.7 94.0 94.3

As evident from the table, the incorporation of each
module detailed in this paper has yielded varying degrees of
improvement in the algorithm’s detection accuracy. Particu-
larly noteworthy is the pronounced advancement attributed
to the multiscale feature fusion module, which contributes
to a 0.8% enhancement in the model’s performance. This
enhancement underscores the module’s role in augmenting
the model’s capability for effective feature fusion. Further-
more, the introduction of the attention mechanism and the
optimized loss function has resulted in discernible enhance-
ments in the algorithm’s detection performance. This sub-
stantiates the efficacy of the proposed algorithm in effectively
addressing the intricate challenges of vehicle and pedestrian
detection in complex road scenarios.

VI. CONCLUSION

This study introduces an enhanced vehicle and pedestrian
target detection algorithm built upon a modified YOLOv5
architecture, and effectively applies it to real-world scenarios.
Our model exhibits a significant improvement, boosting
detection accuracy by 1.9 percentage points in comparison to
the original YOLOv5 algorithm. In contrast to alternative al-
gorithms, our refined approach achieves higher detection ac-
curacy while preserving the advantage of algorithmic speed.
This performance augmentation is particularly evident in our
model’s prowess in detecting small and obscured targets
within genuine road conditions. Furthermore, our approach
lays the groundwork for practical vehicle and pedestrian
detection on hardware platforms, establishing itself as an
efficient and effective target detection model. Looking ahead,
our research trajectory will focus on optimizing the model’s
weight without compromising detection accuracy.
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