

Abstract— Existing Fully Homomorphic Encryption

schemes mainly operate on integer data in the finite field.

However, in many real-life applications, the data is in floating-

point number format, and the homomorphic encryption of

floating-point information is challenging. This paper presents a

new homomorphic encryption method for matrices whose

elements are floating-point numbers. The proposed

homomorphic encryption of Floating-Point Data Matrices is

applied for secure image processing where the loss of accuracy

due to the finite length of the floating-point format

representation is insignificant. Here, the encryption/decryption

keys are also in floating-point format. New techniques of

homomorphic weighted addition, multiplication, and DCT

calculation are presented. Homomorphic proxy re-encryption

is the novelty of the proposed method.

Keywords— Double side encryption, Fully Homomorphic

encryption, Homomorphic DCT, Homomorphic proxy re-

encryption, Matrix keys, Weighted addition.

I. INTRODUCTION

MAGES are a visual depiction of relevant information for

easy rcognition. Billions of images are produced and

distributed worldwide in arts & entertainment, E-commerce,

science & education, geographical & tourism maps, health

care & diagnostic imaging services, etc. Invariably, these

images are saved in public or dedicated Cloud Servers (CS),

providing efficient storage and distribution at a low cost.

When medical images carrying sensitive information are

stored in Cloud Servers, security and confidentiality are the

image owner's primary responsibility [1]. The conventional

solution is to use image encryption or steganography [2].

Image encryption is tailor-made for homomorphic

operations. Therefore, we use image encryption to achieve

the desired privacy and security when the images are stored

in the Cloud Server.

 Homomorphic Encryption (HE) allows the algebraic and

arithmetic computations to be carried out over the encrypted

data in the CS without decryption and guarantees full

Manuscript received April 20, 2023; revised September 8, 2023 .
Prabhavathi Krishnegowda is a research scholar in the Department of

ECE, BGS Institute of Technology, Adichunchanagiri University, B. G.

Nagara, Karnataka, India. (Corresponding author. Phone +91 90194 56669.

e-mail: pdevimtech@gmail.com).

Anandaraju M Boregowda is a Professor in the Department of ECE,

BGS Institute of Technology, Adichunchanagiri University, B. G. Nagara,

India. (e-mail: mb.anandaraju@gmail.com).

accuracy on the decryption of the results from the cipher

domain [3]. Thus, with HE, the processing unit at the CS

can do computations without any access to the original data.

Therefore, the data owner can delegate privacy-preserving

Image Processing operations to the CS, which can handle

the heavy computational load.

The HE of two scalar plaintext numbers x1 and x2 is

governed by the defining rule as follows. Let enc(x1) and

enc(x2) be the encrypted ciphertext numbers of x1 and x2,

respectively. Then,

 enc(x1) enc(x2) = enc(x1 x2)

Here, stands for the algebraic operations: + (addition), ‒

(subtraction), * (multiplication), and so on.

We can extend the homomorphic encryption and

operations to matrices where the operands are matrices, and

the encryption is formulated such that,

E(X1) ϕ E(X2) = E(X1 ϕ X2) (1)

Here, ϕ stands for the matrix operation: + (addition), ‒

(subtraction), * (multiplication), and .* (element-wise

multiplication), etc. The encryption function E(…) that

satisfies (1) is the HE for matrices. Since matrices represent

digital images, HE of matrices leads to Homomorphic Image

Processing (HIP).

The principal objective of the proposed scheme is to:

 Develop a novel Matrix Encryption scheme for

the HIP using floating-point matrix keys.

The proposed method is denoted by HE-FPMK

(Homomorphic Encryption using floating-point matrix keys)

The remaining part of the paper is organized as follows.

Section II gives a brief review of the related work. Section

III explains the basic Homomorphic Encryption and

Decryption. In section IV, applications of HE-FPMK, in

image processing are presented. In section V, the

performance metrics of HE_FPMK and comparison with

other methods are discussed. Section VI concludes the

paper.

II. RELATED WORK

 We have several well-established techniques for

encrypting digital images [4] to achieve the required level of

security and adequate privacy. However, we consider those

schemes implementing efficient homomorphic encryption

suitable for image processing in the cipher domain. In [5-6],

the authors have used SEAL (Simple Encrypted Arithmetic

Library) developed by Microsoft Research for the

Fully Homomorphic Encryption of Floating-

Point Matrices for Privacy-Preserving Image

Processing

Prabhavathi Krishnegowda, Anandaraju M Boregowda

I

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

Homomorphic Encryption (HE) of images. Logistic

regression is implemented in [5], and Homomorphic image

resizing is carried out using bilinear and bicubic

interpolations. Image compression/decompression

operations are carried out using DCT and inverse DCT

transformations in the cipher domain [6]. However, SEAL

uses well-known BV and CKKS schemes where noise

components are added, which limits multilevel HE

operations. In [7], HE is deployed for the scale-invariant

feature transform (SIFT) of images. The SIFT technique can

search and match the images.

 Here, image privacy is achieved by splitting it into two

shares and storing them in two separate Cloud Servers for

SIFT implementation. Afterward, the partial results are

combined to reconstruct the final result. Therefore, the

proposed method has higher communication overhead and

increased computational complexity. In [8], the authors have

created CryptoNets, which is trained using encrypted data.

Queries can be sent, and the response from the CryptoNet

can be received in encrypted form. Therefore, the CS that

operates the CryptoNet cannot gain any information about

the original data. However, the proposed method uses HE

based on noise vectors and dual moduli, which results in

reduced throughput due to the increased computational

overhead when images are used as data inputs.

 In [9], the authors have designed a Convolutional Neural

Network (CNN) classifier that works in the cipher domain

using Fully Homomorphic Encryption. The classification

activity is outsourced to a high-power CS. The real numbers

are represented in fixed point formats to implement

homomorphic operations. Hence, the proposed method has

higher computational complexity, which is the main

disadvantage when working with large images. In [10], the

Scale Invariant Feature Transform (SIFT) of images has

been implemented using homomorphic encryption, which is

carried out based on NTRU (N
th

-degree Truncated

polynomial Ring Units). NTRU encryption supports easy

scale-up so that the large-sized images can be processed

efficiently in the cipher domain. The proposed method uses

SIFT coefficients for image matching. However, the

inaccuracy of homomorphic division is reflected in the

calculated SIFT coefficients, and the overall error is

substantially higher compared to SIFT operation in the

plaintext domain. In [11], morphological transformations

like dilation, erosion, opening, etc., are carried out on the

encrypted images using homomorphic multiplication

implemented in the binary field. Here, the authors have used

monoid algebra that is susceptible to CPA (chosen plaintext

attack) and CCA (chosen ciphertext attack).

 In [12], the authors have securely outsourced the BTC

(Block Truncation Coding) of images to the CS.

Homomorphic BTC is accomplished after encrypting the

image using block permutation and diffusion, which do not

modify the BTC parameters. Therefore, image compression

via BTC is carried out successfully in the cipher domain.

However, image compression using BTC suffers substantial

information loss and is not acceptable for fine-grained

images where sensitive features are embedded, like medical

images. In [13], a symmetric encryption/decryption scheme

using two-stage modular operations has been presented.

Here, the image matrices are encrypted/decrypted element

by element, which increases the time complexity, and the

consequent computational cost quadratically with respect to

the size of the image.

In [14], Elliptic Curve Cryptography (ECC) is used to

provide homomorphic addition of images. The basic

principle of the Elgamal method is adopted to exchange

cryptographic data. The major drawback of this scheme is

the lack of homomorphic multiplication, and hence its

applicability is restricted. Another disadvantage of this

method is increased computational complexity due to ECC,

which is not favourable for handling large-sized image data.

 In [15], the authors have used a fully homomorphic

encryption scheme for remote authentication using digital

signatures based on biometric images like fingerprints, iris,

faces, and so on. In the proposed scheme, the encrypted

biometric images are used for the verification of the

authenticity of the source by comparing and matching

processes in the cipher domain. Hence, this scheme is

limited only to authentication and cannot be applied for any

additional processing of images. In [16], the segmentation of

encrypted images and edge detection schemes have been

presented using Gaussian filtering and Sobel operators in the

cipher domain. The authors have used Paillier homomorphic

encryption for implementing Gaussian and Sobel filtering.

However, this method uses block-wise computations to

cover the full image, resulting in higher computational costs.

In [17], the authors have used fully homomorphic

encryption to implement image addition and brightness

enhancement in the cipher domain. However, the brightness

enhancement is achieved using the scalar multiplication of

the image matrix, which increases the brightness uniformly

throughout but cannot provide selective brightness control.

Additionally, the HE scheme adopted in this work uses the

addition of small random noise to provide security. This

process prevents multi-depth multiplication. In [18], Craig

Gentry uses Ideal Lattices to implement fully homomorphic

encryption. Here, the basic plaintext space is binary, and to

encrypt integers, they should be converted to their

equivalent binary and then proceed for further processing.

Similarly, after decryption, the process should be reversed.

This process involves a higher computational cost. Also, in

this Gentry method, the key sizes are relatively large.

 In [19], the authors have improved the Gentry method to

reduce the key sizes and also to include the real numbers in

the message (plaintext) space. The proposed method is

called IGHE (Improved Gentry Homomorphic Encryption),

where the key sizes are reduced compared to the Gentry

method. Here, the real numbers are represented in the fixed-

point format. The authors have implemented homomorphic

addition, colour transformation, and scaling. In IGHE, the

encryption and decryption are carried out element-wise, and

hence, the computational cost is higher compared to our HE-

FPMK, where the operations are carried out matrix-wise. In

[20], 2D-DCT and 2D-IDCT operations are securely

outsourced to the cloud. However, additional random

matrices are used for homomorphic encryption that results

in higher computational overhead compared to HE-FPMK.

In [21], the image matrix is converted block-wise into a

frequency domain transform and then encrypted based on

reversible mathematical operations based on the symmetric

key. The decryption process is the inverse of the encryption

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

process and is carried out using the symmetric key. This

method involves a higher computational cost due to the

block-wise conversion from the space domain to the

frequency domain and vice-versa.

In [22], the Paillier Homomorphic Cryptosystem is used

for image encryption pixel-by-pixel. Even though the

homomorphic addition in the Paillier scheme is relatively

less complex, the homomorphic multiplication is highly

complex. Additionally, pixel-wise operations increase the

computational overhead for large-sized images. In [23], the

authors have developed 'Matrix Operation for

Randomization and Encryption (MORE)' to provide privacy

for training the Alex-net convolutional network.

Randomization is provided by augmenting the plaintext

matrix by a random diagonal element. However, the scheme

is block-oriented and hence computationally expensive.

In [24], the author has used Concrete-Numpy Python APIs

to encrypt the image matrix as well as to decrypt it. The

built-in library uses extended TFHE (Torus Fully

Homomorphic Encryption), which is faster compared to

Gentry's FHE scheme. However, this method cannot be used

directly on the float data types.

III. HOMOMORPHIC ENCRYPTION AND DECRYPTION

HE-FPMK uses special matrices, whose elements are

floating-point numbers as keys for encryption and

decryption of image matrices.

A. Matrix Key for Decryption:

Symbol D is used to represent the matrix decryption key.

It is a floating-point matrix of size 𝑚×𝑛 in real field ℝ with

m > n. Thus, D ∈ ℝ
 (𝑚×𝑛)

. Matrix D is generated such that.

 (2)

In (2), D
T
 is the transpose of D. Appendix describes the

generation of this semi-orthogonal matrix D.

B. Matrix keys for encryption

Matrix keys for encryption are generated from the base

matrix, denoted by E, which is obtained from D
T
 as,

 E = D
T
 (3)

The size of E is n×m. From (2) and (3),

 (4)

1) Left Null Space of D

The size of D is (m×n) with (m > n). Hence, D has the left

null space [16]. Let this null space of D be represented by F

as described in the Appendix. Then,

 () (5)

In (5), the size of F is (m‒n)×m. Pre-multiplication of

both sides of (5) by a random matrix * + () gives,

 * + () ()()

= * + () () =

On removing the size indicating subscripts, we get

R{1}*(F*D) = 0. This can be rewritten as,

(R{1}*F)*D = 0 (6)

The size of (R{1}*F) is n×(m‒n) × (m‒n)×m = n×m.

Now, Let matrix E{1} be formed as,

 E{1} = E + R{1}*F (7)

On post multiplying both sides of (7) by D,

 E{1}*D = E*D + R{1}*F*D (8)

From (4), (5), and (8),

E{1}*D =

Here, the size of E{1} is (n×m) which is same as that of

E. In (7), E{1} is obtained by perturbing E by the random

matrix R{1}. Therefore, we denote E{1} as the randomized

version of E. In our proposed scheme HE-FPMK, matrix

E{1} is the encryption key.

C. Multiple Versions of E{1}

In (7), R{1} is an arbitrary random matrix and can have

dissimilar values as R{2}, R{3},…, R{i},… and so on.

Correspondingly, * + can have dissimilar values as

 * + * + , * + * + and so on

as,

 * + * + (9)

In (9), elements of R{i} 's are chosen in the range [0 to

+1] with uniform distribution. This is found to give a good

random spread for E{i} 's. Thus, E{1}, E{2},…, E{i},…

and so on, are different versions of E. Then, post

multiplying both sides of (9) by D gives,

 * + (* +)

 * + (10)

Then, using (4) and (5) in (10) gives,

 * + (11)

From (3), we have D = E
T
. Using this in (11) gives,

 * + (12)

Multiple versions, E{1}, E{2},…, etc., are used for

successive encryptions to prevent Chosen Plaintext Attack

(CPA).

D. Image Matrix Encryption

In HE-FPMK, an image matrix is encrypted using E{i} 's

and the D matrix as the secret keys. The encryption mode

can be a single side or double side, as will be explained in

this section.

1) Single Side Encryption with post multiplication

In Single Side Encryption (SSE), the image matrix is

multiplied by the key matrix on the right (post-

multiplication) or on the left (pre-multiplication). Let matrix

A represent the pixel intensities of the grayscale image to be

encrypted. Let the size of A be k×n. The data type of the

elements of A is uint8, whose range is 0 to 255. The image

matrix A is encrypted to get the cipher matrix C as,

 C = A*E{i} (13)

In (13), E{i} is the i
th

 version of E for some i ∈ Z
+,

 and the

size of E{i} is n×m. Therefore, the size of C is k×m.

The decryption of C is carried out to get matrix B as,

 B = C*D (14)

Here, the size of D is m×n.

2) Correctness of Decryption

Substituting for cipher matrix C from (13) in (14), gives

B = (A*E{i})*D = A*E{i}*D. Since E{i}*D = , matrix

B = A, which is the original plain matrix.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

3) SSE with pre-multiplication:

Here, the size of A is taken as n×k, and matrix C is

obtained as C = E{i}
T
 *A, and the decryption is carried out

as B = D
T
*C. This means B = D

T
*E{i}

T
*A, and since D

T
*

E{i}
T
 = [from the transpose of Eq. (11)], B = A.

 Single-side encryption can be used only for additive or

subtractive homomorphic calculations. It cannot be used for

homomorphic multiplication. Therefore, in HE-FPMK, we

use the double side HE, which enables homomorphic

addition/subtraction and homomorphic multiplication.

B. Double side encryption

Hereafter, the Double side encryption is simply called

Homomorphic Encryption (HE). The encryption of an image

matrix A of size n×n is carried out as,

 C = D*A*E{i} (15)

Here, the sizes of D, A, and E{i}are m×n, n×n, and n×m,

respectively. Therefore, the size of C is m×m. Matrix C is

sent to the Cloud Server (CS) for secured storage and

distribution. The computational complexity of (15) is two

matrix multiplications, each having m*n
2
 floating-point

multiplications. Taking m nearly equal to n, (In this paper, m

is taken equal to n+2), the overall complexity would be of

the order of (2*n
3
).

1) Decryption of C

The end user receives matrix C from the CS and decrypts

the cipher matrix C as,

 B = E*C*D (16)

The decryption key D has been made available to the end

user through a secured channel. Matrix E is the transpose of

D (see Equation (3)), and thus, the decrypter has access to E

and D (but no access to E{i} 's). The correctness of

decryption can be verified by substituting for C from (15) in

(16). Then,

 B = E*(D*A*E{i})*D = E*D*A*E{i}*D (17)

From (4), E*D = and from (9) and E{1}*D =

 . Using these relations in (17), we get B = A, which

verifies the correctness of the decryption formula (16).

C. Homomorphic Addition of Images

Let the two plaintext images be represented by matrices

A1 and A2, of sizes n×n, which are to be added. They are

encrypted as,

 * +

 * +
} ()

C1 and C2 are sent to the CS, which adds C1 and C2 as,

 (19)

C3 is sent to the end user, who decrypts it as,

 (20)

On substituting for C3 from (19) and further substituting

for C1 and C2 from (18), Equation (20) gives,

 (* + * +)

 * + * +

Using (4) and (11) in the above Equation gives

 .

The addition of images is generally used for:

 Insert the time stamp or a text or an icon, etc.

 Camouflage a part of an image to hide the identity.

 Add a background image to the target image.

 Overlay the detected edges of an image onto itself.

D. Homomorphic multiplication

The Homomorphic multiplication takes place in the CS to

get C3 as,

 C3 = C1*C2 (21)

where C1 and C2 are defined in Equation (18).

The size of C3 is (m×m). The decryption of C3 is carried

out by the end user as,

 (22)

On substituting for C3 from (21) and further substituting

for C1 and C2 from (18), Equation (22) gives,

 * + * +

Substituting for from (4), * + and * +

from (11), we have, . Thus, the multiplication

in the cipher domain yields the correct product on

decryption.

IV. APPLICATIONS OF HOMOMORPHIC ENCRYPTION IN

IMAGE PROCESSING

A few applications of HE-FPMK in image processing are

presented in this section to demonstrate its novelty.

A. Homomorphic Calculation of DCT of images

The 2-dimensional DCT (Discrete Cosine Transform) of

an image matrix A of size n×n can be calculated using the

built-in function dct2(A)or using the dct-matrix

dctmtx(n) [25]. Let the dct-matrix of size n×n be denoted

as

 G = dctmtx(n) (23)

Then, the 2D DCT of A, represented by H, is given by

[25] as

 H = G*A*G
T
 (24)

Thus, the calculation 2D DCT is translated into the

process of matrix multiplication, which can be accomplished

using the HE of G and A as follows. Matrix A is encrypted

as,

 C1 = D*A*E{i} (25)

Matrix G is encrypted as,

 C2 = D*G*E = D*G*D
T
 (26)

In (26), E is equivalent to D
T
 as given by (3). Now, in the

cipher domain, C3 is obtained as,

 C3 = C2*C1*C2
T
 (27)

Now, the end user decrypts C3, as usual, to get B3 as,

 B3 = E*C3*D (28)

On substituting for C3 from (27) and further substitution for

C2 and C1 from (26) and (25) yields,

 B3 = E*C2*C1*C2
T
*D

 = E*D*G*E*D*A*E{i}*E
T
*G

T
*D

T
*D (29)

Using (4), (12), and (2) in (33) gives B3 = G*A*G
T,

 which

is the same as H. Similarly, the inverse DCT of A can be

determined using C3 = C2
T
*C1*C2.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

 For large-size image matrices, homomorphic DCT

calculation can be carried out using block-wise processing.

Then, this method is faster as we calculate C2 only once. A

major security advantage of this method is that the CS

cannot access the secret key D even when it knows C2 due

to the product format of C2 as given by (26). Here, no

random matrices are used to hide the secret keys as in [20].

Similar homomorphic encryption can be carried out for

calculating fft2(A) using dftmtx(n) and their

transposes.

B. Weighted Addition of Images

The addition of images with different weights is used in

visible watermarking, a fusion of images, image morphing,

etc. Using HE-FPMK, the weighted addition of images can

be delegated to the cloud server while maintaining image

privacy. Let and be the image matrices to be added

with scalar weights and to get the weighted sum

as,

 (30)

In some special applications, and are fractions in

the range 0 to 1 with constraint so that the

increase in one component is balanced by the corresponding

decrease in the other component. Otherwise, and can

be any floating point weights according to the needs of the

problem. Weighted addition in the cipher domain is carried

out as follows.

Matrices A1 and A2 are encrypted according to (18), as

 * +

 * +
}

Weighted addition is performed in the CS as,

 (31)

Matrix is decrypted by the end user to get as,

 (32)

On substituting for C3 from (31) and further substituting

for C1 and C2 from (18), Equation (32) gives,

 (* + * +)

 * +

 * + (33)

On substituting (4) and (11) in (33), we get,

This means the decrypted matrix. and it is the

weighted addition as required by (31).

Fig. 1. Homomorphic weighted addition of images

 Fig. 2. Effect of different weights on the weighted sum

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

Example 1. Here, a square grid image A2 is superimposed

on an MRI image A1 with weighted addition, as shown in

Fig. 1. Matrices A1 and A2 are expressed in the double

precision format in the range [0, 1] so that the range of

weighted sum is relatively small. (Matlab function

im2double(…)is used to convert the image matrix from

uint8 to double format).

The effect of choosing weights w1 = 0.75 and w2 = 0.25 is

shown in Fig. 1. Here, subplots (c) and (d) show the cipher

images of plain images at subplots (a) and (b), respectively.

The weighted cipher sum C3 is shown in Fig. 1(e), and the

final decrypted weighted sum image is shown in Fig. 1(f).

The effect of different weights on the resulting weighted

sum is shown in Fig. 2. In Fig. 2(c), w1 = 1 and w2 = ‒ 0.75.

Thus, it can be seen that the HE-FPMK can handle weighted

sums with positive as well as negative weights comfortably.

C. Homomorphic Proxy Re-encryption of Images

Homomorphic Proxy Re-encryption (HPRE) is the

procedure where a given ciphertext intended for a user (say

user U) is re-encrypted to enable another user (say user V) to

decrypt it correctly. The HPRE process is designed in such a

way that the re-encrypter itself is incapable of discovering

the plaintext. Also, it cannot access either the encryption

keys or the decryption keys of the end users (user U and

user V). Fig. 3 shows the basic block diagram of a PRE

scheme.

1) Single Side Homomorphic Proxy Re-encryption

Single Side Homomorphic Proxy Re-encryption (SSHPRE)

scheme uses two distinct sets of encryption and decryption

keys for two distinct users. Let the primary user be denoted

as user U whose

cryptographic keys and encryption are same as in section III.

B. Thus, the SSE is carried out as in (13) except that E{i} is

written as EU, for easy writing as,

CU = A*EU (34)

In (34), A is the plain image matrix of size k×n to be

encrypted, EU of size n×m is the encryption key for user U,

and CU of size k×m is the encrypted matrix with respect to

user U. The encrypted matrix CU is sent to the CS which

also houses the proxy re-encrypter as shown in Figure 3.

The decryption of CU is carried out as usual, as,

 BU = CU*DU (35)

where DU of size m×n is the decryption key matrix of user U

with the property,

 EU*DU = In×n (36)

From (34), (35), and (36), it can be verified that BU = A.

 Now, a second set of distinct cryptographic keys is

generated for the secondary user V, similar to as explained

in section III. B. Let EV generically represent the encryption

key, and the decryption key of user V be DV with properties

similar to (36),

 EV*DV = In×n (37)

The Proxy Re-encrypter unit within CS provides HPRE as

follows. Initially, the Key Generation Center (KGC) of the

data owner generates all the cryptographic keys: EU, DU, EV,

and DV. Keys DU and DV are sent through secured channels

to user U and user V, respectively.

2) Re-encryption key

In SSHPRE, the proxy re-encryption key, denoted by EUV is

generated by the KGC, and it is given by,

 EUV = DU*EV (38)

Here, the sizes of EUV, DU, and EV are m×m, m×n, and n×m,

respectively. The KGC sends EUV to the proxy re-encrypter

at the beginning of the session. At the proxy re-encrypter,

the presence of

EUV does not reveal any information about DU and EV. Thus,

the secrecy of the keys is not breached at the proxy re-

encrypter.

3) Re-encryption operation

During the HPRE operation, the proxy Re-encrypter

receives the present cipher matrix CU (intended for user U)

and translates CU to CV (suitable for user V) using EUV as,

Fig. 3. Basic Proxy Re-encryption Scheme

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

 CV = CU*EUV (39)

This CV with size k×m is received by user V, and he/she

decrypts CV as,

 BV = CV*DV (40)

4) Correctness of SSHPRE

On substituting for CV from (39) in (40), we have,

 BV = CU*EUV*DV (41)

On further substituting for CU from (34) and for EUV from

(38), we have,

 BV = A*EU*DU*EV*DV (42)

Applying the property EU*DU = In×n = EV*DV, we get BV =

A. This proves the correctness of SSHPRE. When the proxy

re-encrypter serves multiple users, the CS can provide one-

to-many secure data distribution. HPRE can also be

designed using the double side HE with higher security.

V. PERFORMANCE ANALYSIS

In HE-FPMK, homomorphic encryption and decryption are

carried out using floating point (double precision) matrix

keys. The

performance metrics of these operations are discussed in this

section.

A. Histogram analysis

 The histogram of an image gives the distribution of

pixels based on their intensity levels. In purely shuffle-based

image encryption schemes, the original intensity levels are

not changed while their locations are shuffled.

Therefore, the histogram of the encrypted image remains

the same as that of the original one. In such a situation, the

histogram

of the encrypted image can be used to identify the original

image. Hence, apart from shuffling, image diffusion is used

to completely alter the histogram for full privacy

preservation. Thus, additional processing is involved in

shuffle-based methods. On the other hand,

in HE-FPMK, the basic encryption operation itself changes

all the pixel intensities, and the histogram of the encrypted

image is entirely different from the original one. Fig. 4

shows the histograms of the original image and that of the

encrypted image.

In Fig. 4, the bell-shaped (Gaussian) distribution is due to

the special characteristics of the encryption keys which are

derived from the orthogonal matrix Q (see Appendix)

obtained through the QR decomposition. From Figure 4(b)

and 4(d), we see that the histograms of the original and the

encrypted image are entirely dissimilar.

B. Security of HE-FPMK

Some of the security aspects of HE-FPMK are discussed

in this section. Brute force guessing of secret keys is almost

impossible as each element of a secret key is a 64-bit

floating point number, and the probability of correctly

guessing the secret key is 2
‒64

.

Additionally, the size of each key is m×n. Hence, the overall

probability of correct guessing is 2
‒64*m*n,

 which is

extremely low.

1) Chosen Plaintext Attack

In HE-FPMK, successive encryptions use randomized

encryption keys, namely E{i} 's. Therefore, the knowledge

of cipher matrices cannot reveal the encryption keys.

Chosen Ciphertext Attack

In HE-FPMK, the Chosen Ciphertext Attack (CCA) can

be prevented using the digital signature scheme that

authenticates the cipher matrix as well as its source.

Prevention of CCA will be implemented in the next version

of HE-FPMK.

C. Computational cost of HE-FPMK

The computational cost of encryption and decryption in HE-

FPMK are measured in terms of 'bit multiplications.' The

cost of the addition is ignored.

1) Computational cost of encryption

 In HE-FPMK, the image matrix is encrypted as,

 C = D*A*E{i}

Here, the sizes of D, A, and E{i}are m×n, n×n, and n×m,

respectively, and the multiplication involves m*n
2

Floating Point (FP) multiplications. Then, () * +
requires m

2
*n multiplications. The total number of

multiplications is m*n
2
+ m

2
*n. Since m = n+2 𝑛 we have

2*n
3
 FP multiplications. Taking 64 bits for a double

precision FP number, the total number of 'bit

multiplications.' incurred for encryption, represented by

TBME is,

 TBME = 2*n
3
*64 = 128*n

3
 (43)

2) Computational cost of decryption: The decryption

process is given by (Eq. (16)) as,

B = E*C*D

Here, the sizes of E, C, and D are n×m, m×m, and m×n,

respectively. Therefore, the total number of floating point

multiplications in Zp, is n*m
2
+ m

2
*n 2*n

3
. Similar to as

in encryption, the total number of 'bit multiplications.' Fig. 4. Histograms of the original and the encrypted

image

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

incurred for decryption is same as that for encryption and is

represented by TBMD as,

 TBMD = 2*n
3
*64 = 128*n

3

Thus, TMBD is proportional to the third power of n.

D. Comparison of the runtime of HE-FPMK with other

methods

Here, the runtime of HE-FPMK encryption is compared

with those of the Gentry (GHV) scheme [18] and Yang's

IGHE [19]. In this simulation, the grayscale image size is

varied from 32x32 to 512x512, where both the height and

width are incremented by 32 in each step. The runtimes of

HE-FPMK, IGHE, and Gentry methods are experimentally

determined, and the results are plotted as shown in Fig. 5.

In Fig. 5, the execution times obtained are machine-

dependent, and hence, the plots represent only the relative

values. From the plots in Fig. 5, it can be seen that the HE-

FPMK method has the lowest execution time compared to

the other two methods.

E. Ciphertext Expansion Ratio

 Ciphertext Expansion Ratio (CER) is the ratio of the

ciphertext matrix size to that of its plaintext matrix. A higher

CER incurs a higher computational and communication cost.

A smaller CER ensures better performance. CER is defined

as,

 𝑜 𝑝 𝑚 𝑛

 𝑜 𝑛 𝑚 𝑛
 ()

In HE-FPMK, as per Equation (15), the size of the cipher

matrix C is (m×m), and that of plaintext matrix A is (n×n).

Here, the elements of C are of size 64 bits (type double),

and those of A are 8 bits. Therefore, for the double side

encryption, from (46), it can be seen that

 ()
𝑚 𝑚

𝑛 𝑛

Since m = (n+2), as an approximation, m can be taken

equal to n, and then the CER(bytes) = 64/8 = 8. In terms of

the number of matrix elements, CER(no. of elements) is,

𝑚 𝑚

𝑛 𝑛

(𝑛) (𝑛)

𝑛 𝑛

 The plain matrix size (in bytes), the sizes of the

Encryption keys, and the cipher matrices for HE-FPMK,

IGHE, and the Gentry method, along with the corresponding

ratios, are shown in Table 1. In HE-FPMK, the Encryption

key and the cipher matrix are in float64, whereas in IGHE

these values are in bytes. Hence, the sizes and ratios are

higher compared to IGHE. In the Gentry method, the basic

Fig. 5. Comparison of execution times for homomorphic encryption of image matrices

 Gentry

IGHE

HE-FPMK

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

unit of plaintext is a bit. Therefore, the elements of the plain

matrix are converted from bytes to bits and vice-versa

during decryption. Hence, in the Gentry method, an 8-fold

increase occurs in the sizes of the key and cipher matrix.

TABLE I

Sizes of keys, cipher matrices, and the ratios

 HE-FPMK IGHE Gentry

Plain

Matrix Size

n*n n*n n*n

Encryption

Key Size

n*m*64 n*n 64*n*n

Cipher

Matrix Size
m*m*64 n*n 64*n*n

Keyspace

Expansion

Ratio

 (
𝑚

𝑛
)

1 64

Cipher matrix

Expansion

Ratio

 (
𝑚 𝑚

𝑛 𝑛
)

1 64

VI. CONCLUSION

A new method of homomorphic encryption for floating

point data is presented using matrix keys. These matrix keys

can encrypt image matrices directly without the need for

element-by-element encryption. The proposed method uses

randomized encryption to prevent Chosen Plaintext Attack.

The floating point homomorphic encryption is useful for

weighted addition and the calculation of DCT and FFT of

images, including their inverses. Homomorphic proxy re-

encryption is another new contribution of this work. Our

proposed method can be extended to HDR (High Dynamic

Range) images.

APPENDIX

In HE-FPMK, the decryption matrix key D is generated

using the QR decomposition of a random square matrix S of

size m×m. In HE-FPKM, matrix S is obtained using the

Matlab function randi(…)as,

 S = randi([‒10,10],m) (A1)

Here, the range (-10 to +10) is found to give good results

during homomorphic encryption/decryption. Then, the QR

decomposition of S is obtained using the Matlab function

qr(…) as,

 (Q, UT) = qr(S) (A2)

In (A2), Q is the m×m orthogonal matrix, and UT is the

m×m upper triangular matrix. Since Q is orthogonal,

 (A3)

Here, the elements of Q are floating point numbers. The

matrices Q
T

and Q are partitioned into sub-matrices as,

 [

 ()

] [()] (A4)

In (A4) n is taken as n = (m‒2) or m = n+2. From (A4), it

can be seen that,

 (A5)

To match the partitions of Q
T

and Q, the matrix is

also partitioned as,

 [

 ()

 () () (

] (A6)

Substituting (A4) and (A6) in (A3) leads to,

 [

—
 ()

] [()]

 [

 ()

 () () (

] (A7)

From (A7), we have,

 * (A8)

 () () (A9)

From (A8) and (A5), it can be seen that,

 * (A10)

On removing the dimension subscripts, D
T
*D = I. Now,

the property (A9) means, () is the left-null space of

 . On removing the dimension subscripts, F*D = 0.

REFERENCES

[1] R. Kui, C. Wang, and Q. Wang, "Security challenges for the public

cloud," IEEE Internet Computing, 16(1), 2012, pp. 69-73.

[2] H. Ghanbari-Ghalehjoughi, M. Eslami, S. Ahmadi-Kandjani, M.

Ghanbari-Ghalehjoughi, Z. Yu, "Multiple layer encryption and

steganography via multi-channel ghost imaging," Optics and Lasers

in Engineering, vol. 134, 2020, 106227, ISSN 0143-8166, pp. 1-12.

[3] G. K. Mahato and S. K. Chakraborty, "A comparative review on

homomorphic encryption for cloud security," IETE Journal of

Research, 2021, pp. 1-10.

[4] S. Kumar, B. K. Singh, Akshita, S. Pundir, S. Batra and R. Joshi, "A

survey on symmetric and asymmetric key based image encryption,"

2nd International Conference on Data, Engineering and Applications

(IDEA), 2020, pp. 1-5.

[5] N. Dowlin, et al., "Manual for using homomorphic encryption for

bioinformatics," in Proceedings of the IEEE, vol. 105, no. 3, pp. 552-

567, March 2017.

[6] W. Fu, R. Lin, D. Inge, "Fully Homomorphic Image Processing,"

CoRR abs/1810.03249, 2018, pp. 1-12.

[7] Q. Wang, et al., "Catch me in the dark: Effective privacy-preserving

outsourcing of feature extractions over image data," IEEE INFOCOM

2016 - The 35th Annual IEEE International Conference on Computer

Communications, 2016, pp. 1-9.

[8] N. Dowlin, et al., "CryptoNets: applying neural networks to encrypted

data with high throughput and accuracy," In Proceedings of the 33rd

International Conference on International Conference on Machine

Learning - vol. 48 (ICML'16). JMLR.org, pp. 201–210. 2016.

[9] T. Shortell and S. Ali. "Secure Convolutional Neural Network using

FHE." ArXiv abs/1808.03819, 2018, pp. 1-14.

[10] L. Jiang, C. Xu, X. Wang, B. Luo, and H. Wang, "Secure outsourcing

SIFT: Efficient and Privacy-Preserving Image Feature Extraction in

the Encrypted Domain," in IEEE Transactions on Dependable and

Secure Computing, vol. 17, no. 1, pp. 179-193, 2020.

[11] C. Lupaşcu, C. Pleşca, and M. Togan, "Privacy-Preserving

Morphological Operations for Digital Images," 2020 13th

International Conference on Communications (COMM), pp. 183-188.

2020.

[12] M. Jiang and H. Yang, "Secure Outsourcing Algorithm of BTC

Feature Extraction in Cloud Computing," in IEEE Access, vol. 8, pp.

106958-106967, 2020.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

[13] A.M. Vengadapurvaja, G. Nisha, R. Aarthy, N. Sasikaladevi, "An

Efficient Homomorphic Medical Image Encryption Algorithm For

Cloud Storage Security," Procedia Computer Science, vol. 115, pp.

643-650, 2017.

[14] L. Li, A. AbdEl-Latif, and X. Niu, "Elliptic curve EIGamal based

homomorphic image encryption scheme for sharing secret images,"

Signal Processing. Vol. 92, pp. 1069-1078. 2012.

[15] G. Pradel and C. Mitchell, "Privacy-Preserving Biometric Matching

Using Homomorphic Encryption," 2021 IEEE 20th International

Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), pp. 494-505, 2021.

[16] D. Chen, W. Chen, J. Chen, P. Zheng, and J. Huang, "Edge Detection

and Image Segmentation on Encrypted Image with Homomorphic

Encryption and Garbled Circuit," 2018 IEEE International

Conference on Multimedia and Expo (ICME), pp. 1-6, 2018.

[17] R. Challa, G. VijayaKumari and B. Sunny, "Secure Image processing

using LWE based Homomorphic encryption," 2015 IEEE

International Conference on Electrical, Computer and

Communication Technologies (ICECCT), pp. 1-6, 2015.

[18] C. Gentry, S. Halevi, and V. Vaikuntanathan, "A Simple BGN-Type

Cryptosystem from LWE," In: Gilbert, H. (eds) Advances in

Cryptology – EUROCRYPT 2010. Lecture Notes in Computer

Science, vol 6110. Springer, Berlin, Heidelberg. pp. 1-15, 2010.

[19] P. Yang, X. Gui, J. An, and F. Tian, "An Efficient Secret Key

Homomorphic Encryption Used in Image Processing Service,"

Security and Communication Networks. pp. 1-11, 2017.

[20] D. An, S. Zhang, J. Lu, and Y. Li, "Efficient and Privacy-Preserving

Outsourcing of 2D-DCT and 2D-IDCT," Wireless Communications

and Mobile Computing. pp. 1-9, 2020.

[21] A. Vishnoi, A. Aggarwal, A. Prasad, M. Prateek, and S. Aggarwal,

"Image Encryption Using Homomorphic Transform," Third

International Conference on Intelligent Computing Instrumentation

and Control Technologies (ICICICT), Kannur, India, pp.1455-1459,

2022.

[22] Z. Muneef, H. bahjat, A. Abdulhoseen, "Image Encryption Paillier

Homomorphic Cryptosystem," Iraqi Journal Of Computers,

Communications, Control And Systems Engineering, vol. 21, No. 4,

pp. 29-36. 2021.

[23] R. Hari Kishore, A. Chandra Sekhar, P. Patro, P. Chaganti, "A novel

homomorphic and matrix operation for randomization encryption

schemes for privacy in cloud computing architecture," Journal of

Theoretical and Applied Information Technology, vol.101. No. 3. pp.

1038-1053, 2023.

[24] R. Bredehoft, “Encrypted Image Filtering Using Homomorphic

Encryption, " Blog /Tutorial, Concrete ML. February 23, 2023.https:

//www.zama.ai/post/encrypted-image-filtering-using-homomorphic-

encryption (Accessed on 21-Jun-2023)

[25] Discrete cosine transform matrix (dctmtx). https://in.mathworks.

com/help/images/ref/dctmtx.html# bvighg3. (Accessed on 21-Jun-

2023).

Prabhavathi Krishnegowda (Corresponding author) is a research scholar.

Anandaraju M Boregowda is a Professor.

In the Department of ECE, BGS Institute of Technology, Adichunchanagiri

University, B. G. Nagara, Karnataka, India.

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

__

