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Abstract—A neural network adaptive control scheme for a
class of uncertain switched nonlinear systems with input and
output constraints is presented in this paper. A smooth function
is adopted to approximate the input dead zone and saturation
function, which can be used to solve the non differentiable
phenomenon in system equations. Radial basis function (RBF)
based neural networks are introduced to estimate the nonlinear
functions of the system and the barrier Lyapunov function is
selected to solve the problem of system output constraint, based
on which a neural adaptive controller is designed by backstep-
ping technique. Under the condition that the switching system
meets a certain average dwell time, the designed controller can
ensure that all signals in the closed-loop system are bounded
and the tracking error of the system can converge to a compact
set. The effectiveness of the designed controller is verified by
the simulation example.

Index Terms—Switched Nonlinear Systems, Input dead zone
and saturation, Output constraint, Average dwell time, Adaptive
control.

I. INTRODUCTION

THE adaptive control problem for a class of uncertain
switched nonlinear systems with input and output con-

straints is discussed in this paper. Switched nonlinear systems
are extremely complex and important hybrid systems. Adap-
tive backstepping technology is widely used in nonlinear
systems, such as documents [1]–[10]. Input dead zone and
saturation were also discussed in reference [1], but they were
not extended to the case of switched systems. A class of
nonlinear systems with unknown dead zone are studied in
literature [2], and the prescribed performance control method
was given in [2]. The authors in reference [3] introduced the
input dead zones in the nonlinear system. For reference [4],
the author considered the unknown dead-zone output of the
system, they preprocessed the non-affine function by using
the mean value theorem and finally kept the system stable by
designing a suitable fuzzy tracking controller. however, the
case of switched nonlinear systems did not be considered
in [4]. Similar to article [4], the authors in literature [5]
also introduced the unknown dead zone, both of them used
the fuzzy control strategy; although [4] is the pure-feedback
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nonlinear system and [5] is the strict-feedback nonlinear
system, because there are unmeasurable state variables in
literature [5], the design of state observer was introduced.
The case of input dead zones was also mentioned in the
paper [6], which described the input dead zones function
in a more concise linear function form. All the systems in
the literature [7]–[9] have dead zones; these systems studied
belong to the nonlinear systems, and all of them used the
neural network. A class of uncertain nonlinear systems with
input Saturation was studied in the literature [10], where a
smoothing function was introduced to similar the function of
input. In this paper, both input dead zone and input saturation
are considered, which is more complicated and universal than
only considering input dead zone and input saturation. After
years of intensive research, some scholars have achieved
many research results on switched nonlinear systems. A
solution to the adaptive control problem of switched non-
linear systems with unmodeled dynamics was proposed in
[11]. The work of [12] mentioned the fuzzy command filter
control and designed a unique event triggering strategy. The
authors in [13] also used the average dwell time method. The
study of [14] put forward the control scheme of stochastic
switched nonlinear systems with asymmetric out-constrained.
An uncertain nonlinear switching system with prescribed
performance was studied in document [15]. For switched
non-strict feedback nonlinear systems with state-constrained,
a controller was designed based on event triggering in [16].
When designing the adaptive controller, the integral barrier
Lyapunov function was selected in [17]. The neural networks
were used to estimate the nonlinear functions [18]. It can be
seen that neural network and fuzzy logic are often used as
tools to analyze the control problems in many literatures.
An adaptive fuzzy control method for a class of nonstrict
feedback switched nonlinear systems with state constraint
was designed in [19]. Referring to the paper [20], the input
saturation function is approximated by a smooth function,
but the authors in [20] only discuss the case of single input
saturation. In the literature [21], a fuzzy tracking controller
was designed based on fuzzy control method and common
backstepping method, and a small gain method was used
in the stability analysis. Because unknown hysteresis control
input in the system, a smooth function is used to approximate
the system input in [22]. In [23]–[25], uncertain terms were
added to switched nonlinear systems, but the authors of
they didn’t consider the dead zone and saturation of system
input. The authors in reference [26] introduced the control
of discrete-time switched systems under this circumstance
of input saturation. The control method of neural network in
the design of controller was introduced in [27]. Time-varying
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delay was added to the nonlinear uncertain switched system
in [28]. The research of [29] is a class of switched pure
feedback nonlinear system, but it is not a conventional lower
triangular system, the mean-value theorem was used in deal-
ing with input saturation, an adaptive tracking controller was
designed based on neural network and adaptive backstepping
technology. A nonlinear switching system with asymmetric
actuator dead zones was studied in [30].

Through a comprehensive consideration of the above
literature, a class of uncertain switched nonlinear systems
with input and output constraints are studied in this paper.
The input dead zone and saturation function is firstly ap-
proximated by a smooth function in the paper, then based
on backstepping method and neural network, an adaptive
controller is designed to make the output signal track the
reference signal effectively. Through some inequalities, it
is proved that the output satisfies the constraint conditions.
About the stability, the average dwell time method is used
in this paper. Compared with a large number of literatures
about switched nonlinear systems and nonlinear systems, the
results of this paper have three clear characters.

1. A class of uncertain nonlinear switched systems with
input and output constraints are studied and the system
studied in this paper is more complicated. The input dead
zone, input saturation and output constraint are considered
in the uncertain switched nonlinear system.

2. Then the input dead zone and saturation function
is approximated by a smooth function to solve the non
differentiable phenomenon in system equations. Although the
authors in reference [1] also discusses the case of input dead
zone and saturation, it does not consider the case of switching
nonlinear systems and the output constraint. The authors in
literature [20] considers the case of input saturation, but the
input does not involve the more complicated case of both
saturation and dead zone.

3. Considering the situation of system output, the barrier
Lyapunov function is adopted to solve the problem of system
output constraint, which is more conducive in designing
controllers. The condition of average dwell time is also
used, the average dwell time method effectively limits the
switching times of the switched system. Under the condition
of average dwell time, an adaptive controller is designed to
make all signals in the closed-loop system bounded. The
switched nonlinear system was studied in literature [17], but
the average dwell time method was not used.

II. PROBLEM FORMULATION AND PRELIMINARIES

A class of uncertain switched nonlinear systems with input
and output constraints are considered.

ẋ1 = x2 + f1,σ (x1) + h1,σ (t)
ẋk = xk+1 + fk,σ (xk) + hk,σ (t)
ẋn = uσ + fn,σ (x) + hn,σ (t)
y = x1,

(1)

where xk = [x1, x2, x3, · · · , xk]
T ∈ Rk, k = 1, 2, · · · , n−1,

then x = [x1, x2, x3, · · · , xn]
T ∈ Rn, and y ∈ R.

They are the state variables and output variable of the
above system. σ (t):[0,+∞)→

∑
={1, 2, · · · ,M}, this func-

tion expresses the switching signal used in the above
system, it is matched with the corresponding subsystem

{(ji0 , t0) , · · · (jis , ts) , · · ·}, jis ∈
∑

, s = 0, 1, · · · . The
jis subsystem is active under this circumstance of t ∈
[ts, ts+1), and hk,σ (t) are smooth and unknown functions,
for convenience: hk,σ = hk,σ (t) k = 1, 2, · · · , n. fk,σ (·),
k = 1, 2, · · · , n; σ ∈

∑
are smooth unknown nonlinear

functions, then the dead zone and saturation input of the
system (1) is expressed as follows:

uj = ds (mj) =



dmj mj ≤ bl1j
plj (mj) bl1j < mj ≤ bl0j
0 bl0j < mj ≤ br0j
prj (mj) br0j < mj ≤ br1j
dMj mj > br1j ,

(2)

where mj is the input of the dead zone and saturation
nonlinear function with j ∈

∑
; plj (mj) and prj (mj) are

unknown but differentiable nonlinear functions. prj
(
br0j

)
=

plj
(
bl0j
)

= 0, saturation: pr,j
(
br1j

)
= dMj > 0,

plj
(
bl1j
)
= dmj < 0, where dMj and dmj are the unknown

saturation values of the input function. bl1j < bl0j < 0,
0 < br0j < br1j and they are unknown parameters. In the
article, the output variable is constrained and satisfies this set
{x1 ||x1| ≤ Kc1 Kc1 > 0}, Kc1 is the known upper bound.

In order to stabilize the system (1) while ensuring that the
signals of the closed-loop system are bounded, it is necessary
to give some assumptions and lemmas.

Assumption 1. [1] There are the following constraints:

0 < blmj <
dplj
dmj

< blMj < ∞ ∀mj ∈
[
bl1j , bl0j

]
0 < brmj <

dprj
dmj

< brMj < ∞ ∀mj ∈
[
br0j , br1j

]
,

(3)

where all the blmj , blMj ; brmj , brMj are unknown positive

constants,
dplj

dmj
and

dprj

dmj
are the derivative of plj and prj to

mj .
Assumption 2. The studied system (1) satisfies the con-

dition: input-to-state stable. The signal to be tracked in this
paper is bounded and known, yd is continuously derivable of
order n, and its derivatives are bounded from the first deriva-
tive to the n derivative: |yd| ≤ ȳd, · · · ,

∣∣∣y(n)d

∣∣∣ ≤ ȳnd; for
the external disturbance hkj , there are positive constants h̄∗

kj

with the following formula: |hkj | ≤ h̄∗
kj , k = 1, 2, · · · , n;

j = 1, 2, · · · ,M .
Definition 1. The average dwell time method was used in

the literature [26]. The switching signal σ need to satisfy the
following inequality

Nσ (T, t) ≤ N0 +
T − t

τa
∀T ≥ t ≥ 0, (4)

with Nσ (T, t) being the switching numbers on the interval
[t, T ] for any T ≥ t ≥ 0, τa is the average dwell time
parameter, N0 is a positive constant.

Lemma 1. Similar to the document [13], the RBF neural
network is expressed as follows:

Frbf (Z) = WTS (Z) , (5)

where Z ∈ ΩZ ⊂ Rn is this input variable, W =
[w1, w2, · · ·wl]

T is the weight parameter of the function,
S (Z) = [s1 (Z) , s2 (Z) , · · · sl (Z)]

T , l > 1 is the number of
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neural network nodes with W ∈ Rl and S (Z) ∈ Rl. si (Z)
is selected as Gaussian function in this paper:

si (Z) = exp

[
−(Z − µi)

T
(Z − µi)

ϕi
2

]
i = 1, 2, · · · l, (6)

with µi = [µi1, µi2, · · · , µin]
T is the center of the function,

ϕi is the width of the function.
Using neural network to approximate the nonlinear func-

tion
F (Z) = W ∗TS (Z) + δ (Z) , (7)

where |δ (Z)| ≤ ε, the ideal constant weight W ∗:

W ∗ = arg min
W∈Rl

{
sup

Z∈ΩZ

∣∣F (Z)−WTS (Z)
∣∣} .

Lemma 2. [20] Such a kind of scaling inequality is given

z2

B2
m

≤ log
B2

m

B2
m − z2

≤ z2

B2
m − z2

, (8)

assume that there is an upper bound Bm > 0, so that the error
variable z satisfies |z| < Bm for any z ∈ R. The logarithmic
function used in this paper is natural logarithm.

Remark 1. It is inconvenient to directly process the input
with dead zone and saturation, so it is necessary to choose a
suitable smoothing function to fit it, similar to the literature
[1].

gj (mj) = −
dmj

2
tanh l1j (mj −

bl0j
l1j

+ tlj )

+
dMj

2
tanh l2j

(
mj −

br0j
l2j

− trj

)
−

dmj

2
tanh

(
bl0j − tlj l1j

)
+

dMj

2
tanh

(
br0j + trj l2j

)
, (9)

where l1j , l2j ; tlj , trj are all adjustable positive parameters
used to approximation the input dead zone and saturation
function; then, there is uj (mj) = gj (mj) + pj (mj), where
pj (mj) is the approximation error and bounded. An example
of the approximation input function is shown in Fig. 1:

-6 -4 -2 2 4 6

-4

-3

-2

-1

1

2

3

4

Fig. 1. Approximation example

Assumption 3. The approximation error |pj (mj)| ≤ p,
p is the unknown positive constant. Using the mean-value
theorem for g (mj).

gj (mj) = gj
(
m0j

)
+ ġj

(
maj

) (
mj −m0j

)
, (10)

where maj = ajmj + (1− aj)m0j , aj ∈ (0, 1). m0j is
selected as 0, gj (0) = 0, and gj (mj) can be expressed
as gj (mj) = ġj

(
maj

)
mj , ġj

(
maj

)
=

∂gj
∂mj

∣∣∣
mj=maj

,

ġj
(
maj

)
is expressed as follows:

ġj
(
maj

)
=

−dmj l1j
2

1

cosh2l1j

(
maj −

bl0j
l1j

+ tlj

)
+

dMj
l2j

2

1

cosh2l2j

(
maj −

br0j
l2j

− trj

) , (11)

bl1j , bl0j , br0j , br1j , dmj , dMj , l1j , l2j , tlj and trj are all
bounded, ġj

(
maj

)
is bounded.

Remark 2. There are the following formula conversions

uj (mj) = ġj
(
maj

)
mj + pj (mj)

= ġj
(
maj

)
mj − rjmj + rjmj + pj (mj) , (12)

where rj is the design positive parameter, ẋn can be con-
verted into

ẋn = rjmj + ηj(x) + pj (mj) + hn,j , (13)

where ηj(x) = ġj
(
maj

)
mj − rjmj + fn,j (x) , j ∈

∑
.

III. ADAPTIVE NEURAL NETWORK CONTROLLER DESIGN

The main part of this section is to introduce the design
steps of neural network adaptive controller. The controller
is designed based on the RBF neural network and backstep-
ping method. Before designing the controller, the following
coordinate transformations are introduced.

z1 = x1 − yd

zk = xk − αk−1,j , (14)

with k and j belong to k = 2, 3, · · · , n; j = 1, 2, · · · ,M ,
αk−1,j is the designed virtual control law. In the design
process, θ̂i is the estimated value of θi:

θ̃i = θi − θ̂i i = 1, 2, · · · , n. (15)

According to the design scheme, θ̂ is designed as follows:

˙̂
θ1 =

λ0z
2
1S

T
1,j (Z1)S1,j (Z1)

2τ21,j

(
B2

m1,j
− z21

)2 − γ0θ̂1

˙̂
θk =

λ0z
2
kS

T
k,j (Zk)Sk,j (Zk)

2τ2k,j
− γ0θ̂k, (16)

τ1,j , τk,j , λ0 and γ0 are the design positive parameters, k =
2, 3, · · ·n, j ∈

∑
.

Step 1: Now, introduce the coordinate transformation as
follows z1 = x1 − yd we can obtain

ż1 = x2 + f1,j + h1,j − ẏd. (17)
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In the scheme of designing the controller, such a barrier
Lyapunov function is introduced to deal with the system with
constraints more effectively.

V1,j =
1

2
log

(
B2

m1,j

B2
m1,j

− z21

)
+

1

2λ0
θ̃21, (18)

where Bm1,j is the upper bound of z1, then it satisfies the
following inequality: Ψ1,j =

{
z1| |z1| < Bm1,j

}
, and θ̃1 =

θ1 − θ̂1 is the error of estimating θ1. The time derivative of
the above function is expressed as follows:

V̇1,j =
z1

B2
m1,j

− z21
(x2 + f1,j + h1,j − ẏd)−

1

λ0
θ̃1

˙̂
θ1. (19)

By using the Youngs inequality:
[
(z1h1,j)

/(
B2

m1,j
− z21

)]
≤
(
z21

/[
2
(
B2

m1,j
− z21

)2])
+ 1

2h
∗2
1,j , combining formula

(17) and (19), we can obtain

V̇1,j ≤
z1

B2
m1,j

− z21
(z2 + α1,j + f1,j − ẏd)

+
z1

B2
m1,j

− z21

z1(
B2

m1,j
− z21

)
− z21

2
(
B2

m1,j
− z21

)2 +
1

2
h
∗2
1,j −

1

λ0
θ̃1

˙̂
θ1. (20)

Remark 3. Based on the Lemma 1, neural network is de-
signed to approximate the above partial formula, F1,j (Z1) =

f1,j+
z1(

B2
m1,j

−z2
1

)−ẏd, Z1 = [x1, yd, ẏd]
T , F1,j is denoted as

F1,j (Z1) = W ∗T
1,jS1,j (Z1) + δ1,j (Z1), then the approxima-

tion error δ1,j (Z1) satisfies |δ1,j (Z1)| ≤ ε1,j with ε1,j > 0.
Using the inequalities as

z1W
∗T
1,j S1,j

B2
m1,j

− z21
≤

θ1z
2
1S

T
1,jS1,j

2τ21,j

(
B2

m1,j
− z21

)2 +
1

2
τ21,j

z1δ1,j
B2

m1,j
− z21

≤ z21

2
(
B2

m1,j
− z21

)2 +
ε21,j
2

, (21)

where θ1 = max
{∥∥W ∗

1,j

∥∥2, j ∈∑}. It follows that:

V̇1,j ≤
z1

B2
m1,j

− z21
(z2 + α1,j) +

1

2
h
∗2
1,j −

1

λ0
θ̃1

˙̂
θ1

+
z1

B2
m1,j

− z21

θ1z1S
T
1,jS1,j

2τ21,j

(
B2

m1,j
− z21

) +
1

2
τ21,j +

1

2
ε21,j .

(22)

Choose the virtual control law α1,j as

α1,j = −
(
c1,j +

1

2

)
z1 −

θ̂1z1S
T
1,jS1,j

2τ21,j

(
B2

m1,j
− z21

) , (23)

where the design parameter c1,j > 0, using the square
inequality z1z2 ≤ 1

2z
2
1+

1
2z

2
2 , combining (22), (23) can obtain

the following expression:

V̇1,j ≤
−c1,jz1

2

B2
m1,j

− z21
+

z2
2

2
(
B2

m1,j
− z21

) − 1

λ0
θ̃1

˙̂
θ1 +

1

2
h̄∗2
1,j

+
θ̃1z2

2ST
1,jS1,j

2τ21,j

(
B2

m1,j
− z21

)2 +
1

2
τ21,j +

1

2
ε21,j , (24)

substituting ˙̂
θ1 to (24):

V̇1,j ≤
−c1,jz1

2

B2
m1,j

− z21
+

z2
2

2
(
B2

m1,j
− z21

)
+ γ0λ

−1
0 θ̃1θ̂1 +∆∗

1,j , (25)

with ∆∗
1,j =

1
2 h̄

∗2
1,j +

1
2τ

2
1,j +

1
2ε

2
1,j with j = 1, 2, · · · ,M .

Step 2: Based on coordinate transformation z2 = x2−α1,j ,
select the following Lyapunov function:

V2,j = V1,j+
1

2
z22 +

1

2λ0
θ̃22, (26)

the time derivative of V2,j is described as follows

V̇2,j = V̇1,j + z2 (x3 + f2,j + h2,j)− z2

1∑
i=0

∂α1,j

∂yd(i)
yd

(i+1)

− z2
∂α1,j

∂x1
(x2 + f1,j + h1,j)− z2

∂α1,j

∂θ̂1

˙̂
θ1 −

1

λ0
θ̃2

˙̂
θ2,

(27)

using inequalities

z2h2,j ≤
z22
2

+
h̄∗2
2,j

2

−z2
∂α1,j

∂x1
h1,j ≤

1

2
z22

(
∂α1,j

∂x1

)2

+
1

2
h̄∗2
1,j , (28)

by combining V̇1,j and the above inequality, we can get

V̇2,j ≤
−c1,jz1

2

B2
m1,j

− z21
+

z2
2

2
(
B2

m1,j
− z21

) + z2 (x3 + f2,j)

− z2
∂α1,j

∂x1
(x2 + f1,j)− z2

1∑
i=0

∂α1,j

∂yd(i)
yd

(i+1)

− z2
∂α1,j

∂θ̂1

˙̂
θ1 −

1

λ0
θ̃2

˙̂
θ2 +

z22
2

+
h̄∗2
2,j

2

+ γ0λ
−1
0 θ̃1θ̂1 +∆∗

1,j +
1

2
z22

(
∂α1,j

∂x1

)2

+
1

2
h̄∗2
1,j , (29)

approximation by neural network

F2,j (Z2) = f2,j −
∂α1,j

∂x1
(x2 + f1,j) +

z2

2
(
B2

m1,j
− z21

)
−

1∑
i=0

∂α1,j

∂yd(i)
yd

(i+1) − ∂α1,j

∂θ̂1

˙̂
θ1

+
1

2
z2

(
∂α1,j

∂x1

)2

+
1

2
z2, (30)

where Z2 =
[
x1, x2, θ̂1, yd, ẏd, y

(2)
d

]T
, F2,j can be expressed

as F2,j (Z2) = W ∗T
2,jS2,j (Z2) + δ2,j (Z2), |δ2,j (Z2)| ≤ ε2,j

with ε2,j > 0, following inequalities exist

z2W
∗T
2,j S2,j ≤

θ2z
2
2S

T
2,jS2j

2τ22,j
+

1

2
τ22,j

z2δ2,j ≤
z22
2

+
1

2
ε22,j , (31)
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where θ2 = max
{∥∥W ∗

2,j

∥∥2, j ∈∑}. Combining (29) (30)
and (31) can get:

V̇2,j ≤
−c1jz1

2

B2
m1,j

− z21
+ z2

(
z3 + α2,j +

θ2z2S
T
2,jS2,j

2τ22,j

)

− 1

λ0
θ̃2

˙̂
θ2 +

h̄∗2
2,j

2
+

1

2
h̄∗2
1,j +

z22
2

+
1

2
τ22,j +

1

2
ε22,j + γ0λ

−1
0 θ̃1θ̂1 +∆∗

1,j , (32)

where x3=z3 + α2,j , then substituting the virtual control

law α2,j = −
(
c2,j +

1
2

)
z2 −

θ̂2z2S
T
2,jS2,j

2τ2
2,j

into (32), c2,j is a
design positive parameter.

V̇2,j ≤
−c1,jz1

2

B2
m1,j

− z21
+ z2

(
z3 −

(
c2,j +

1

2

)
z2

)

+
θ̃2z

2
2S

T
2,jS2,j

2τ22,j
− θ̃2

˙̂
θ2

λ0
+

γ0
λ0

θ̃1θ̂1

+
1

2
h̄∗2
1,j +∆∗

1,j +∆∗
2,j +

z22
2
, (33)

where ∆∗
2,j =

h̄∗2
2,j

2 + 1
2τ

2
2,j +

1
2ε

2
2,j , substituting ˙̂

θ2 get:

V̇2,j ≤
−c1,jz1

2

B2
m1,j

− z21
− c2,jz

2
2 + z2z3

+
γ0
λ0

θ̃1θ̂1 +
γ0
λ0

θ̃2θ̂2 +
1

2
h̄∗2
1,j +∆∗

1,j +∆∗
2,j . (34)

Step k (k = 3, 4, · · · , n − 1): According to the back-
stepping design method, we also introduce the coordinate
transformation zk = xk − αk−1,j , we can obtain easily that:

żk = xk+1 + fk,j + hk,j −
k−1∑
i=1

∂αk−1,j

∂xi
(xi+1 + fi,j + hi,j)

−
k−1∑
i=0

∂αk−1,j

∂y
(i)
d

y
(i+1)
d −

k−1∑
i=1

∂αk−1,j

∂θ̂i

˙̂
θi. (35)

Select the following Lyapunov function:

Vk,j = Vk−1,j +
1

2
z2k +

1

2λ0
θ̃2k, (36)

the next, combining (35) and (36), it is not difficult to get:

V̇k,j = V̇k−1,j + zk (xk+1 + fk,j + hk,j) (37)

− zk

k−1∑
i=1

∂αk−1,j

∂xi
(xi+1 + fi,j + hi,j)

− zk

k−1∑
i=1

∂αk−1,j

∂y
(i)
d

y
(i+1)
d − zk

k−1∑
i=1

∂αk−1,j

∂θ̂i

˙̂
θi,

similar to the above steps:

V̇k−1,j ≤
−c1jz

2
1

B2
m1,j

− z21
−

k−1∑
i=2

ci,jz
2
i + zk−1zk

+
k−1∑
i=1

γ0
λ0

θ̃iθ̂i +
1

2

k−2∑
i=1

i∑
l=1

h̄∗2
l,j +

k−1∑
i=1

∆∗
i,j , (38)

where ∆∗
k−1,j = 1

2 h̄
∗2
k−1,j +

1
2τ

2
k−1,j +

1
2ε

2
k−1,j . Then some

necessary inequalities are introduced:

zkhk,j ≤
z2k
2

+
1

2
h̄∗2
k,j

−zk

k−1∑
i=1

∂αk−1,j

∂xi
hi,j ≤

z2k
2

k−1∑
i=1

(
∂αk−1,j

∂xi

)2

+
1

2

k−1∑
i=1

h̄∗2
i,j .

(39)

We can easily get the following expression

V̇k,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

k−1∑
i=2

ci,jz
2
i + zk−1zk

+

k−1∑
i=1

γ0
λ0

θ̃iθ̂i +
1

2

k−2∑
i=1

i∑
l=1

h̄∗2
l,j +

k−1∑
i=1

∆∗
i,j

+ zk (xk+1 + fk,j)− λ−1
0 θ̃k

˙̂
θk

− zk

k−1∑
i=1

∂αk−1,j

∂xi
(xi+1 + fi,j)

−zk

k−1∑
i=1

∂αk−1,j

∂y
(i)
d

y
(i+1)
d − zk

k−1∑
i=1

∂αk−1,j

∂θ̂i

˙̂
θi

+
z2k
2

+
1

2
h̄∗2
k,j +

z2k
2

∑k−1

i=1

(
∂αk−1,j

∂xi

)2

+
1

2

k−1∑
i=1

h̄∗2
i,j .

(40)

For the analysis of the above inequalities, we use a suitable
RBF neural network to approximate some of the above
nonlinear functions

Fk,j (Zk) = fk,j +
zk
2

−
k−1∑
i=1

∂αk−1,j

∂θ̂i

˙̂
θi + zk−1

−
k−1∑
i=1

∂αk−1,j

∂xi
(xi+1 + fi,j)−

k−1∑
i=0

∂αk−1,j

∂y
(i)
d

y
(i+1)
d

+
1

2
zk
∑k−1

i=1

(
∂αk−1,j

∂xi

)2

, (41)

with Zk =
[
xT
k , θ̂1, · · · θ̂k−1, yd

(k)T
]T

, and yd
(k) =[

yd, ẏd, · · · , y(k)d

]T
. Consequently, Fk,j (Zk) can be ex-

pressed as Fk,j (Zk) = W
∗T

k,jSk,j (Zk) + δk,j (Zk), where
the approximation error δk,j (Zk) meets |δk,j (Zk)| ≤ εk,j
with εk,j > 0 being the upper boundary of approximation
error, by using the inequalities:

zkW
∗T
k,jSk,j ≤

θkz
2
kS

T
k,jSk,j

2τ2k,j
+

1

2
τ2k,j

zkδk,j ≤
z2k
2

+
1

2
ε2k,j , (42)

where θk = max

{∥∥∥W ∗
k,j

∥∥∥2, j ∈∑}. Combining (40), (41)
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and (42), we obtain:

V̇k,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

k−1∑
i=2

ci,jz
2
i +

z2k
2

+ zk ×

(
zk+1 + αk,j +

θkzkS
T
k,jSk,j

2τ2k,j

)
+

k−1∑
i=1

γ0
λ0

θ̃iθ̂i

− λ−1
0 θ̃k

˙̂
θk +

k∑
i=1

∆∗
i,j +

1

2

∑k−1

i=1

∑i

l=1
h̄∗2
l,j . (43)

Design the following virtual control law

αk,j = −
(
ck,j +

1

2

)
zk − θ̂kzkS

T
k,jSk,j

/
2τ2k,j , (44)

where ck,j > 0 is the design positive parameter. In the same
way, substituting αk,j , ˙̂

θk, it is not difficult to get

V̇k,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

k∑
i=2

ci,jz
2
i + zkzk+1

+
k∑

i=1

γ0
λ0

θ̃iθ̂i +
k∑

i=1

∆∗
i,j +

1

2

∑k−1

i=1

∑i

l=1
h̄∗2
l,j ,

(45)

where ∆∗
k,j =

1
2 h̄

∗2
k,j +

1
2τ

2
k,j +

1
2ε

2
k,j .

Step n: Also, by introducing the estimated error equation
zn = xn − αn−1,j , there is the following expression

żn = uσ + fn,σ (x) + hn,σ

−
n−1∑
i=1

∂αn−1,j

∂xi
(xi+1 + fi,j + hi,j)

−
n−1∑
i=1

∂αn−1,j

∂y
(i)
d

y
(i+1)
d −

n−1∑
i=1

∂αn−1,j

∂θ̂i

˙̂
θi, (46)

then combining (13) can obtain

żn = rjmj + ηj(x) + pj (mj) + hn,j

−
n−1∑
i=1

∂αn−1,j

∂xi
(xi+1 + fi,j + hi,j)

−
n−1∑
i=1

∂αn−1,j

∂y
(i)
d

y
(i+1)
d −

n−1∑
i=1

∂αn−1,j

∂θ̂i

˙̂
θi. (47)

Design a positive definite Lyapunov function:

Vn,j = Vn−1,j +
1

2
z2n +

θ̃2n
2λ0

, (48)

where γ0, λ0 are the design positive parameters, |pj (mj)| ≤
p. (45) is the derivative of time, and then combining (47) can
get

V̇n,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

n−1∑
i=2

ci,jz
2
i + zn−1zn

+

n−1∑
i=1

γ0
λ0

θ̃iθ̂i +
1

2

n−2∑
i=1

i∑
l=1

h̄∗2
l,j +

n−1∑
i=1

∆∗
i,j −

θ̃n
˙̂
θn

λ0

+ zn (rjmj + ηj(x) + pj (mj) + hn,j)

− zn

n−1∑
i=1

∂αn−1,j

∂xi
(xi+1 + fi,j + hi,j)

− zn

n−1∑
i=1

∂αn−1,j

∂y
(i)
d

y
(i+1)
d − zn

n−1∑
i=1

∂αn−1,j

∂θ̂i

˙̂
θi. (49)

Use some inequalities

znhn,j ≤
1

2
z2n +

1

2
h̄∗2
n,j

−zn

n−1∑
i=1

∂αn−1,j

∂xi
hi,j ≤

1

2
z2n

n−1∑
i=1

(
∂αn−1,j

∂xi

)2

+
1

2

n−1∑
i=1

h̄∗2
i,j

znp (mj) ≤
1

2
zn

2 +
1

2
p2.

Using this neural network:

Fn,j (Zn) = ηj(x)−
n−1∑
i=1

∂αn−1,j

∂xi
(xi+1 + fi,j)

−

(
n−1∑
i=1

∂αn−1,j

∂y
(i)
d

y
(i+1)
d +

n−1∑
i=1

∂αn−1,j

∂θ̂i

˙̂
θi

)

+ zn + zn−1 +
1

2
zn

n−1∑
i=1

(
∂αn−1,j

∂xi

)2

, (50)

the overall approximation form is

Fn,j (Zn) = W
∗T

n,jSn,j (Zn) + σn,j (Zn) , (51)

where Zn =
[
xT , θ̂1, θ̂2, · · · , θ̂n, yd(n)T

]T
and yd

(n) =[
yd, ẏd, · · · , y(n)d

]T
, then this error σnj (Zn) of neural net-

work function approximation satisfies |σn,j (Zn)| ≤ εn,j ,
where εn,j is the upper bound of this approximation error
and εn,j > 0.

Remark 4. As in Step 1 and Step k above, for the
nonlinear functions in the system, the approximation scheme
is adopted when designing the controller.

In the same analytical way, using the inequalities

znW
∗T
n,jSn,j ≤

θnz
2
nS

T
n,jSn,j

2τ2n,j
+

1

2
τ2n,j

znσn,j ≤
1

2
zn

2 +
1

2
ε2n,j , (52)

where θn = max
{∥∥W ∗

n,j

∥∥2, j ∈∑}. By substituting (52)
can obtain:

V̇n,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

n−1∑
i=2

ci,jz
2
i

+ zn

(
rjmj +

θnznS
T
n,jSn,j

2τ2n,j

)

+
n−1∑
i=1

γ0
λ0

θ̃iθ̂i −
1

λ0
θ̃n

˙̂
θn +

1

2
zn

2

+
1

2

n−1∑
i=1

i∑
l=1

h̄∗2
l,j +

n∑
i=1

∆∗
i,j +

1

2
p2, (53)

select the actual control input:

mj =
1

rj

[
−
(
cn,j +

1

2

)
zn −

θ̂nznS
T
n,jSn,j

2τ2n,j

]
, (54)
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where the cn,j and rj are the design positive parameters.
Substituting (54) into (53):

V̇n,j ≤
−c1,jz

2
1

B2
m1,j

− z21
−

n∑
i=2

ci,jz
2
i

+
θ̃nz

2
nS

T
n,jSn,j

2τ2n,j
+

n−1∑
i=1

γ0
λ0

θ̃iθ̂i −
1

λ0
θ̃n

˙̂
θn

+
1

2

n−1∑
i=1

i∑
l=1

h̄∗2
l,j +

n∑
i=1

∆∗
i,j +

1

2
p2, (55)

substituting ˙̂
θn and inequality θ̃θ̂ = −θ̃2+θθ̃ ≤ − 1

2 θ̃
2+ 1

2θ
2,

it is not difficult to obtain

V̇n,j ≤ − c1,jz
2
1

B2
m1,j

− z21
−

n∑
i=2

ci,jz
2
i

− 1

2

n∑
i=1

λ−1
0 γ0θ̃

2
i + ν0, (56)

where ν0 = 1
2

n∑
i=1

λ−1
0 γ0θ

2
i +

1
2

n−1∑
i=1

i∑
l=1

h̄∗2
l,j +

n∑
i=1

∆∗
i,j +

1
2p

2.

Furthermore, according to Lemma 2:

log

(
B2

m1,j

B2
m1,j

− z21

)
≤ z21

B2
m1,j

− z21
,

where j = 1, 2, · · · ,M , we can get that

V̇n,j ≤ −µ0Vn,j + ν0, (57)

where µ0 = min {2ci,j , γ0 j = 1, 2, · · · ,M}, i =
1, 2, · · · , n.

IV. STABILITY ANALYSIS

Theorem 1. Aiming at the output constraint of uncertain
switched nonlinear systems, the average dwell time τa >
log ρ
µ0

is given in combination with Definition 1, the design
of adaptive neural network controller (16), (23), α2,j , (44),
(54) need to ensure that all signals in the system are bounded
under the condition of average dwell time. From the above
conclusions and conditions, it can be concluded that the
tracking error of the system will also converge to a limited
compact set and the system output satisfies the constraint
conditions.

In this section, it is necessary to prove that the system
output meets the constraint and the final tracking error will
converge to a compact set, then the following proofs are
given:

ρ =
B2

m1M

B2
m1m

−B∗2
m10

, (58)

where Bm1M = max
1≤j≤M

{
Bm1,j

}
, Bm1m = min

1≤j≤M

{
Bm1,j

}
,

then |z1| ≤ B∗
m10

< Bm1m with B∗
m10

> 0; initial condition:
the initial value x1 (0) of the output variable is bounded and
satisfies {x1 ||x1 (0)| ≤ Kc1 }, with Kc1 = min

1≤j≤M
{Kc1,j}.

proof. Combining equations (18), (26), (36) and (48) we
can get

Vn,j =
1

2
log

(
B2

m1,j

B2
m1,j

− z21

)
+

1

2

n∑
i=2

z2n +
n∑

i=1

θ̃2i
2λ0

, (59)

with Lemma 2 and (58), the equation (59) becomes

Vn,j ≤
1

2

z21
B2

m1,j
− z21

+
1

2

n∑
i=2

z2i +

n∑
i=1

1

2λ0
θ̃2i

≤ 1

2

B2
m1,l

B2
m1m

−B∗2
m10

z21
B2

m1,l

+
1

2

n∑
i=2

z2n +
n∑

i=1

1

2λ0
θ̃2i

≤ ρ

(
1

2

z21
B2

m1,l

+
1

2

n∑
i=2

z2i +

n∑
i=1

1

2λ0
θ̃2i

)

≤ ρ

(
1

2
log

(
B2

m1,l

B2
m1,l

− z21

)
+

1

2

n∑
i=2

z2i +
n∑

i=1

1

2λ0
θ̃2i

)
≤ ρVn,l, (60)

for any k, l ∈
∑

. Then there are such functions α, α ∈ κ∞,
the following inequality α (∥X∥) ≤ Vn,j (X) ≤ α (∥X∥)
exists, where X =

[
z1, z2, · · · , zn, θ̃1, θ̃2, · · · θ̃n

]T
. Creating

an auxiliary function L (t) = eµ0tVn,σ(t) (X (t)) which
is a segmented differentiable function, one each interval
[ts, ts+1), according to (57) can get

L̇ (t) = µ0e
µ0tVn,σ (X (t)) + eµ0tV̇n,σ (X (t))

≤ ν0e
µ0t, t ∈ [ts, ts+1) . (61)

Combining (60), (61) can easily obtain

L (ts+1) = eµ0ts+1Vn,σ(ts+1) (X (ts+1))

≤ ρeµ0ts+1Vn,σ(ts) (X (ts+1))=ρL
(
t−s+1

)
≤ ρ

[
L (ts) +

∫ ts+1

ts

ν0e
µ0tdt

]
. (62)

With arbitrary T > t0 and t0 = 0, there is inequality (62)
from s = 0 to s = Nσ (T, 0)− 1, yields

L
(
T−) ≤ L

(
tNσ(T,0)

)
+

∫ T

tNσ(T,0)

ν0e
µ0tdt

≤ ρ

[
L
(
tNσ(T,0)−1

)
+

∫ tNσ(T,0)

tNσ(T,0)−1

ν0e
µ0tdt

+ρ−1

∫ T

tNσ(T,0)

ν0e
µ0tdt

]
≤ · · ·

≤ ρNσ(T,0)

L (0) +

Nσ(T,0)−1∑
s=0

ρ−s

∫ ts+1

ts

ν0e
µ0tdt

+ρ−Nσ(T,0)

∫ T

tNσ(T,0)

ν0e
µ0tdt

]
. (63)

It is worth emphasizing that τa > log ρ
µ0

, for any o ∈(
0, µ0 − log ρ

τa

)
, there is τa > [(log ρ) / (µ0 − o)], according

to (4) can get

Nσ (T, t) ≤ N0 +
(µ0 − o) (T − t)

log ρ
∀T ≥ t ≥ 0, (64)

since this inequality Nσ (T, 0)− s ≤ 1 +Nσ (T, ts+1), s =
0, 1, · · · , Nσ (T, 0), there is the following formula

ρNσ(T,0)−s ≤ ρ1+N0e(µ0−o)(T−ts+1). (65)
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In addition, since o < µ0, we have∫ ts+1

ts

ν0e
µ0tdt ≤ e(µ0−o)ts+1

∫ ts+1

ts

ν0e
otdt, (66)

then it follows (65) and (66), the following formula is get

L
(
T−) ≤ ρNσ(T,0)L (0) + ρ1+N0e(µ0−o)T

∫ T

0

ν0e
otdt.

(67)
Which indicates that

α (∥X (T )∥) ≤ Vn,σ(T−)

(
X
(
T−))

≤ eN0 log ρe(
log ρ
τa

−µ0)Tα (∥X (0)∥)

+ ρ1+N0
ν0
o

(
1− e−oT

)
≤ eN0 log ρe(

log ρ
τa

−µ0)Tα (∥X (0)∥)

+ ρ1+N0
ν0
o

∀T > 0. (68)

By observing the inequality (68), it is not difficult to con-
clude that the error zk in this system k = 1, 2, · · · , n and{
θ̃1, θ̃2, · · · θ̃n

}
in the closed loop system (1) are bound-

ed in the condition of satisfying the average dwell time
τa > log ρ

µ0
. Judging from the definition and assumptions

at the beginning of the article θi are constants, so θ̂i are
bounded i = 1, 2, · · · , n, then according to (14) αk−1,j

(k = 2, 3, · · · , n) and yd are bounded, so xi, i = 1, 2, · · · , n
are bounded. Therefore, all signals in the system are bounded
under the condition of switching signals.

Another aspect, due to the |z1| ≤ B∗
m1,j

< Bm1,j and
|yd| ≤ ȳd, they are bounded; so x1 is bounded, the next,
|y| = |x1| ≤ |z1| + |yd| ≤ B∗

m1,j
+ ȳd = Kc1,j , |x1| ≤

Kc1, Kc1 = min
1≤j≤M

{Kc1,j}, output constraint condition is

proved.
Using the above inequalities (59) and (68), with the

average dwell time condition τa > (log ρ)/µ0, we can obtain

1

2
log

(
B2

m1,j

B2
m1,j

− z21

)
≤ eN0 log ρα (∥X (0)∥) + ρ1+N0

ν0
o
,

(69)
it follows that:

|z1| ≤ Bm1,j

√
1− e−2(eN0 log ρα(∥X(0)∥)+ρ1+N0

ν0
o ), (70)

according to the condition of (58), we further obtain that
tracking error z1 will converge to a suitable set

ξ1 =

{
|z1| ≤ Bm1m

√
1− e−2(eN0 log ρα(∥X(0)∥)+ρ1+N0

ν0
o )
}
.

(71)
It is proved that the tracking error converges to a compact
set.

Remark 5. It is noted here that the system in this paper
has the input dead zone and saturation, and by means of
equations (9) and (10), the input is replaced by a smooth
function. Lemma 1 needs to be used when constructing
neural network adaptive controller. When dealing with the
output constraint problem, prove that the output is within
the boundary by using Assumption 2 and Lemma 2. Then by
Definition 1 and Lemma 2, this new constraint rule τa > log ρ

µ0

is designed for system (1). Finally, it is shown by stability
analysis that the tracking error converges to a very small set.

V. EXAMPLE RESULTS

After selecting appropriate parameters, the feasibility of
the control scheme is verified by simulation example.

Example A second-order uncertain switched nonlinear
system with input constraint and output constraint is given

 ẋ1 = x2 + f1,σ (x1) + h1,σ (t)
ẋ2 = uσ + f2,σ (x̄2) + h2,σ (t)
y = x1,

(72)

where x1 and x2 are the state variables, then the input dead
zone and saturation functions are given.

u1 =



−5 m1 ≤ −5

5(m1 + 1)/4 −5 < m1 ≤ −1

0 −1 < m1 ≤ 2

6(m1 − 2)/4 2 < m1 ≤ 6

6 m1 > 6,

(73)

u2 =



−3 m2 ≤ −3

3(m2 + 1.5)/1.5 −3 < m2 ≤ −1.5

0 −1.5 < m2 ≤ 1.5

4(m2 − 1.5)/2.5 1.5 < m1 ≤ 4

4 m2 > 4,

(74)

σ = {1, 2}, the nonlinear functions are chosen as
f1,1 (x1) = x1 sin (x1), f2,1 (x1, x2) = 2

(
x2 + x2

1

)
,

f1,2 (x1) = x1 cos (2x1), f2,2 (x1, x2) = x2
1 + x2

2, then
h1,1 (t) = 0.03 cos (t), h2,1 (t) = −0.03 sin (t), h1,2 (t) =
0.01 sin (t), h2,2 (t) = 0.02 cos (t), yd is given: yd =
0.2 sin (t). Based on the (16) (23) and (54), we can obtain

˙̂
θ1 =

λ0z
2
1S

T
1,j (Z1)S1,j (Z1)

2τ21,j

(
B2

m1,j
− z21

)2 − γ0θ̂1

˙̂
θ2 =

λ0z
2
2S

T
2,j (Z2)S2,j (Z2)

2τ22,j
− γ0θ̂2

α1,j = −
(
c1,j +

1

2

)
z1 −

θ̂1z1S
T
1,jS1,j

2τ21,j

(
B2

m1,j
− z21

)
mj =

1

rj

[
−
(
cn,j +

1

2

)
zn −

θ̂nznS
T
n,jSn,j

2τ2n,j

]
, (75)

in the above equations, the appropriate parameter values are
selected, c1,1 = 17, c1,2 = 18, τ1,1 = 1, τ1,2 = 2, Bm1,1 =
1.3, Bm1,2 = 0.5, λ0 = 0.5, γ0 = 0.5, c2,1 = 8, c2,2 = 9,
r1 = 1, r2 = 1, τ2,1 = 3, τ2,2 = 4, the initial value of
θ̂1 and θ̂2 are 0, x1 (0) = 0.2, x2 (0) = 0.3; |yd| ≤ 0.2,
the output constraint is chosen as |x1| ≤ 0.5, µ0 = 0.5 and
select the value of B∗

m10
:B∗

m10
= 0.3. The average dwell

time τa > [log(10.5625)]/0.5 = 4.7146.
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Fig. 2. Control input m1 of Example.

0 10 20 30 40 50 60

t/s

-50

-40

-30

-20

-10

0

10

20

u
1

input u1

0 0.6

-5

-4.5

-4

0.5 1

5.5

6

2 2.2
-0.2

0

0.2

Fig. 3. Input dead zone and saturation function u1.

0 10 20 30 40 50 60

t/s

-40

-30

-20

-10

0

10

20

m
2

control input

Fig. 4. Control input m2 of Example.
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Fig. 7. Tracking error of Example.
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Fig. 10. Adaptive update law 2 θ̂2 of Example.
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Fig. 11. System state x2.

In the above simulation graphs, the graphs of the state
variables and the output of the system as a function of time
can be seen, the above graphs are more based on the second-
order system and the given parameters simulated. In Figs. 2
and 4, the control input m1 of subsystem 1 and the control
input m2 of subsystem 2 are shown, respectively. The input
dead zone and saturation functions of the subsystem 1 and
subsystem 2 are described in the Figs. 3 and 5, respectively,
the dead zone and saturation of the input function can be
seen in the figures. From Fig. 6, we can see the output signal
and reference signal, the system output is constrained within
the boundary. About Fig. 7, the tracking error varies around
0. The square switching signal is described in Fig. 8. The
adaptive update law θ̂1 and θ̂2 are depicted in Fig. 9 and 10.

VI. CONCLUSION

The neural network adaptive control problem for a class of
uncertain switched nonlinear systems with input and output
constraints is studied in this paper, input constraint and
output constraint are added to make system more compli-
cated, because the given input dead zone and saturation
function is a piecewise function, it is not easy to handle
in the process of designing the controller, using the smooth
function to approximate the input dead zone and saturation
function to solve this problem. The adaptive controller is
designed based on the neural network and adaptive back-
stepping method, because of the existence of the output
constraint, the barrier Lyapunov function is used. In the
stability analysis, the average dwell time method is used
and inequality Nσ (T, t) ≤ N0 + T−t

τa
is used to limit the

number of switching in the uncertain switched nonlinear
system. Finally, the system output constraint is proved and
the system tracking error converges to a compact set.
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(2)Brief description of the changes 1.Fixed some gram-

matical errors. 2.Assumption 3 was modified and a sentence
was added. 3.Modified the α1,j , c2,1, c2,2, the initial value
of θ̂1 and θ̂2. Modified the simulation figures.
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