
  
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Abstract— Existing Fully Homomorphic Encryption 

schemes mainly operate on integer data in the finite field. 

However, in many real-life applications, the data is in floating-

point number format, and the homomorphic encryption of 

floating-point information is challenging. This paper presents a 

new homomorphic encryption method for matrices whose 

elements are floating-point numbers. The proposed 

homomorphic encryption of Floating-Point Data Matrices is 

applied for secure image processing where the loss of accuracy 

due to the finite length of the floating-point format 

representation is insignificant. Here, the encryption/decryption 

keys are also in floating-point format. New techniques of 

homomorphic weighted addition, multiplication, and DCT 

calculation are presented. Homomorphic proxy re-encryption 

is the novelty of the proposed method. 

Keywords— Double side encryption, Fully Homomorphic 

encryption, Homomorphic DCT, Homomorphic proxy re-

encryption, Matrix keys,  Weighted addition. 

 

I. INTRODUCTION 

MAGES are a visual depiction of relevant information for 

easy rcognition. Billions of images are produced and 

distributed worldwide in arts & entertainment, E-commerce, 

science & education, geographical & tourism maps, health 

care & diagnostic imaging services, etc. Invariably, these 

images are saved in public or dedicated Cloud Servers (CS), 

providing efficient storage and distribution at a low cost. 

When medical images carrying sensitive information are 

stored in Cloud Servers, security and confidentiality are the 

image owner's primary responsibility [1]. The conventional 

solution is to use image encryption or steganography [2]. 

Image encryption is tailor-made for homomorphic 

operations. Therefore, we use image encryption to achieve 

the desired privacy and security when the images are stored 

in the Cloud Server.     

   Homomorphic Encryption (HE) allows the algebraic and 

arithmetic computations to be carried out over the encrypted 

data in the CS without decryption and guarantees full  
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accuracy on the decryption of the results from the cipher 

domain [3]. Thus, with HE, the processing unit at the CS 

can do computations without any access to the original data. 

Therefore, the data owner can delegate privacy-preserving 

Image Processing operations to the CS, which can handle 

the heavy computational load.  

The HE of two scalar plaintext numbers x1 and x2 is 

governed by the defining rule as follows. Let enc(x1) and 

enc(x2) be the encrypted ciphertext numbers of x1 and x2, 

respectively. Then,  

             enc(x1)  enc(x2) = enc(x1  x2) 

Here,  stands for the algebraic operations: + (addition), ‒ 

(subtraction), * (multiplication), and so on.  

We can extend the homomorphic encryption and 

operations to matrices where the operands are matrices, and 

the encryption is formulated such that, 

E(X1) ϕ E(X2) = E(X1 ϕ X2)                     (1) 

Here, ϕ stands for the matrix operation: + (addition), ‒ 

(subtraction), * (multiplication), and .* (element-wise 

multiplication), etc. The encryption function E(…) that 

satisfies (1) is the HE for matrices. Since matrices represent 

digital images, HE of matrices leads to Homomorphic Image 

Processing (HIP).  

The principal objective of the proposed scheme is to: 

 Develop a novel Matrix Encryption scheme for 

the HIP using floating-point matrix keys.  

The proposed method is denoted by HE-FPMK 

(Homomorphic Encryption using floating-point matrix keys)     

The remaining part of the paper is organized as follows. 

Section II gives a brief review of the related work. Section 

III explains the basic Homomorphic Encryption and 

Decryption. In section IV, applications of HE-FPMK, in 

image processing are presented. In section V, the 

performance metrics of HE_FPMK and comparison with 

other methods are discussed. Section VI concludes the 

paper. 

II. RELATED WORK 

    We have several well-established techniques for 

encrypting digital images [4] to achieve the required level of 

security and adequate privacy. However, we consider those 

schemes implementing efficient homomorphic encryption 

suitable for image processing in the cipher domain. In [5-6], 

the authors have used SEAL (Simple Encrypted Arithmetic 

Library) developed by Microsoft Research for the 
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Homomorphic Encryption (HE) of images. Logistic 

regression is implemented in [5], and Homomorphic image 

resizing is carried out using bilinear and bicubic 

interpolations. Image compression/decompression 

operations are carried out using DCT and inverse DCT 

transformations in the cipher domain [6]. However, SEAL 

uses well-known BV and CKKS schemes where noise 

components are added, which limits multilevel HE 

operations. In [7], HE is deployed for the scale-invariant 

feature transform (SIFT) of images. The SIFT technique can 

search and match the images.  

 Here, image privacy is achieved by splitting it into two 

shares and storing them in two separate Cloud Servers for 

SIFT implementation. Afterward, the partial results are 

combined to reconstruct the final result. Therefore, the 

proposed method has higher communication overhead and 

increased computational complexity. In [8], the authors have 

created CryptoNets, which is trained using encrypted data. 

Queries can be sent, and the response from the CryptoNet 

can be received in encrypted form. Therefore, the CS that 

operates the CryptoNet cannot gain any information about 

the original data. However, the proposed method uses HE 

based on noise vectors and dual moduli, which results in 

reduced throughput due to the increased computational 

overhead when images are used as data inputs.  

 In [9], the authors have designed a Convolutional Neural 

Network (CNN) classifier that works in the cipher domain 

using Fully Homomorphic Encryption. The classification 

activity is outsourced to a high-power CS. The real numbers 

are represented in fixed point formats to implement 

homomorphic operations. Hence, the proposed method has 

higher computational complexity, which is the main 

disadvantage when working with large images. In [10], the 

Scale Invariant Feature Transform (SIFT) of images has 

been implemented using homomorphic encryption, which is 

carried out based on NTRU (N
th

-degree Truncated 

polynomial Ring Units). NTRU encryption supports easy 

scale-up so that the large-sized images can be processed 

efficiently in the cipher domain. The proposed method uses 

SIFT coefficients for image matching. However, the 

inaccuracy of homomorphic division is reflected in the 

calculated SIFT coefficients, and the overall error is 

substantially higher compared to SIFT operation in the 

plaintext domain. In [11], morphological transformations 

like dilation, erosion, opening, etc., are carried out on the 

encrypted images using homomorphic multiplication 

implemented in the binary field. Here, the authors have used 

monoid algebra that is susceptible to CPA (chosen plaintext 

attack) and CCA (chosen ciphertext attack).  

  In [12], the authors have securely outsourced the BTC 

(Block Truncation Coding) of images to the CS. 

Homomorphic BTC is accomplished after encrypting the 

image using block permutation and diffusion, which do not 

modify the BTC parameters. Therefore, image compression 

via BTC is carried out successfully in the cipher domain. 

However, image compression using BTC suffers substantial 

information loss and is not acceptable for fine-grained 

images where sensitive features are embedded, like medical 

images. In [13], a symmetric encryption/decryption scheme 

using two-stage modular operations has been presented. 

Here, the image matrices are encrypted/decrypted element 

by element, which increases the time complexity, and the 

consequent computational cost quadratically with respect to 

the size of the image.  

In [14], Elliptic Curve Cryptography (ECC) is used to 

provide homomorphic addition of images. The basic 

principle of the Elgamal method is adopted to exchange 

cryptographic data. The major drawback of this scheme is 

the lack of homomorphic multiplication, and hence its 

applicability is restricted. Another disadvantage of this 

method is increased computational complexity due to ECC, 

which is not favourable for handling large-sized image data.  

 In [15], the authors have used a fully homomorphic 

encryption scheme for remote authentication using digital 

signatures based on biometric images like fingerprints, iris, 

faces, and so on. In the proposed scheme, the encrypted 

biometric images are used for the verification of the 

authenticity of the source by comparing and matching 

processes in the cipher domain. Hence, this scheme is 

limited only to authentication and cannot be applied for any 

additional processing of images. In [16], the segmentation of 

encrypted images and edge detection schemes have been 

presented using Gaussian filtering and Sobel operators in the 

cipher domain. The authors have used Paillier homomorphic 

encryption for implementing Gaussian and Sobel filtering. 

However, this method uses block-wise computations to 

cover the full image, resulting in higher computational costs. 

In [17], the authors have used fully homomorphic 

encryption to implement image addition and brightness 

enhancement in the cipher domain. However, the brightness 

enhancement is achieved using the scalar multiplication of 

the image matrix, which increases the brightness uniformly 

throughout but cannot provide selective brightness control. 

Additionally, the HE scheme adopted in this work uses the 

addition of small random noise to provide security. This 

process prevents multi-depth multiplication. In [18], Craig 

Gentry uses Ideal Lattices to implement fully homomorphic 

encryption. Here, the basic plaintext space is binary, and to 

encrypt integers, they should be converted to their 

equivalent binary and then proceed for further processing. 

Similarly, after decryption, the process should be reversed. 

This process involves a higher computational cost. Also, in 

this Gentry method, the key sizes are relatively large.  

  In [19], the authors have improved the Gentry method to 

reduce the key sizes and also to include the real numbers in 

the message (plaintext) space. The proposed method is 

called IGHE (Improved Gentry Homomorphic Encryption), 

where the key sizes are reduced compared to the Gentry 

method. Here, the real numbers are represented in the fixed-

point format. The authors have implemented homomorphic 

addition, colour transformation, and scaling. In IGHE, the 

encryption and decryption are carried out element-wise, and 

hence, the computational cost is higher compared to our HE-

FPMK, where the operations are carried out matrix-wise. In 

[20], 2D-DCT and 2D-IDCT operations are securely 

outsourced to the cloud. However, additional random 

matrices are used for homomorphic encryption that results 

in higher computational overhead compared to HE-FPMK. 

In [21], the image matrix is converted block-wise into a 

frequency domain transform and then encrypted based on 

reversible mathematical operations based on the symmetric 

key. The decryption process is the inverse of the encryption 
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process and is carried out using the symmetric key. This 

method involves a higher computational cost due to the 

block-wise conversion from the space domain to the 

frequency domain and vice-versa.  

In [22], the Paillier Homomorphic Cryptosystem is used 

for image encryption pixel-by-pixel. Even though the 

homomorphic addition in the Paillier scheme is relatively 

less complex, the homomorphic multiplication is highly 

complex. Additionally, pixel-wise operations increase the 

computational overhead for large-sized images. In [23], the 

authors have developed 'Matrix Operation for 

Randomization and Encryption (MORE)' to provide privacy 

for training the Alex-net convolutional network. 

Randomization is provided by augmenting the plaintext 

matrix by a random diagonal element. However, the scheme 

is block-oriented and hence computationally expensive.  

In [24], the author has used Concrete-Numpy Python APIs 

to encrypt the image matrix as well as to decrypt it. The 

built-in library uses extended TFHE (Torus Fully 

Homomorphic Encryption), which is faster compared to 

Gentry's FHE scheme. However, this method cannot be used 

directly on the float data types.    

III. HOMOMORPHIC ENCRYPTION AND DECRYPTION 

HE-FPMK uses special matrices, whose elements are 

floating-point numbers as keys for encryption and 

decryption of image matrices.  

A.   Matrix Key for Decryption:   

Symbol D is used to represent the matrix decryption key. 

It is a floating-point matrix of size 𝑚×𝑛 in real field ℝ with 

m > n. Thus, D ∈ ℝ
 (𝑚×𝑛)

. Matrix D is generated such that. 

                                               (2) 

In (2), D
T
 is the transpose of D. Appendix describes the 

generation of this semi-orthogonal matrix D.  

B.   Matrix keys for encryption 

Matrix keys for encryption are generated from the base 

matrix, denoted by E, which is obtained from D
T
 as, 

                   E = D
T
                                               (3) 

The size of E is n×m. From (2) and (3), 

                                                                       (4)     

1) Left Null Space of D 

The size of D is (m×n) with (m > n). Hence, D has the left 

null space [16]. Let this null space of D be represented by F 

as described in the Appendix. Then,   

     (   )                                 (5) 

In (5), the size of F is (m‒n)×m. Pre-multiplication of 

both sides of (5) by a random matrix  * +  (   ) gives,  

 * +  (   )  (   )(   )    

=  * +  (   )   (   )  =      

On removing the size indicating subscripts, we get 

R{1}*(F*D) = 0. This can be rewritten as, 

(R{1}*F)*D = 0                               (6) 

The size of (R{1}*F) is n×(m‒n) × (m‒n)×m = n×m. 

Now, Let matrix E{1} be formed as, 

                          E{1} = E + R{1}*F                         (7) 

On post multiplying both sides of (7) by D,  

                        E{1}*D = E*D + R{1}*F*D                 (8) 

From (4), (5), and (8), 

E{1}*D =      

Here, the size of E{1} is (n×m) which is same as that of 

E. In (7), E{1} is obtained by perturbing E by the random 

matrix R{1}. Therefore, we denote E{1} as the randomized 

version of E. In our proposed scheme HE-FPMK, matrix 

E{1} is the encryption key.                                                      

C.   Multiple Versions of E{1} 

In (7), R{1}  is an arbitrary random matrix and can have 

dissimilar values as R{2}, R{3},…, R{i},… and so on. 

Correspondingly,    * + can have dissimilar values as 

 * +     * +   ,       * +     * +      and so on 

as, 

 * +     * +                             (9) 

In (9), elements of R{i} 's are chosen in the range [0 to 

+1] with uniform distribution. This is found to give a good 

random spread for E{i} 's. Thus, E{1}, E{2},…, E{i},… 

and so on, are different versions of E. Then, post 

multiplying both sides of (9) by D gives,   

                * +    (   * +   )    

          * +                                (10) 

Then, using (4) and (5) in (10) gives,   

                                   * +                                  (11) 

From (3), we have D = E
T
. Using this in (11) gives, 

                                 * +                                   (12) 

Multiple versions, E{1}, E{2},…, etc., are used for 

successive encryptions to prevent Chosen Plaintext Attack 

(CPA).   

D.   Image Matrix Encryption 

In HE-FPMK, an image matrix is encrypted using E{i} 's 

and the D matrix as the secret keys. The encryption mode 

can be a single side or double side, as will be explained in 

this section.  

1)    Single Side Encryption with post multiplication 

In Single Side Encryption (SSE), the image matrix is 

multiplied by the key matrix on the right (post-

multiplication) or on the left (pre-multiplication). Let matrix 

A represent the pixel intensities of the grayscale image to be 

encrypted. Let the size of A be k×n. The data type of the 

elements of A is uint8, whose range is 0 to 255. The image 

matrix A is encrypted to get the cipher matrix C as, 

                                  C = A*E{i}                                 (13) 

In (13), E{i} is the i
th

 version of E for some i ∈ Z
+,

 and the 

size of E{i} is n×m. Therefore, the size of C is k×m. 

The decryption of C is carried out to get matrix B as, 

                                 B = C*D                                       (14)   

Here, the size of D is m×n. 

2)    Correctness of Decryption 

Substituting for cipher matrix C from (13) in (14), gives 

B = (A*E{i})*D = A*E{i}*D. Since E{i}*D =     , matrix 

B = A, which is the original plain matrix.  
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3)    SSE with pre-multiplication:  

Here, the size of A is taken as n×k, and matrix C is 

obtained as C = E{i}
T
 *A, and the decryption is carried out 

as  B = D
T
*C. This means B = D

T
*E{i}

T
*A, and since D

T
* 

E{i}
T
 =      [from the transpose of  Eq. (11)], B = A.   

   Single-side encryption can be used only for additive or 

subtractive homomorphic calculations. It cannot be used for 

homomorphic multiplication. Therefore, in HE-FPMK, we 

use the double side HE, which enables homomorphic 

addition/subtraction and homomorphic multiplication. 

B. Double side encryption 

Hereafter, the Double side encryption is simply called 

Homomorphic Encryption (HE). The encryption of an image 

matrix A of size n×n is carried out as, 

                           C = D*A*E{i}                               (15) 

Here, the sizes of D, A, and E{i}are m×n, n×n, and n×m, 

respectively. Therefore, the size of C is m×m. Matrix C is 

sent to the Cloud Server (CS) for secured storage and 

distribution. The computational complexity of (15) is two 

matrix multiplications, each having m*n
2
 floating-point 

multiplications. Taking m nearly equal to n, (In this paper, m 

is taken equal to n+2), the overall complexity would be of 

the order of (2*n
3
). 

1)   Decryption of C 

The end user receives matrix C from the CS and decrypts 

the cipher matrix C as, 

                    B = E*C*D                                     (16) 

The decryption key D has been made available to the end 

user through a secured channel. Matrix E is the transpose of 

D (see Equation (3)), and thus, the decrypter has access to E 

and D (but no access to E{i} 's). The correctness of 

decryption can be verified by substituting for C from (15) in 

(16). Then,  

          B = E*(D*A*E{i})*D = E*D*A*E{i}*D        (17) 

From (4),  E*D =       and from (9) and  E{1}*D = 

    . Using these relations in (17), we get B = A, which 

verifies the correctness of the decryption formula (16).     

C. Homomorphic Addition of Images 

Let the two plaintext images be represented by matrices 

A1 and A2, of sizes n×n,  which are to be added. They are 

encrypted as,  

         * + 

         * +
}                                 (  ) 

C1 and C2 are sent to the CS, which adds C1 and C2 as, 

                                                                     (19) 

C3 is sent to the end user, who decrypts it as, 

                                                               (20)     

On substituting for C3 from (19) and further substituting 

for C1 and C2 from (18), Equation (20) gives, 

      (      * +        * +)    

                 * +            * +        

Using (4) and (11) in the above Equation gives 

         .  

The addition of images is generally used for: 

 Insert the time stamp or a text or an icon, etc. 

 Camouflage a part of an image to hide the identity. 

 Add a background image to the target image.   

 Overlay the detected edges of an image onto itself. 

D. Homomorphic multiplication 

The Homomorphic multiplication takes place in the CS to 

get C3 as,  

                               C3 = C1*C2                                     (21) 

where C1 and C2 are defined in Equation (18). 

The size of C3 is (m×m). The decryption of C3 is carried 

out by the end user as, 

                                                                    (22) 

On substituting for C3 from (21) and further substituting 

for C1 and C2 from (18), Equation (22) gives,  

                          * +        * +    

Substituting for     from (4),   * +    and  * +    

from (11), we have,         . Thus, the multiplication 

in the cipher domain yields the correct product on 

decryption. 

IV. APPLICATIONS OF HOMOMORPHIC ENCRYPTION IN 

IMAGE PROCESSING 

A few applications of HE-FPMK in image processing are 

presented in this section to demonstrate its novelty. 

A. Homomorphic Calculation of DCT of images 

The 2-dimensional DCT (Discrete Cosine Transform) of 

an image matrix A of size n×n can be calculated using the 

built-in function dct2(A)or using the dct-matrix 

dctmtx(n) [25]. Let the dct-matrix of size n×n be denoted 

as 

                              G = dctmtx(n)                         (23) 

Then, the 2D DCT of A, represented by H,  is given by 

[25] as          

                                H = G*A*G
T
                                 (24) 

Thus, the calculation 2D DCT is translated into the 

process of matrix multiplication, which can be accomplished 

using the HE of G and A as follows. Matrix A is encrypted 

as, 

                               C1 = D*A*E{i}                              (25) 

Matrix G is encrypted as,          

                C2 = D*G*E = D*G*D
T
                 (26) 

In (26), E is equivalent to D
T
 as given by (3). Now, in the 

cipher domain, C3 is obtained as,          

                               C3 = C2*C1*C2
T
                             (27)   

Now, the end user decrypts C3, as usual, to get B3 as, 

                                 B3 = E*C3*D                               (28) 

On substituting for C3 from (27) and further substitution for 

C2 and C1 from (26) and (25) yields, 

   B3 = E*C2*C1*C2
T
*D  

    = E*D*G*E*D*A*E{i}*E
T
*G

T
*D

T
*D                (29) 

Using (4), (12), and (2) in (33) gives B3 = G*A*G
T,

 which 

is the same as H. Similarly, the inverse DCT of A can be 

determined using C3 = C2
T
*C1*C2. 
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    For large-size image matrices, homomorphic DCT 

calculation can be carried out using block-wise processing. 

Then, this method is faster as we calculate C2 only once.  A 

major security advantage of this method is that the CS 

cannot access the secret key D even when it knows C2 due 

to the product format of C2 as given by (26). Here, no 

random matrices are used to hide the secret keys as in [20].  

Similar homomorphic encryption can be carried out for 

calculating fft2(A) using dftmtx(n) and their 

transposes. 

B. Weighted Addition of Images 

The addition of images with different weights is used in 

visible watermarking, a fusion of images, image morphing, 

etc. Using HE-FPMK, the weighted addition of images can 

be delegated to the cloud server while maintaining image 

privacy. Let    and    be the image matrices to be added 

with scalar weights    and    to get the weighted sum    

as, 

                                                            (30) 

In some special applications,    and    are fractions in 

the range 0 to 1 with constraint            so that the 

increase in one component is balanced by the corresponding 

decrease in the other component. Otherwise,    and    can 

be any floating point weights according to the needs of the 

problem. Weighted addition in the cipher domain is carried 

out as follows. 

Matrices A1 and A2 are encrypted according to (18), as 

         * + 

         * +
} 

Weighted addition is performed in the CS as,  

                                                             (31) 

Matrix    is decrypted by the end user to get    as, 

                                                                    (32) 

On substituting for C3 from (31) and further substituting 

for C1 and C2 from (18), Equation (32) gives, 

      (         * +           * +)    

            * +    

                                         * +                      (33) 

On substituting  (4) and (11) in (33), we get, 

               

This means the decrypted matrix.        and it is the 

weighted addition as required by (31).  

Fig. 1. Homomorphic weighted addition of images 

 Fig. 2.  Effect of different weights on the weighted sum 
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Example 1. Here, a square grid image A2 is superimposed 

on an MRI image A1 with weighted addition, as shown in 

Fig. 1. Matrices A1 and A2 are expressed in the double 

precision format in the range [0, 1] so that the range of 

weighted sum is relatively small. (Matlab function 

im2double(…)is used to convert the image matrix from 

uint8 to double format). 

The effect of choosing weights w1 = 0.75 and w2 = 0.25 is 

shown in Fig. 1. Here, subplots (c) and (d) show the cipher 

images of plain images at subplots (a) and (b), respectively. 

The weighted cipher sum C3 is shown in Fig. 1(e), and the 

final decrypted weighted sum image is shown in Fig. 1(f).   

The effect of different weights on the resulting weighted 

sum is shown in Fig. 2. In Fig. 2(c), w1 = 1 and w2 = ‒ 0.75. 

Thus, it can be seen that the HE-FPMK can handle weighted 

sums with positive as well as negative weights comfortably.  

C. Homomorphic Proxy Re-encryption of Images 

Homomorphic Proxy Re-encryption (HPRE) is the 

procedure where a given ciphertext intended for a user (say 

user U) is re-encrypted to enable another user (say user V) to 

decrypt it correctly. The HPRE process is designed in such a 

way that the re-encrypter itself is incapable of discovering 

the plaintext. Also, it cannot access either the encryption 

keys or the decryption keys of the end users (user U and 

user V). Fig. 3 shows the basic block diagram of a PRE 

scheme.  

1) Single Side Homomorphic Proxy Re-encryption 

Single Side Homomorphic Proxy Re-encryption (SSHPRE) 

scheme uses two distinct sets of encryption and decryption 

keys for two distinct users. Let the primary user be denoted 

as user U whose  

cryptographic keys and encryption are same as in section III. 

B. Thus, the SSE is carried out as in (13) except that E{i} is 

written as EU, for easy writing as,  

CU = A*EU                                   (34) 

In (34), A is the plain image matrix of size k×n to be 

encrypted, EU of size n×m is the encryption key for user U, 

and CU of size k×m is the encrypted matrix with respect to 

user U. The encrypted matrix CU is sent to the CS which 

also houses the proxy re-encrypter as shown in Figure 3. 

The decryption of CU is carried out as usual, as,  

                         BU = CU*DU                        (35)  

where DU of size m×n is the decryption key matrix of user U 

with the property,  

                         EU*DU = In×n                                  (36) 

From (34), (35), and (36), it can be verified that BU = A.  

 Now, a second set of distinct cryptographic keys is 

generated for the secondary user V, similar to as explained 

in section III. B. Let EV generically represent the encryption 

key, and the decryption key of user V be DV with properties 

similar to (36), 

                          EV*DV = In×n                                       (37)  

The Proxy Re-encrypter unit within CS provides HPRE as 

follows. Initially, the Key Generation Center (KGC) of the 

data owner generates all the cryptographic keys: EU, DU, EV, 

and DV. Keys DU and DV are sent through secured channels 

to user U and user V, respectively. 

2)   Re-encryption key  

In SSHPRE, the proxy re-encryption key, denoted by EUV is 

generated by the KGC, and it is given by, 

                            EUV = DU*EV                                                 (38)    

Here, the sizes of  EUV, DU, and EV are m×m, m×n, and n×m, 

respectively. The KGC sends EUV to the proxy re-encrypter 

at the beginning of the session. At the proxy re-encrypter, 

the presence of  

EUV does not reveal any information about DU and EV. Thus, 

the secrecy of the keys is not breached at the proxy re-

encrypter. 

3)    Re-encryption operation 

During the HPRE operation, the proxy Re-encrypter 

receives the present cipher matrix CU (intended for user U) 

and translates CU to CV (suitable for user V) using EUV as, 

Fig. 3. Basic Proxy Re-encryption Scheme 
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                             CV = CU*EUV                                  (39) 

This CV with size k×m is received by user V, and he/she 

decrypts CV as, 

                              BV = CV*DV                                                    (40) 

4)    Correctness of SSHPRE   

On substituting for CV from (39) in (40), we have,  

                         BV = CU*EUV*DV                             (41) 

On further substituting for CU from (34) and for EUV from 

(38), we have, 

                        BV = A*EU*DU*EV*DV                      (42) 

Applying the property EU*DU = In×n = EV*DV, we get BV = 

A. This proves the correctness of SSHPRE. When the proxy 

re-encrypter serves multiple users, the CS can provide one-

to-many secure data distribution. HPRE can also be 

designed using the double side HE with higher security.    

V. PERFORMANCE ANALYSIS 

In HE-FPMK, homomorphic encryption and decryption are 

carried out using floating point (double precision) matrix 

keys. The  

performance metrics of these operations are discussed in this 

section. 

A.   Histogram analysis 

 The histogram of an image gives the distribution of 

pixels based on their intensity levels. In purely shuffle-based 

image encryption schemes, the original intensity levels are 

not changed while their locations are shuffled.  

Therefore, the histogram of the encrypted image remains 

the same as that of the original one. In such a situation, the 

histogram  

of the encrypted image can be used to identify the original 

image. Hence, apart from shuffling, image diffusion is used 

to completely alter the histogram for full privacy 

preservation. Thus, additional processing is involved in 

shuffle-based methods. On the other hand,  

in HE-FPMK, the basic encryption operation itself changes 

all the pixel intensities, and the histogram of the encrypted 

image is entirely different from the original one. Fig. 4 

shows the histograms of the original image and that of the 

encrypted image. 

 

In Fig. 4, the bell-shaped (Gaussian) distribution is due to 

the special characteristics of the encryption keys which are 

derived from the orthogonal matrix Q (see Appendix) 

obtained through the QR decomposition. From Figure 4(b) 

and 4(d), we see that the histograms of the original and the 

encrypted image are entirely dissimilar.  

B.   Security of HE-FPMK 

Some of the security aspects of HE-FPMK are discussed 

in this section. Brute force guessing of secret keys is almost 

impossible as each element of a secret key is a 64-bit 

floating point number, and the probability of correctly 

guessing the secret key is 2
‒64

. 

Additionally, the size of each key is m×n. Hence, the overall 

probability of correct guessing is 2
‒64*m*n,

 which is 

extremely low.  

1) Chosen Plaintext Attack    

In HE-FPMK, successive encryptions use randomized 

encryption keys, namely E{i} 's. Therefore, the knowledge 

of cipher matrices cannot reveal the encryption keys. 

Chosen Ciphertext Attack 

In HE-FPMK, the Chosen Ciphertext Attack (CCA) can 

be prevented using the digital signature scheme that 

authenticates the cipher matrix as well as its source. 

Prevention of CCA will be implemented in the next version 

of HE-FPMK.   

C. Computational cost of HE-FPMK 

The computational cost of encryption and decryption in HE-

FPMK are measured in terms of 'bit multiplications.' The 

cost of the addition is ignored.  

1)  Computational cost of encryption 

 In HE-FPMK, the image matrix is encrypted as,  

                               C = D*A*E{i} 

Here, the sizes of D, A, and E{i}are m×n, n×n, and n×m, 

respectively, and the multiplication     involves m*n
2
 

Floating Point (FP) multiplications. Then, (   )   * + 
requires m

2
*n multiplications. The total number of 

multiplications is m*n
2
+ m

2
*n. Since m = n+2  𝑛  we have 

2*n
3
 FP multiplications. Taking 64 bits for a double 

precision FP number, the total number of 'bit 

multiplications.' incurred for encryption, represented by 

TBME is, 

                       TBME = 2*n
3
*64 = 128*n

3
                   (43) 

2) Computational cost of decryption: The decryption 

process is given by (Eq. (16)) as,                                    

B = E*C*D 

Here, the sizes of E, C, and D are n×m, m×m, and m×n, 

respectively. Therefore, the total number of floating point 

multiplications in Zp, is n*m
2
+ m

2
*n   2*n

3
. Similar to as 

in encryption, the total number of 'bit multiplications.' Fig. 4. Histograms of the original and the encrypted 

image 
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incurred for decryption is same as that for encryption and is 

represented by TBMD as, 

                                TBMD = 2*n
3
*64 = 128*n

3 
    

Thus, TMBD is proportional to the third power of n. 

D.  Comparison of the runtime of HE-FPMK with other 

methods 

Here, the runtime of HE-FPMK encryption is compared 

with those of the Gentry (GHV) scheme [18]  and  Yang's  

IGHE [19]. In this simulation, the grayscale image size is 

varied from 32x32 to 512x512, where both the height and 

width are incremented by 32 in each step. The runtimes of 

HE-FPMK, IGHE, and Gentry methods are experimentally 

determined, and the results are plotted as shown in Fig. 5. 

In Fig. 5, the execution times obtained are machine-

dependent, and hence, the plots represent only the relative 

values. From the plots in Fig. 5, it can be seen that the HE-

FPMK method has the lowest execution time compared to 

the other two methods.    

E. Ciphertext Expansion Ratio 

 Ciphertext Expansion Ratio (CER) is the ratio of the 

ciphertext matrix size to that of its plaintext matrix. A higher 

CER incurs a higher computational and communication cost. 

A smaller CER ensures better performance. CER is defined 

as,  

     
     𝑜    𝑝   𝑚       𝑛     

     𝑜      𝑛 𝑚       𝑛      
           (  ) 

In HE-FPMK, as per Equation (15), the size of the cipher 

matrix C is (m×m), and that of plaintext matrix A is (n×n). 

Here, the elements of C are of size 64 bits (type double),  

and those of A are 8 bits. Therefore, for the double side 

encryption, from  (46), it can be seen that 

   (     )   
𝑚  𝑚    

𝑛  𝑛   
 

Since m = (n+2), as an approximation, m can be taken 

equal to n, and then the CER(bytes) = 64/8 = 8. In terms of 

the number of matrix elements, CER(no. of elements) is, 

    
𝑚  𝑚

𝑛  𝑛
 
(𝑛   )  (𝑛   )

𝑛  𝑛
   

 The plain matrix size (in bytes), the sizes of the 

Encryption keys, and the cipher matrices for HE-FPMK, 

IGHE, and the Gentry method, along with the corresponding 

ratios, are shown in Table 1. In HE-FPMK, the Encryption 

key and the cipher matrix are in float64, whereas in IGHE 

these values are in bytes. Hence, the sizes and ratios are 

higher compared to IGHE. In the Gentry method, the basic 

Fig. 5. Comparison of execution times for homomorphic encryption of image matrices 

  Gentry 

IGHE 

HE-FPMK 
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unit of plaintext is a bit. Therefore, the elements of the plain 

matrix are converted from bytes to bits and vice-versa 

during decryption. Hence, in the Gentry method, an 8-fold 

increase occurs in the sizes of the key and cipher matrix.  

 

TABLE I 

Sizes of keys, cipher matrices, and the ratios 

 

 HE-FPMK IGHE  Gentry  

Plain 

Matrix Size 

n*n n*n n*n 

Encryption 

Key Size 

n*m*64 n*n 64*n*n 

Cipher 

Matrix Size 
m*m*64 n*n 64*n*n 

Keyspace 

Expansion 

Ratio 

   (
𝑚

𝑛
)

    

1 64 

Cipher matrix 

Expansion 

Ratio 

   (
𝑚  𝑚

𝑛  𝑛
) 

    

1 64 

 

VI. CONCLUSION 

A new method of homomorphic encryption for floating 

point data is presented using matrix keys. These matrix keys 

can encrypt image matrices directly without the need for 

element-by-element encryption. The proposed method uses 

randomized encryption to prevent Chosen Plaintext Attack. 

The floating point homomorphic encryption is useful for 

weighted addition and the calculation of DCT and FFT of 

images, including their inverses. Homomorphic proxy re-

encryption is another new contribution of this work. Our 

proposed method can be extended to HDR (High Dynamic 

Range) images.  

APPENDIX 

In HE-FPMK, the decryption matrix key D is generated 

using the QR decomposition of a random square matrix S of 

size m×m. In HE-FPKM, matrix S is obtained using the 

Matlab function randi(…)as, 

              S = randi([‒10,10],m)       (A1) 

Here, the range (-10 to +10) is found to give good results 

during homomorphic encryption/decryption. Then, the QR 

decomposition of S is obtained using the Matlab function 

qr(…) as, 

        (Q, UT) = qr(S)        (A2) 

In (A2), Q is the m×m orthogonal matrix, and UT is the 

m×m upper triangular matrix. Since Q is orthogonal, 

                                                                    (A3) 

Here, the elements of Q are floating point numbers. The 

matrices Q
T 

and Q are partitioned into sub-matrices as, 

                     

   [

    
  

 (   )  

]                [          (   )]      (A4) 

In (A4) n is taken as n = (m‒2) or m = n+2.  From (A4), it 

can be seen that, 

                                          
                             (A5) 

To match the partitions of Q
T 

and Q, the matrix      is 

also partitioned as, 

          [

        (   )
     

 (   )    (   ) (   

]                  (A6) 

Substituting (A4) and (A6) in (A3) leads to, 

   [

    

—
 (   )  

]  [          (   )]     

  [

        (   )
     

 (   )    (   ) (   

]                                (A7)       

From (A7), we have, 

                           *                                     (A8) 

                 (   )         (   )                      (A9) 

From (A8) and (A5), it can be seen that, 

    
 *                            (A10) 

On removing the dimension subscripts, D
T
*D = I. Now, 

the property (A9) means,  (   )   is the left-null space of 

    . On removing the dimension subscripts, F*D = 0. 

 

REFERENCES 

[1] R. Kui, C. Wang, and Q. Wang, "Security challenges for the public 

cloud," IEEE Internet Computing, 16(1), 2012, pp. 69-73.  

[2] H. Ghanbari-Ghalehjoughi, M. Eslami, S. Ahmadi-Kandjani, M. 

Ghanbari-Ghalehjoughi, Z. Yu, "Multiple layer encryption and 

steganography via multi-channel ghost imaging," Optics and Lasers 

in Engineering, vol. 134, 2020, 106227, ISSN 0143-8166, pp. 1-12. 

[3] G. K. Mahato and S. K. Chakraborty, "A comparative review on 

homomorphic encryption for cloud security,"  IETE Journal of 

Research, 2021, pp. 1-10.  

[4] S. Kumar, B. K. Singh, Akshita, S. Pundir, S. Batra and R. Joshi, "A 

survey on symmetric and asymmetric key based image encryption," 

2nd International Conference on Data, Engineering and Applications 

(IDEA), 2020, pp. 1-5. 

[5] N. Dowlin, et al., "Manual for using homomorphic encryption for 

bioinformatics," in Proceedings of the IEEE, vol. 105, no. 3, pp. 552-

567, March 2017. 

[6] W. Fu, R. Lin, D. Inge, "Fully Homomorphic Image Processing," 

CoRR abs/1810.03249, 2018, pp. 1-12. 

[7] Q. Wang, et al., "Catch me in the dark: Effective privacy-preserving 

outsourcing of feature extractions over image data," IEEE INFOCOM 

2016 - The 35th Annual IEEE International Conference on Computer 

Communications, 2016, pp. 1-9. 

[8] N. Dowlin, et al., "CryptoNets: applying neural networks to encrypted 

data with high throughput and accuracy," In Proceedings of the 33rd 

International Conference on International Conference on Machine 

Learning - vol. 48 (ICML'16). JMLR.org, pp. 201–210. 2016. 

[9] T. Shortell and S. Ali. "Secure Convolutional Neural Network using 

FHE." ArXiv abs/1808.03819, 2018, pp. 1-14. 

[10] L. Jiang, C. Xu, X. Wang, B. Luo, and H. Wang, "Secure outsourcing 

SIFT: Efficient and Privacy-Preserving Image Feature Extraction in 

the Encrypted Domain," in IEEE Transactions on Dependable and 

Secure Computing, vol. 17, no. 1, pp. 179-193, 2020.  

[11] C. Lupaşcu, C. Pleşca, and M. Togan, "Privacy-Preserving 

Morphological Operations for Digital Images," 2020 13th 

International Conference on Communications (COMM), pp. 183-188. 

2020. 

[12] M. Jiang and H. Yang, "Secure Outsourcing Algorithm of BTC 

Feature Extraction in Cloud Computing," in IEEE Access, vol. 8, pp. 

106958-106967, 2020. 

 

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



[13] A.M. Vengadapurvaja, G. Nisha, R. Aarthy, N. Sasikaladevi, "An 

Efficient Homomorphic Medical Image Encryption Algorithm For 

Cloud Storage Security," Procedia Computer Science, vol. 115, pp. 

643-650, 2017. 

[14] L. Li, A. AbdEl-Latif, and  X. Niu, "Elliptic curve EIGamal based 

homomorphic image encryption scheme for sharing secret images," 

Signal Processing. Vol. 92, pp. 1069-1078. 2012. 

[15] G. Pradel and C. Mitchell, "Privacy-Preserving Biometric Matching 

Using Homomorphic Encryption," 2021 IEEE 20th International 

Conference on Trust, Security and Privacy in Computing and 

Communications (TrustCom), pp. 494-505, 2021.  

[16] D. Chen, W. Chen, J. Chen, P. Zheng, and J. Huang, "Edge Detection 

and Image Segmentation on Encrypted Image with Homomorphic 

Encryption and Garbled Circuit," 2018 IEEE International 

Conference on Multimedia and Expo (ICME), pp. 1-6, 2018.  

[17] R. Challa, G. VijayaKumari and B. Sunny, "Secure Image processing 

using LWE based Homomorphic encryption," 2015 IEEE 

International Conference on Electrical, Computer and 

Communication Technologies (ICECCT), pp. 1-6, 2015.  

[18] C. Gentry, S. Halevi, and V.  Vaikuntanathan, "A Simple BGN-Type 

Cryptosystem from LWE," In: Gilbert, H. (eds) Advances in 

Cryptology – EUROCRYPT 2010. Lecture Notes in Computer 

Science, vol 6110. Springer, Berlin, Heidelberg.           pp. 1-15, 2010.  

[19] P. Yang, X. Gui, J. An, and F. Tian, "An Efficient Secret Key 

Homomorphic Encryption Used in Image Processing Service," 

Security and Communication Networks. pp. 1-11, 2017. 

[20] D. An, S. Zhang, J. Lu, and Y. Li, "Efficient and Privacy-Preserving 

Outsourcing of 2D-DCT and 2D-IDCT," Wireless Communications 

and Mobile Computing. pp. 1-9, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[21] A. Vishnoi, A. Aggarwal, A. Prasad, M. Prateek, and S. Aggarwal, 

"Image Encryption Using Homomorphic Transform," Third 

International Conference on Intelligent Computing Instrumentation 

and Control Technologies (ICICICT), Kannur, India, pp.1455-1459, 

2022. 

[22] Z. Muneef, H. bahjat, A. Abdulhoseen, "Image Encryption Paillier 

Homomorphic Cryptosystem," Iraqi Journal Of Computers, 

Communications, Control And Systems Engineering, vol. 21, No. 4, 

pp. 29-36. 2021. 

[23] R. Hari Kishore, A. Chandra Sekhar, P. Patro, P. Chaganti, "A novel 

homomorphic and matrix operation for randomization encryption 

schemes for privacy in cloud computing architecture," Journal of 

Theoretical and Applied Information Technology, vol.101. No. 3. pp. 

1038-1053, 2023. 

[24] R. Bredehoft, “Encrypted Image Filtering Using Homomorphic 

Encryption, "  Blog /Tutorial, Concrete ML. February 23, 2023.https: 

//www.zama.ai/post/encrypted-image-filtering-using-homomorphic-

encryption (Accessed on 21-Jun-2023) 

[25] Discrete cosine transform matrix (dctmtx). https://in.mathworks. 

com/help/images/ref/dctmtx.html# bvighg3. (Accessed on 21-Jun-

2023). 

 

 

 

Prabhavathi  Krishnegowda (Corresponding author) is a research scholar. 

Anandaraju  M  Boregowda is a Professor. 

In the Department of ECE, BGS Institute of Technology, Adichunchanagiri 

University, B. G. Nagara, Karnataka, India.  

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_35

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 




