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Abstract—A fixed-time fuzzy adaptive event-triggered control
strategy is proposed for a class of strict-feedback uncertain
switched nonlinear systems with input saturation. Firstly, the
unknown nonlinear functions in the system are approximated
by fuzzy logic systems, and the unknown states of the system
are estimated by using a linear state observer. This eliminates
the limitation that states must be measured and functions must
be known during the controller design process. Secondly, the
event-triggered control is introduced to dynamically compensate
for the saturated input of the system, which reduces the
updating frequency of the control signal and effectively saves
the communication resources of the system. And only one
adaptive parameter is needed in the design, which not only
reduces the computational burden, but also solves the problem
of excessive parameterization. Finally, the simulation results
verify that the proposed method can ensure that the reference
signal can be well tracked within the preset time when input
saturation occurs.

Index Terms—event-triggered control, fixed-time control,
switched nonlinear systems, input saturation, fuzzy adaptive
control

I. INTRODUCTION

W ITH the deepening of research on nonlinear sys-
tem control technology, the importance of switched

system has attracted a lot of attention[1-4]. A tracking
control method for switched nonlinear systems with unknown
time-varying parameters was provided in [5], an adaptive
neural network control scheme was given, which ensured
that the whole system was semi-global uniformly eventually
bounded. In [6], Hespanha generalized the concept of dwell
time to mean dwell time and proved that the switched
system was exponentially stable under the mean dwell time
switching signal. In [7], a robust adaptive control scheme was
proposed for strict-feedback uncertain switched nonlinear
systems, which effectively reduced the number of adjustable
parameters of the controller. However, the above research
ignored the phenomenon of input saturation in the system,
which reduced the performance of the system.

Compared with time-triggered control, event-triggered
control (ETC) [8-9] can significantly reduce the amount
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of data in the network transmission, as well as reduce the
calculation frequency and execution times of the controller,
improve the transmission efficiency. In [10], Sahoo et al
proposed an optimal control method based on event-triggered
mechanism for uncertain nonlinear discrete systems, the ul-
timate boundedness of the closed-loop system is guaranteed
by using Lyapunov technique and event-triggered conditions.
In [11], an ETC method based on HDP technique was
given, which can make the discrete system asymptotically
stable. In [12], the problem of adaptive tracking control for
nonlinear systems with time-varying delays was studied, and
an event-based adaptive control strategy was provided to
reduce the communication burden. However, in the above
research, the fixed-time control problem of the system under
input constraints is not considered.

In control systems, input saturation can lead to per-
formance degradation and even instability of closed-loop
systems [13]. To address these issues, in [14], Li et al
studied adaptive fuzzy control scheme for nonlinear systems
including input saturation, which guaranteed that all signals
in the closed-loop system were bounded. In [15], for the
closed-loop nonlinear system with input saturation, an aux-
iliary control signal was designed to deal with the saturation
function to ensure that the closed-loop nonlinear system can
maintain stability when input saturation occurs. The adaptive
fuzzy control problem for nonstrict feedback systems with
input saturation was studied in [16], the auxiliary control
signals are introduced to sovle the input saturation problem.
However, in the above studies, the fixed-time control scheme
for switched nonlinear systems with strict-feedback form is
not considered.

In order to overcome the shortcomings of the infinite time
control, the finite time control method [17-19] was proposed,
which has faster convergence speed and better robustness.
However, the control performance of the system largely
depends on the initial condition of the system, which makes
the finite time control have great application limitations.
Therefore Polyakov proposed fixed-time control in [20] to
solve this problem. In [21], a tracking controller with fixed-
time was given for the strict-feedback nonlinear system to
ensure that the system output can track the reference signal
in a fixed time. In [22], an adaptive fixed-time controller
was provided for the MIMO nonlinear system, which had
effectively improved the robustness of the system. In [23], an
adaptive fuzzy fixed-time controller based on was provided
for the uncertain multi-link robot system to guarantee the
rapidity of system’s transient response.

Based on the above research, this paper focuses on a class
of strict-feedback switched nonlinear systems with saturated
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input constraints. A fixed-time fuzzy adaptive event-triggered
control method is proposed. The main contributions include:

(1) By introducing fixed-time control and event-triggered
mechanism, the proposed control method not only reduces
the large occupation of communication resources caused by
compensating the saturation input, but also ensures that the
output of the system can track the reference signal within a
preset time, and the tracking time is independent of the initial
state of the system. When there is saturation phenomenon in
the system input, it can maintain a stable state and improve
the system performance, which is more conducive to practical
applications.

(2) Compared with the control scheme proposed in [14-
16], firstly, there is no need to design auxiliary control signals
in the process of dealing with saturation input constraints,
which makes the designed control scheme more simple and
the proposed control scheme has a wider application range.
Secondly, only one adaptive parameter is needed in the pro-
cess of controller design, which reduces the computational
burden and solves the problem of over-parameterization. At
the same time, the state of the system is estimated by using
a linear observer, and the unknown nonlinear functions in
the system are approached by using a fuzzy logic system
(FLS), which eliminates the restriction that the state must be
measurable and the function must be known.

II. SYSTEM DESCRIPTIONS AND BASIC KNOWLEDGE

A. Problem formulations

Consider the uncertain switched nonlinear system with
strict-feedback form as follows

ẋ1 = x2 + f1,σ(t)(x1) + d1,σ(t)(t)

ẋi = xi+1 + fi,σ(t)(x̄i) + di,σ(t)(t)

ẋn = u(v) + fn,σ(t)(x̄n) + dn,σ(t)(t)

y = x1.

(1)

Where x̄i = [x1, x2, · · · , xi]
T ∈ Ri(i = 1, 2, · · · , n),

u ∈ R and y ∈ R are state vector, input variables and
output variables of the system respectively; σ(t) : [0,∞) →
M = {1, 2, · · ·,m} denotes switching signal, m is the
number of subsystems, fi,k(·) and di,k(·)(k ∈ M ) represent
the unknown nonlinear function and the unknown external
disturbance in the system respectively; v(t) is the actual
control input of the system, u(v) denotes the system input
subject to saturation constraint.

u(v) can be fomulated as

u(v) =

{
umaxsgn(uc) |uc| ≥ umax

uc |uc| < umax
(2)

Where umax is the maximum value of the control input, and
uc is the control input to be designed.

The main control objective of this paper is to design
a fixed-time control scheme for the system shown in (1),
which can maintain a stable state when the system has input
saturation phenomenon, and ensure that the output of the
system can track the reference signal within a preset time.

B. Some preliminaries

Definition 1.[21] A nonlinear system

ẋ(t) = f(x(t)) (3)

Here x(t) ∈ Rn is the state variable of the system, f(·)
denotes a continuous nonlinear function, x(0) = 0, f(0) =
0. If the system (3) is stable in the sense of Lyapunov and
there exists a convergence time Ts makes x(t) = 0 for all
t ≥ Ts, then the system (3) is said to be finite time stable.

Lemma 1.[24] If V (x(t)) is a continuous function, there
exists arguments χ > 0, c > 0, h > 0, β > 1, 0 < γ < 1
and 0 < η < 1 holds

V̇ (x(t)) ≤ −(hV γ + cV β)x(t) + χ (4)

Then the system (3) is referred to as fixed time stability
and has a convergence time of Ts satisfies the following
inequality:

Ts ≤ Tmax =
1

(1− γ)ηh
− 1

(1− β)ηc
(5)

The state of the system satisfies

⊘ = {x(t)|V (x(t)) ≤ min{( χ

(1− η)h
)

1
γ ,

(
χ

(1− η)c
)

1
β }}

(6)

Lemma 2.[22] zi ≥ 0 satisfies the following inequalitys
n∑

i=1

zi
p ≥ (

n∑
i=1

zi)

p

, 0 < p < 1 (7)

n∑
i=1

zi
p ≥ n1−p(

n∑
i=1

zi)

p

, p > 1 (8)

Lemma 3.[25] For any x, y ∈ R2, there has

xy ≤ ιa

a
|x|a + 1

bιb
|y|b (9)

Where ι > 1, a > 1, b > 1 and (a− 1)(b− 1) = 1.
Lemma 4.[26] For ω, ξ ∈ R there exists any positive

constant κ, ϵ and l satisfying the inequality as follows

|ω|κ|ξ|ϵ ≤ κ

κ+ ϵ
l|ω|κ+ϵ

+
ϵ

κ+ ϵ
l−

1
ϵ |ξ|κ+ϵ (10)

Lemma 5[27] F (x) is a continuous function defined in
a closed set Ωx, for ∀ε > 0, there exists a FLS y(x) =
WTφ(x) satisfying the inequality

sup
x∈Ωx

∣∣f(x)−WTφ(x)
∣∣ ≤ ε (11)

Where W = [w1, w2, · · · , wn]
T is the weight vec-

tor, φ(x) = [p1(x), p2(x), · · · , pn(x)]
T /

n∑
i=1

pi(x), is

the basis function vector, N > 1 is the number of fuzzy
rule, pi is the selected Gaussian function, pi = exp[−(x−
µi)

T (x − µi)/γi
2], µi = [µi1, · · · , µin]

T is the center of
the basis function with a width of γi, i= 1, 2, · · · , n.

Lemma 6.[28] For Γ ∈ R , σ > 0, there has

0 ≤ |Γ | − Γtanh(
Γ

σ
) ≤ 0.2785σ (12)

Assumption 1. The reference signal yd and its nth order
derivatives are continuous, known and bounded, then there
is a function kai+1

(t), satisfying inequality kai+1
(t) >

|y(i)d (t)| (i = 0, 1, · · · , n) .
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Assumption 2. The external disturbance di,k(t) in the
model is bounded, and there exists a constant d̄i,k > 0,
satisfying inequality d̄i,k ≥ |di,k(t)|

Assumption 3. ∀ X , Y ∈ Ri, there exist positive constants
hi,k(i = 1, 2, . . . , n) such that

|fi,k(X)− fi,k(Y )| ≤ hi,k∥X − Y ∥ (13)

III. STATE OBSERVER DESIGN

In order to solve the problem of unknown state of the
system, a state observer is designed to estimate the system
state. Then (1) can be written as:

ẋ1 = x2 + f1,k(x̂1) + d1,k(t) +△f1,k

ẋi = xi+1 + fi,k(ˆ̄xi) + di,k(t) +△fi,k

ẋn = u+ fn,k(ˆ̄xn) + dn,k(t) +△fn,k

y = x1.

(14)

Where ˆ̄xi is the estimated value of x̄i , △fi,k = fi,k(x̄i)−
fi,k(ˆ̄xi), i = 1, · · · , n.

The designed state observer is as follows:
˙̂x1 = x̂2 + η1,k(y − x̂1)
˙̂xi = x̂i+1 + ηi,k(y − x̂1)
˙̂xn = u+ ηn,k(y − x̂1)

ŷ = x̂1.

(15)

According to equation (15), there is{
˙̂x = Ax̂+ L y +Bnu

ŷ = Cx̂1.
(16)

Where x̂ = [x̂1, · · · , x̂n]
T , Bn = [0, · · · , 0, 1]T , C =

[1, 0, · · · , 0]T , L = [η1,k, η2,k, · · · , ηn,k]T ,

A =


−η1,k
−η2,k In−1

...
−ηn,k 0 · · · 0


For a given matrix Q = QT > 0, there exists a matrix

P = PT > 0 that satisfies

ATP + PA = −Q (17)

Where A is a strict Hurwitz matrix, define e = x − x̂ =
[e1, e2, · · · , en]

T , combining (14) and (16), there has

ė = Ae+△Fk + Fk +Dk (18)

Where △Fk = [△f1,k, · · · ,△fn,k]
T , Dk =

[d1,k, · · · , dn,k]T , Fk = [f1,k(x̂1), · · · , fn,k(ˆ̄xn)]
T .

Select the Lyapunov function as follows:

V0 = eTPe (19)

Taking the derivative on both sides of equation (19) yields

V̇0 =− eTQe+ 2eTP△Fk+

2eTPFk + 2eTPDk

(20)

By using FLS, Fk can be expressed as follows:

Fk(Z0) =WT
0,kφ0(Z0) + ε0,k(Z0)

∥ε0,k(Z0)∥ ≤ ε0
(21)

Where W0,k = [WT
0,k,1, · · · ,WT

0,k,n], ε0,k(Z0) =

[ε0,k,1(Z0), · · · , ε0,k,n(Z0)]
T .

According to Lemma 3 and Assumptions 2-3 , we can
obtain the inequality as follows:

2eTP∆Fk ≤ (n+ ∥ P ∥2
n∑

i=1

h2
i,k)e

T e

≤ (n+ ∥ P ∥2
n∑

i=1

h̄2
i )e

T e

(22)

2eTPDk ≤ (neT e+ ∥P∥2
n∑

i=1

d̄2i ) (23)

2eTPFk ≤ eT e+ ∥P∥2 ∥Fk∥2

≤ eT e+ ∥P∥2 (θ0 + ε20)
(24)

Where h̄i = maxk∈M{hi,k}, d̄i = maxk∈M{di,k}, θ0 =
maxk∈M{||W0,k||2}.

Taking (22)-(24) into (20) we have:

V̇0 ≤− eTQe+ (n+ ∥P∥2
n∑

i=1

h̄2
i )e

T e+

(neT e+ ∥P∥2
n∑

i=1

d̄2i )+

eT e+ ∥P∥2 (θ0 + ε20)

≤ −µ0e
T e+ ∥P∥2(

n∑
i=1

d̄ 2
i + θ0 + ε20)

(25)

Let µ0 = (λmin(Q)− 2n− 1− ||P ||2
n∑

i=1

h̄2
i ).

IV. CONTROLLER DESIGN

In this section, the steps for designing the tracking con-
troler of system (1) will be provided. Firstly, coordinate
transformation is defined as

z1 = x1 − yd

zi = x̂i − αi−1

i = 2, · · · , n.
(26)

Here yd is the reference signal, zi is the tracking error, and
αi−1 is the control signal at the αi−1 step.

Step 1: Combining (1) and (26), we can get:

ż1 = z2 + e2 + α1 + f1,k(x1) + d1,k − ẏd (27)

Select the Lyapunov function as follows:

V1 = V0 +
1

2
z21 +

1

2g1
θ̃21 (28)

Where g1 > 0 is the design parameter, the derivative of
equation (28) can be obtained:

V̇1 =V̇0 + z1(z2 + α1 + e2 + f1,k(x1) + d1,k−

ẏd)−
1

g1
θ̃1

˙̂
θ1

(29)

Where θ̃1 = θ1 − θ̂1 denotes the parameter error, by using
FLS, it has

f1,k(x1) = WT
1,kφ1(x1) + ε1,k(x1), |ε1,k(x1)| ≤ ε1 (30)
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According to Lemma 2, it has

z1z2 ≤ 1

2
z21 +

1

2
z22 (31)

z1e2 ≤ 1

2
z21 +

1

2
eT e (32)

z1f1,k(x1) =z1(W
T
1,kφ1(x1) + ε1,k(x1))

≤ θ1
2a12

z21φ
T
1 φ1 +

1

2
a21 +

1

2
z21 +

1

2
ε21

(33)

Where θ1 = maxk∈M{||W1,k||2}, a1 > 0 is the design
parameter.

z1d1,k ≤ 1

2
z21 +

1

2
d̄1

2 (34)

Substituting (31)-(34) into (31), we can obtain

V̇1 ≤V̇0 + z1(α1 − ẏd) + 2z21 +
1

2
z22 +

1

2
∥e∥2+

θ1
2a21

z21φ
T
1 φ1 +

1

2
a1

2 +
1

2
ε1

2 − 1

g1
θ̃1

˙̂
θ1 +

1

2
d̄1

2
(35)

The designed virtual control signal α1 and adaptive rate
˙̂
θ1 are

α1 =− 2z1 + ẏd −
θ̂1
2a21

z1φ
T
1 φ1−

h1z
2γ−1
1 − c1z

2β−1
1

(36)

˙̂
θ1 = g1(

1

2a21
z21φ

T
1 φ1 − σ1θ̂1) (37)

Where the design parameters σ1, a1 and hi, ci(i = 1, · · · , n)
satisfies σ1 > 0, a1 > 0, hi > 0, ci > 0.

Substituting (36) and (37) into (35) yields

V̇1 ≤V̇0 +
1

2
z2

2 +
1

2
∥e∥2 + 1

2
a21+

1

2
ε1

2 + σ1θ̃1θ̂1 +
1

2
d̄1

2
(38)

Referring to Lemma 3, we can get

σ1θ̃1θ̂1 ≤ −1

2
σ1θ̃1θ̃1 +

1

2
σ1θ1θ1 (39)

Substituting (39) into (38), there has

V̇1 ≤ −µ0∥e∥2 + ∥p∥2(
n∑

i=1

d̄2i + θ0 + ε20)+

1

2
z2

2 +
1

2
∥e∥2 + 1

2
a21 +

1

2
ε21 −

1

2
σ1θ̃1θ̃1+

1

2
σ1θ1θ1 +

1

2
d̄1

2 − h1z
2γ
1 − c1z

2β
1

(40)

Step 2: According to (15) and (26), we can get

ż2 = ˙̂x2 − α̇1

= z3 + α2 + η2,ke1 − α̇1

(41)

Select the following Lyapunov function

V2 = V1 +
1

2
z22 (42)

V̇2 can be get

V̇2 =V̇1 + z2(z3 + α2 + η2,ke1 − α̇1) (43)

According to the Lemma 3:

z2z3 ≤ 1

2
z22 +

1

2
z23 (44)

−z2
∂α1

∂x1
e2 ≤ 1

2
z22(

∂α1

∂x1
)2 +

1

2
∥e∥2 (45)

−z2
∂α1

∂x1
f1,k ≤ −z2

∂α1

∂x1
(WT

1,kφ1 + ε1,k)

≤ 1

4
z22(

∂α1

∂x1
)2φ1

Tφ1 + θ1+

1

2
z22(

∂α1

∂x1
)2 +

1

2
ε21

(46)

−z2
∂α1

∂x1
d1,k ≤ 1

2
z22(

∂α1

∂x1
)2 +

1

2
d̄1

2 (47)

Substituting (44)− (47) into (43), we can obtain:

V̇2 ≤ V̇1 +
1

2
z22 +

1

2
z3

2 +
3

2
z22(

∂α1

∂x1
)2 +

1

2
∥e∥2+

1

4
z22(

∂α1

∂x1
)2φ1

Tφ1 + θ1 ++
1

2
ε21 +

1

2
d̄1

2
+ z2(α2+

η2,ke1 −
∂α1

∂θ̂1

˙̂
θ1 −

2∑
j=1

∂α1

∂yd(j−1)
y
(j)
d − ∂α1

∂x1
x̂2)

(48)

Design the virtual control signal α2 as follows:

α2 = −3

2
z2(

∂α1

∂x1
)2 − η2,ke1 +

∂α1

∂θ̂1

˙̂
θ1+

2∑
j=1

∂α1

∂yd(j−1)
y
(j)
d +

∂α1

∂x1
x̂2 − h2z

2γ−1
2 −

c2z
2β−1
2 − 1

4
z2(

∂α1

∂x1
)2φ1

Tφ1 − z2

(49)

Substituting (49) into (48), we can get:

V̇2 ≤V̇1 +
1

2
z3

2 +
1

2
∥e∥2 + θ1 +

1

2
ε1

2+

1

2
d̄1

2 − 1

2
z2

2 − h2z
2γ
2 − c2z

2β
2

(50)

Step i (2<i<n): Combining (15) and (26), we can obtain:

żi = ˙̂xi − α̇i−1

= zi+1 + αi + ηi,ke1 − α̇i−1

(51)

Select the Lyapunov function in the following form

Vi = Vi−1 +
1

2
z2i (52)

V̇i can be get

V̇i =V̇i−1 + zi(zi+1 + αi + ηi,ke1 − α̇i−1) (53)

According to Lemma 3, one has:

zizi+1 ≤ 1

2
zi

2 +
1

2
zi+1

2 (54)

−zi
∂αi−1

∂x1
e2 ≤ 1

2
z2i (

∂αi−1

∂x1
)2 +

1

2
∥e∥2 (55)

−zi
∂αi−1

∂x1
f1,k ≤ 1

4
z2i (

∂αi−1

∂x1
)2φ1

Tφ1+

θ1 +
1

2
z2i (

∂αi−1

∂x1
)2 +

1

2
ε21

(56)

−zi
∂αi−1

∂x1
d1,k ≤ 1

2
z2i (

∂αi−1

∂x1
)2 +

1

2
d̄1

2 (57)
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Substituting (54)-(57) into (53) produces:

V̇i ≤V̇i−1 +
1

2
z2i +

1

2
z2i+1 +

3

2
z2i (

∂αi−1

∂x1
)2+

1

2
∥e∥2 + 1

4
z2i (

∂αi−1

∂x1
)2φ1

Tφ1 + θ1+

1

2
ε21 +

1

2
d̄1

2
+ zi(αi + ηi,ke1 −

∂αi−1

∂θ̂1

˙̂
θ1−

i−1∑
j=2

∂αi−1

∂x̂j

˙̂xj −
i∑

j=1

∂αi−1

∂yd(j−1)
y
(j)
d − ∂αi−1

∂x1
x̂2)

(58)

The virtual control signal αi is designed as follows:

αi = −3

2
zi(

∂αi−1

∂x1
)2 − ηi,ke1 +

i−1∑
j=2

∂αi−1

∂x̂j

˙̂xj+

∂αi−1

∂θ̂1

˙̂
θ1 − zi +

i∑
j=1

∂αi−1

∂yd(j−1)
y
(j)
d − hiz

2γ−1
i −

ciz
2β−1
i +

∂αi−1

∂x1
x̂2 −

1

4
zi(

∂αi−1

∂x1
)2φ1

Tφ1

(59)

Substituting (59) into (58) results in

V̇i ≤V̇i−1 −
1

2
z2i +

1

2
z2i+1 +

1

2
∥e∥2+

1

2
ε1

2 +
1

2
d̄1

2
+ θ1 − hiz

2γ
i − ciz

2β
i

(60)

Step n: From (15) and (26), we have

żn = ˙̂xn − α̇n−1

= u+ ηn,ke1 − α̇n−1

= △u+ uc + ηn,ke1 − α̇n−1

(61)

Where △u = u − uc, there must be a positive number D
satisfied D ≥ | △ u|.

Choose the Lyapunov function as:

Vn = Vn−1 +
1

2
z2n (62)

it has

V̇n =V̇n−1 + zn(△u+ uc + ηn,ke1 − α̇n−1) (63)

The triggering event is defined as follows

w(t) = αn − µ̄ tanh
znµ̄

r
uc = w(ts), ∀t ∈ [ts, ts+1), s ∈ Z+

ts+1 = inf{t ∈ R+| |e(t) ≥ µ|}

(64)

Where µ, r and µ̄ are positive design parameters, µ ≤
µ̄, e(t) = w(t)− uc.

According to [29], when t ∈ [ts, ts+1), we can ob-
tain |w(t) − uc| ≤ µ, so there is a continuous function
χ(t) with χ(t) ≤ 1 when χ(ts) = 0 and χ(ts+1) = ±1, and
it has

uc = w(t)− χ(t)µ (65)

Combining (61) and (63)-(65), we can get:

V̇n = V̇n−1 + zn(△u+ uc + ηn,ke1 − α̇n−1)

= V̇n−1 + zn(w(t)− χ(t)µ+△u+ ηn,ke1 − α̇n−1)

= V̇n−1 + zn(αn − µ̄tanh
znµ̄

r
− χ(t)µ+△u+

ηn,ke1 − α̇n−1)
(66)

According to Lemma 6, one has:

−znµ̄tanh
znµ̄

r
+ |znµ| ≤ 0.2785r (67)

Substituting (67) into (66) produces:

V̇n ≤V̇n−1 + 0.2785r + zn △ u+

zn(αn + ηn,ke1 − α̇n−1)
(68)

Further, (68) can be rewritten as

V̇n ≤V̇n−1 + 0.2785r + zn△u+ zn(αn+

ηn,ke1 −
∂αn−1

∂θ̂1

˙̂
θ1 −

n−1∑
j=2

∂αn−1

∂x̂j

˙̂xj−

n∑
j=1

∂αn−1

∂yd(j−1)
y
(j)
d − ∂αn−1

∂x1
x̂2−

∂αn−1

∂x1
e2 −

∂αn−1

∂x1
f1,k − ∂αn−1

∂x1
d1,k)

(69)

According to Lemma 3, we can get

zn△u ≤ 1

2
zn

2 +
1

2
D2 (70)

−zn
∂αn−1

∂x1
e2 ≤ 1

2
z2n(

∂αn−1

∂x1
)2 +

1

2
∥e∥2 (71)

−zn
∂αn−1

∂x1
f1,k ≤ 1

4
z2n(

∂αn−1

∂x1
)2φ1

Tφ1

+ θ1 +
1

2
z2n(

∂αn−1

∂x1
)2 +

1

2
ε21

(72)

−zn
∂αn−1

∂x1
d1,k ≤ 1

2
z2n(

∂αn−1

∂x1
)2 +

1

2
d̄1

2 (73)

Substituting (70)− (73) into (69) produces

V̇n ≤V̇n−1 + 0.2785r +
1

2
z2n +

1

2
D2 +

1

2
ε21+

3

2
z2n(

∂αn−1

∂x1
)2 +

1

2
∥e∥2 + θ1 +

1

2
d̄1

2
+

zn(αn + ηn,ke1 −
∂αn−1

∂θ̂1

˙̂
θ1 −

n−1∑
j=2

∂αn−1

∂x̂j

˙̂xj−

n∑
j=1

∂αn−1

∂yd(j−1)
y
(j)
d − ∂αn−1

∂x1
x̂2) +

1

4
z2n(

∂αn−1

∂x1
)2φ1

Tφ1

(74)

The final control signal αn is designed as follows:

αn = −3

2
zn(

∂αn−1

∂x1
)2 − ηn,ke1 +

n−1∑
j=2

∂αn−1

∂x̂j

˙̂xj+

∂αn−1

∂θ̂1

˙̂
θ1 +

n∑
j=1

∂αn−1

∂yd(j−1)
y
(j)
d +

∂αn−1

∂x1
x̂2−

zn − 1

4
zn(

∂αn−1

∂x1
)2φ1

Tφ1 − hnz
2γ−1
n − cnz

2β−1
n

(75)

Substituting (75) into (74) produces:

V̇n ≤V̇n−1 + 0.2785r − 1

2
z2n +

1

2
D2+

1

2
∥e∥2 + 1

2
ε1

2 +
1

2
d̄1

2
+ θ1 − hnz

2γ
n −

cnz
2β
n

(76)
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Theorem 1. Under assumptions 1-3, the virtual control
rates of system (1) are designed as (36), (49), (59), and (75),
and the adaptive rate is (40). Then, by adjusting the design
parameters hi, ci, (i = 1, · · · , n) , g1, σ1, a1, the output of
the closed-loop system can track the reference signal within
a preset time, and the tracking time is independent of the
initial state of the system.

Proof. Combining (25), (40), (50), (60) and (76) yields

V̇n ≤− (µ0 −
n

2
)∥e∥2 + n

2
(d̄21 + ε21 +

σ1

n
θ1θ1+

2(n− 1)

n
θ1 +

a1
2

n
)− 1

2
σ1θ̃

2
1 + 0.2785r+

1

2
D2 + ∥p∥2(

n∑
i=1

d̄ 2
i + θ0 + ε20) + 0.2785r−

n∑
i=1

hiz
2γ
i −

n∑
i=1

ciz
2β
i

(77)

Choose µ1 = µ0− n
2 , F = min{2ci, 2hi, i = 1, · · · , n}, we

can get

V̇n ≤− 1

2
µ1∥e∥2 −

1

2
µ1∥e∥2 −

1

2
µ1(∥e∥2)β+

1

2
µ1(∥e∥2)β +

n

2
(d̄21 + ε21 +

σ1

n
θ1θ1+

2(n− 1)

n
θ1 +

a21
n
) + ∥p∥2(

n∑
i=1

d̄ 2
i + θ0+

ε20)−
σ1θ̃

2
1

4
− σ1θ̃

2
1

4
− σ1(

θ̃21
4
)β + σ1(

θ̃21
4
)β+

0.2785r +
1

2
D2 − F

n∑
i=1

1

2
z2γi − F

n∑
i=1

1

2
z2βi

(78)

Because of σ1 > 0, β > 1, n ≥ 1, it has

−σ1(
θ̃21
4
)β ≤ −n1−βσ1(

θ̃21
4
)β (79)

According to Lemma 2, we can obtain

−F
n∑

i=1

1

2
z2γi ≤ −2γ−1F (

n∑
i=1

1

2
z2i )

γ (80)

−F
n∑

i=1

1

2
z2βi ≤ −2β−1n1−βF (

n∑
i=1

1

2
z2i )

β (81)

According to the Lemma 4 , when ω = 1, ξ = ∥ e ∥2, κ =
1− γ, l = γ

γ
1−γ , ϵ = γ, it has:

µ1

2
(∥e∥2)γ ≤ 1

2
µ1∥e∥2 +

µ1

2
(1− γ)l (82)

Similarly, it can be concluded that

(
σ1θ̃

2
1

4
)γ ≤ σ1θ̃

2
1

4
+ (1− γ)l (83)

Substituting (79)-(83) into (78) produces

V̇n ≤− µ1

2
(∥e∥2)γ − µ1

2
(∥e∥2)β − µ1

2
∥e∥2−

(
σ1θ̃

2
1

4
)γ − n1−βσ1(

θ̃21
4
)β − σ1

θ̃21
4

+ σ1(
θ̃21
4
)β+

1

2
µ1(∥e∥2)β +

µ1

2
(1− γ)l + (1− γ)l−

2γ−1F (
n∑

i=1

1

2
z2i )

γ + ∥p∥2(
n∑

i=1

d̄2i + θ0 + ε20)+

n

2
(d̄21 + ε21 +

σ1

n
θ1θ1 +

2(n− 1)

n
θ1 +

a21
n
)+

0.2785r +
1

2
D2 − 2β−1n1−βF (

n∑
i=1

1

2
z2i )

β

(84)

Further, there has

V̇n ≤− h̄((eT pe)γ + (
θ̃21
2g1

)γ + (
n∑

i=1

1

2
z2i )

γ)

− c̄((eT pe)β + (
θ̃21
2g1

)β + (
n∑

i=1

1

2
z2i )

β)

− 1

2
µ1∥e∥2 +

1

2
µ1(∥e∥2)β + χ̄+

σ1(
θ̃21
4
)β − σ1

θ̃21
4

(85)

Where h̄ = min
{

µ1

2(λmax(P ))γ , ( g1σ1

2 )γ , 2γ−1F
}

, c̄ =

min{ µ1

2(λmax(P ))β
, n1−βσ1(

g1
2 )

β , 2β−1n1−βF}, χ̄ = µ1

2 (1−

γ)l + (1 − γ)l + ∥P∥2(
n∑

i=1

d̄ 2
i + θ0 + ε20) +

n
2 (d̄

2
1 + ε21 +

σ1

n θ1θ1 +
2(n−1)

n θ1 +
a2
1

n ) + 0.2785r + 1
2D

2.
The common Lyapunov function is chosen as follows:

Vn = eT pe+

n∑
i=1

1

2
z2i +

1

2g1
θ̃21 (86)

Substituting (86) into (85) one has:

V̇n ≤− h̄V γ
n − c̄V β

n +
µ1

2
(∥e∥2)β − µ1

2
∥e∥2+

σ1(
θ̃21
4
)β − σ1

θ̃21
4

+ χ̄

(87)

Suppose there are arbitrary constants Θ1, Θ2, such that
||e|| < Θ1, ||θ̃1|| < Θ2.

The following inequalities hold when Θ1 < 1, Θ2 < 2:
µ1

2
(∥e∥2)β − µ1

2
∥e∥2 < 0 (88)

σ1(
θ̃21
4
)β − σ1

θ̃21
4

< 0 (89)

Substituting (88)-(89) into (90) produces

V̇n ≤ −h̄V γ
n − c̄V β

n + χ̄ (90)

When Θ1 ≥ 1, Θ2 ≥ 2, we can obtain
µ1

2
(∥e∥2)β − µ1

2
∥e∥2 ≤ µ1

2
Θ2

1[(Θ
2
1)

β−1 − 1] (91)

σ1(
θ̃21
4
)β − σ1

θ̃21
4

= σ1
θ̃21
4
[(
θ̃21
4
)β−1 − 1]

≤ σ1
Θ2

2

4
[(
Θ2

2

4
)β−1 − 1]

(92)
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Substituting (91)-(92) into (87) we have

V̇n ≤ −h̄V γ
n − c̄V β

n + ¯̄χ (93)

Where ¯̄χ = χ̄ + χ̄1 + χ̄2, χ̄1 = µ1

2 Θ2
1[(Θ

2
1)

β−1 − 1], χ̄2 =

σ1
Θ2

2

4 [(
Θ2

2

4 )β−1 − 1].
Summarizing the above two cases, we can obtain

V̇n ≤ −h̄V γ
n − c̄V β

n + χ (94)

Where χ = χ̄+ χ1 + χ2.

χ1 =

{
0 Θ1 < 1
χ̄1 Θ1 ≥ 1

χ2 =

{
0 Θ2 < 2
χ̄2 Θ2 ≥ 2

(95)

By using the definition of ⊘ in Lemma 1 and Vn, it has
n∑

i=1

1

2
z2i ≤ (

χ

(1− η)h̄
)

1
γ (96)

n∑
i=1

1

2
z2i ≤ (

χ

(1− η)c̄
)

1
β (97)

Combining (96) and (97), zi ∈ Ωz can be obtained

Ωz = {zi | |zi| ≤ min

{√
χ

(1− η)h̄

1
γ
,

√
χ

(1− η)c̄

1
β

}
}

(98)

According to (98), we can get z1 = y − yd ∈ Ωz , So
the tracking error can be aggregated into the Ωz region by
adjusting the design parameters.

V. SIMULATION EXAMPLES

Consider strict-feedback switched nonlinear system as
follows 

ẋ1 = x2 + f1,σ(t)(x1) + d1,σ(t)(t)

ẋ2 = u+ f2,σ(t)(x̄2) + dn,σ(t)(t)

y = x1

(99)

The designed state observer is
˙̂x1 = x̂2 + η1,σ(t)(y − x̂1)
˙̂x2 = u+ η2,σ(t)(y − x̂1)

ŷ = x̂1

(100)

When σ(t) = 1, we choose f1,1 = 0.01x1e
−0.5x1 , f2,1 =

0.1x2 + x3
1, d1,1 = 0.02cos(t), d2,1 = 0.16sin(t), when

σ(t) = 2, we choose f1,2 = 0.02x1e
−x2

1 , f2,2 = 0.015e−x1+
0.01x2, d1,2 = 0.01sin(t), d2,2 = 0.02sin(0.2t).

In this simulation, x1 = 0.21, x2 = 0.2, x̂1 = 0, x̂2 =
0, θ̂1 = 0.01. r = 1, µ̄ = 7, µ = 0.1, umax = 150, umin =
−150, h1 = 150, h2 = 150, c1 = 150, c2 = 100, a1 =
0.01, σ1 = 30, g1 = 10, γ = 100/101, β = 2, η1,1 =
150, η2,1 = 100, η1,2 = 30, η2,2 = 200. Reference signal
yd = sin(0.6t). Here only a FLS is needed to approach
the unknown nonlinear function, and the fuzzy membership
function is µF j

1
= [e(−0.5∗(x1−(−4+l))T (x1−(−4+l)))], l =

−1.5, · · · , 1.5 , j = 1, · · · , 7.
The simulation results are shown in Fig.1- Fig.7. From

Fig.1 and Fig.2, it can be seen that the designed state
observer can estimate the unknown state x1 and x2 of the
system very well. Fig.3 shows that the system’s output y can
effectively track yd. Fig.4 shows v(t) and ω(t), respectively.

Combining Fig.6 and Fig.3, it can be seen that the system
meets the phenomenon of input saturation, but the system can
maintain a stable state. Fig.5 is the holding time of the trigger
execution interval, the number of events triggered in 30s is
2859, the trigger rate of the system is 9.5% (the simulation
step size is 0.001), therefore, the communication resources
are effectively saved, Fig.7 shows the switching curve of the
function σ(t).

Fig. 1. State variable x1 and variable estimate x̂1.

Fig. 2. State variable x2 and its estimate x̂2.

VI. CONCLUSION

A fixed-time fuzzy adaptive event-triggered control
method is given for strict-feedback uncertain switched non-
linear systems including input saturation. This method can
ensure that the system has good signal tracking performance
within the prescribed time, and the initial state of the system
will not affect the tracking time. Meanwhile, by introduc-
ing event triggered control strategies, the communication
resources of the system can be effectively saved, and even
when the system experiences input saturation, it can still
maintain good performance.
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Fig. 3. System output y and reference signal yd.
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Fig. 4. The trajectories of signals v(t) and ω(t).
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