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Abstract—The introduction of Electronic Health Records
(EHRs) has created a new set of challenges and opportunities
for clinical research, stimulating the transition of medical
health-related studies to a data-driven approach and opening
up new prospects for more personalised health care. In light
of the intricate correlation between medical data, this paper
presents a learning approach to represent medical information
connection pathways. First, the method uses extracted medical
pathways to enhance potential associations between diseases and
learns highly representative patient embedding vectors. Second,
by combining the medical information association path, the
representative medical concept representation vector is learned.
Meanwhile, the self-attention reasoning network learns the
patient feature embedding vector using the patient’s previous
admission records in order to properly anticipate the patient’s
future health state. Finally, the experiment demonstrates that
the proposed method can effectively use the medical path and
the patient’s historical disease record for disease prediction,
and achieve excellent prediction results.

Index Terms—Deep Learning, Electronic Health Records,
Healthcare Informatics, Association Path

I. INTRODUCTION

The increased use of electronic health records [1] has
encouraged the use of medical and health data to drive
research, thus providing new possibilities for more person-
alized health care. Intelligent assisted diagnosis is a key
field of research that focus on predicting illnesses from
medical and health records [2], [3] information. The goal
is to analyze and anticipate individuals’ well-being based on
their individual data and historical digital medical records,
to assist medical organizations with diagnosis, to increase
efficiency and quality of service, and to reduce the cost of
medical treatment for patients.

How to model continuous and high-dimensional EHR data
and understand the prediction findings is a significant issue
in this undertaking. Because observed medical record data
is frequently complicated and non-linear, machine learning
can be used to solve these constraints. Traditional supervised
learning approaches (such as logistic regression, random
forest, and naive Bayes) are inadequate for modeling longitu-
dinal processes because they cannot account for relationships
between outcomes or characteristics.
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Recently, some researchers use patient representation
learning for clinical assist diagnosis, such as mortality pre-
diction [1], [4], patient subtypes [5], length-of-stay prediction
[6], [7], 24-hour decompensation [8], [9] and multi-task
learning [1].

However, current prediction methods generally rely on
the temporal characteristics of patients receiving medical
treatments [10], and these methods rarely take into account
some potential associations in medical information, such as
the relationship between diseases and other complications,
and the association between diseases and symptoms. The as-
sociations embedded in medical data are critical for medical
data analysis research and diagnosis, such as searching for
relevant disease information from a massive amount of data
with key symptoms, or predicting the future health of patients
by exploring the correlation between diseases in previous
diagnosis. Recursive neural network (RNN) [11], [12] is a
type of neural network that is created for sequential data,
and can adapt well to high-dimensional feature data. It ia
commonly used in longitudinal data prediction. However,
However, in order to obtain steady performance, the neural
network normally requires a huge amount of training labels,
which may be highly expensive. RNN models, whether
displaying patients’ physiological conditions in a continu-
ous or discrete manner, are unable of identifying changes
in patients’ physiological conditions. Our contributions are
listed as follows.
• We propose a disease-assisted diagnosis model based

on medical information association path representation
learning, called MiaPRL. The model can assist doctors
in making diagnostic decisions and reduce patient med-
ical costs.

• We construct a medical knowledge network with a
tree-like hierarchical structure using the classification
information of medical concepts, and extract medical in-
formation association paths from the medical knowledge
network, which are used to learn the implicit association
relationships between different diseases.

• Finally, we conduct a large number of experiments.
Compared with the state-of-art models, our designed
model can produce more accurate results.

II. RELATED WORK

Medical researchers are trying to predict the health of
patients in the future by analysing their past electronic
medical records [2], [3]. A key problem in these activities
is finding a way to interpret the predictions generated from
modelling large, multi-dimensional medical record data. S-
ince the observed medical record data is typically complex
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and non-linear, these limitations can be overcome by using
machine learning to predict the timing of events. Traditional
supervised learning approaches, such as logistic regression
[13], random forest [14], and naive bayes [15], are inadequate
for modelling longitudinal processes because they do not
account for intertemporal linkages in either outcomes or
characteristics. Furthermore, with the exception of retention,
these models are not easily interpretable.

Deep learning algorithms are used to perform related
tasks that involve learning patient representations, such as
predicting length-of-stay [6], [7], predicting mortality [1],
[4], [16], phenotyping patients and categorising international
classification of diseases (ICD) codes [17]. In this paradigm,
deep learning models are used to represent a patient’s phys-
ical state, and a specific network is employed to provide
specific predictions or classifications. The performance of
the deep learning model for patient representation depends
on the construction of the model using the EHRs.

Due to the temporal nature of EHR data, recurrent neural
networks (RNNs) and long short-term memory (LSTM) are
widely used. RETIN [18], [19] proposes an interpretable
reverse temporal attention model. Dipole [20] combined with
bidirectional RNNs to mine EHR data. Camp [21] uses
demographic information from the Common Concern model
to make diagnostic predictions. StageNet [22] integrates
time intervals between visits into LSTM to simulate the
health status of patients at different stages. INPREM [23]
applies Bayesian neural networks to attention mechanisms
to improve the interpretability of the model. HiTANet [24]
proposes a hierarchical time-aware attention network for
health risk prediction. LSAN combines long-term and short-
term information in the EHR for prediction.

In addition, numerous investigations have applied various
techniques to the basic RNN architecture to address the lack
of density, extensive dimensionality, and diversity of clinical
time series information. Lei et al. [25] applied recurrent
neural network and auto-encoder to encode patient hospital
records as low-dimensional dense vectors, taking into ac-
count the temporal variation of EHR, the non-negative tensor
factorization models the input sequence as a time tensor as
the input of LSTM [26]. In addition to RNN, convolutional
neural network (CNN) is also used for learning patient
represents. Unlike RNN, CNN cannot process variable length
sequence data, so sequences must be pre-processed before
being input to CNN. In the literature [3], patient visit
sequence data is used as input to the CNN after being filled
to a fixed length. Recent works [25], [27] also consider
multi-source data to provide some prior knowledge for more
accurate prediction. The above studies attempt to improve
basic RNNs to handle time intervals in sequences. However,
none of them has been designed to measure changes in
physiological states.

In this paper, we use medical concepts to classify infor-
mation, construct a medical knowledge network with a tree
hierarchy, and extract the medical information association
path from the medical knowledge network to learn the hidden
association between different diseases. In addition, we design
a path encoder using the self-attention mechanism to extract
medical paths for different diseases in each admission record.
By merging the medical paths, the hierarchical information
of diseases and medical concepts can be effectively cap-

tured, and the medical concept representation vectors can
be learned. Meanwhile, the self-attention reasoning network
can learn the patient’s characteristic embedding vector from
the historical admission record, and accurately predict the
patient’s future health risk status.

III. ASSOCIATION PATHS EXTRACTION IN MEDICAL
INFORMATION

This section mainly introduces an association path ex-
traction method in the heterogeneous medical information
network to learn the relationship between diseases and sup-
port disease prediction. There are a variety of international
standards for classification of medical concepts, which clas-
sify medical information such as diseases, symptoms and
abnormalities. The hierarchical organisation of classifications
such as ICD codes and CCS classification are often used to
improve medical concepts.

We denote the medical codes that appear in electronic
medical records as c1, c2, ..., c|G| ∈ G, where G is a set
of medical codes. | G | represents the number of medi-
cal codes in the dataset. Medical codes only contain the
disease codes that appear in the dataset. P represents all
patients in the electronic medical record dataset. For a
patient u ∈ P in the medical record, its medical record
can be regarded as a sequence, which is recorded as
T (u) =

[
V

(u)
1 , V

(u)
2 , ..., V

(u)

|T (u)|

]
. | T (u) | is the number

of medical records recorded by the patient u. Each visit of
the patient Vt corresponds to an muti-hot vector | G | with
dimension xt ∈ {0, 1}|G|. If the value of the i-th element
is 1, it means that the patient has been diagnosed with the
disease ci. Meanwhile, We use the information related to
the classification criteria of medical concepts to construct
a medical knowledge network KD with tree hierarchy. The
medical knowledge network contains categorical information
for medical concepts. The leaf nodes consist of medical codes
in G. The set of non-leaf nodes KD is recorded as G′, and
G ′ =

{
c|G|+1, c|G|+2, ..., c|G|+|G′|

}
represents coarse-grained

classification information. KD is a directed acyclic graph
with the set of nodes D = G + G′.

Inspired by the meta-path [28], a path ρ can be expressed
as A1

R1−−→ A2
R2−−→ ...

Rl−−→ Al+1, which is used to
represent the relationship R between objects A. All medical
codes associated with this path, including those representing
diseases and categories, form a particular medical path.
In this paper, the model selects the medical information
association path with a high number of co-occurrences of
the starting disease and the ending disease for learning.

Fig. 1 shows the process of medical pathway extraction.
The left side of the figure is an example of the medi-
cal knowledge network KD, where solid circles represent
medical codes for different diseases (C1, C2, C3, C5), and
dotted circles represent coarse-grained disease classifications
(C4, C6, C7, C8, C9, C10, ROOT). The right side of the
figure shows three randomly selected medical information
association paths, starting from disease nodes C1, C2 and
C5, and randomly walking in the network KD to reach the
nodes C5, C3 and C3 respectively.

For a patient admission record Vt, a random sample of
diseases in the record is firstly carried out, and medical
information association paths are constructed for the sampled
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Fig. 1: An example of the medical knowledge network KD (The left figure represents the disease classification, and the
right figure represents the medical path).

diseases. Each disease can construct multiple medical paths.
The collection of medical information association paths
sampled and constructed for diseases in the admission record
Vt is denoted as ρ(set)t .

IV. ASSOCIATION PATHS REPRESENTATION LEARNING

This section mainly introduces the medical information
association path representation learning method, including
medical code pre-training, the self-attention encoder module,
medical information association path representation learning
module, and patient history medical information representa-
tion learning module. Based on these modules, we propose an
association path representation learning approach for assisted
diagnosis of diseases. Fig. 2 shows the disease prediction
model framework based on medical information association
paths representation learning.

A. Pre-training of medical codes

To enhance the expressiveness ability of medical concepts,
pre-training processing of medical codes is required. The
medical code representation learning method GRAM [29],
which relies on the attention mechanism, first initialises the
medical code embedding ei with the co-occurrence informa-
tion of the medical code as the initial feature of the nodes
in the medical knowledge network KD. The representation
learning method based on hyperbolic geometry space is
[30] suitable for the representation learning of hierarchical
information, and can significantly improve the generalisation
performance, which is suitable for the medical knowledge
network with tree hierarchy. Therefore, we use hyperbolic
graph neural network to perform unsupervised training on
medical knowledge network KD.

Firstly, the medical code embedding vector ei initialized
with co-occurrence information is used as the input node
feature. The hyperbolic neural network is used to train the
medical knowledge network KD unsupervised, and a repre-
sentative feature embedding vector is generated for medical
codes. The feature embedding vector mi learned from the
i-th medical code is recorded as mi. By merging the vector
representation m1,m2, ...,m|G|+|G′| of all medical codes, a
medical code embedding matrix M ∈ Rd×(|G|+|G

′|) can be
generated, where d is the vector dimension size and mi is
the i-th column of M.

For a patient medical record Vt, multiply its corresponding
multi-hot vector xt by the medical code embedding matrix

M to obtain the representation vector vt ∈ Rd of the patient
current medical record. The calculation process is as follows.

vt = tanh (Mxt) (1)

B. Self-attention encode module

The attention mechanism enables the model to capture
relationships between elements in the sequence, regardless
of their relative position. By employing the self-attention
encoding module as a basis, we are able to construct mul-
tiple self-attention encoding modules to encode the medical
information association path and to learn the representation
of the patient’s medical history.

The self-attention encoding module consists of two parts,
which are the multiple self-attention encoding layer and
the position feedforward network. The use of multiple self-
attention encoding as opposed to a single attention layer
allows the model to focus on information from different
positions in different quantum spaces simultaneously. The
position feedforward network performs a non-linear transfor-
mation for each position element in the input sequence. The
multiple self-attention encoding layer is defined as follows.

MultiHead
(
X l
)
= [head1, head2, ...]W

o (2)

headi = Attention
(
X lWQ

i ,X
lWK

i ,X
lW V

i

)
(3)

where X l is the input matrix of the multiple self-attention
encode layer of the l-th layer, and X0 is the initial input
of the first layer. WO ∈ Rd×d, WQ

i ∈ Rd× dh , WK
i ∈

Rd× dh , W V
i ∈ Rd× dh is the trainable parameter matrix in

each attention encode layer. The self-attention operation is
defined as follows.

Attention (Q,K,V ) = softmax

QKT√
d
h

V (4)

where d refers to the dimension of the input vector, and
h represents the number of multiple self-attention encode
layers.

For each position vector in the input matrix, the position
feedforward network independently performs the same trans-
formation. A feedforward network with a ReLU activation
function consists of two connected linear transformations.
The specific definition is as follows.
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Fig. 2: An framework of disease prediction model based on medical information association paths representation learning

FFN (z) = (ReLU (zW1 + b1))W2 + b2 (5)

where W1 ∈ Rd×da , b1 ∈ Rda , W2 ∈ Rd×da , b2 ∈ Rd× dh
is the trainable parameter matrix of the position feedforward
network, and da is the transition vector dimension of the
matrix transformation in the position feedforward network.
Note that a residual operation and normalization step are
appended to each component in the self-attention encode
module, which consists of the attention encode layer and
the position feedforward network.

C. Medical information association path representation
learning

A variable length sequence is manipulated by combining
multiple self-attention encode modules in order to incorpo-
rate the medical code sequence into a low dimensional vector
space. Given a medical path set ρ(set)t , for one medical path
instance ρ, the feature embedding matrix of its corresponding
medical path instance is obtained by merging the feature
embedding vectors of the medical code in the medical
path instances, which is recorded as Xρ ∈ RL×d. The
feature embedding vector dimension of each medical code
is denoted by d, and L represents the number of medical
codes in medical path instances. We introduce a trainable
position matrix P (path) ∈ RL×d to enhance the position
information of the medical code in the path. Finally, the
feature embedding matrix X ′ρ can be obtained by adding
the two matrices. For a path instance ρ, the encoding process
can be summarized as below,

Hρ = pathEncoder (X ′ρ) (6)

where Hρ is the embedding matrix in the medical path
instance ρ, each line represents the embedding vector after
the medical code is encoded at the corresponding position
in the path. The feature embedding vector encoded by the
medical information association path instance ρ is recorded
as hρL.

Finally, the above encoding process is performed for each
path instance in the medical information association path
set ρ(set)t , and the corresponding feature embedding vector

is obtained. By applying the average pooling operation, the
vector representation of the medical information association
path set corresponding to the t-th admission can be obtained.

ht =
1

| ρ(set)t |

∑
ρ∈ρ(set)t

hρLρ (7)

D. Historical medical information representation learning of
the patient

The feature vector of the patient medical visit is created
by combining the feature embedding vector of the patient
medical record and the corresponding medical information
association path feature embedding vector.

This method is adopted to learn and encode the patient
historical medical records, so as to obtain the embedded
feature vector sequence of the medical records is obtained,
which is denoted as [c1; c2; ...; ct]. The representation learn-
ing module of patient history medical information uses self-
attention encode module to represent and learn patient history
medical treatment information according to embedded char-
acteristics of patient history medical treatment records. The
feature vector encoded by the last element in the sequence is
taken as the representation vector of the current patient. We
adopt a trainable position matrix P (adm) ∈ Rt×d to reinforce
the time sequence of each patient admission. It is calculated
as follows.

ci = vi + hi, i ∈ [1, t] (8)

[c′1; c
′
2; ...; c

′
t]
T
= [c1; c2; ...; ct]

T
+ P (adm) (9)

[o1;o2; ...;ot] = TemporalEncoder ([c1; c2; ...; ct]) (10)

The temporal information encoder TemporalEncoder is
implemented through the self-attention encode module. ci
is the feature vector of the patient i-th medical record, and
ot is the final feature representation vector of the patient.
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V. ALGORITHM DESCRIPTION

The learned patient feature representation vector is used to
predict the health status of patients in a certain period of time
in the future. Given the final feature representation vector
ot of a patient. It is fed input into a full connection layer
for linear transformation, through the sigmoid activation
function, the model obtains the probability distribution of
the patient’s next illness ŷt+1. yt+1 is a multi-dimensional
multi-hot vector used to represent the patient’s condition at
the time of the t+1 medical treatment. If the value of the i-th
element in yt+1 is 1, it means that the patient actually suffers
from the disease referred to by the i-th element. ŷt+1 is an
approximation of yt+1 generated by the model, representing
the prediction result of the patient’s illness. Each value in
the vector ŷt+1 indicates that the patient may suffer from
the i-th disease. It is calculated as follows.

ŷt+1 = σ (Wpot + bp) (11)

where Wρ ∈ R|G|×d and bp ∈ R|G| are trainable model
parameters. σ is the sigmoid activation function. Calculate
the binary cross entropy loss function to optimize the model.
The loss function is calculated as follows.

L = −

1

| T (u) | −1

t=1∑
|T (u)|−1

(
yTt log (ŷt) +

(
1− yTt

)
log (1− ŷt)

)
(12)

Algorithm 1 describes an auxiliary diagnosis method for
diseases based on medical information association path rep-
resentation learning. The model is optimized using the Adam
optimizer [31].

Algorithm 1 A disease-assistant diagnosis method based on
medical information association path representation learning

Input: Medical Knowledge Network KD; Medical code
embedding matrix M ∈ Rd×(|G|+|G

′|); Patien-
t admission records T (u) =

[
V

(u)
1 , V

(u)
2 , ...V

(u)

|T (u)|

]
;

Vector representation of patient admission records[
x
(u)
1 ,x

(u)
2 , ...,x

(u)

|T (u)|

]
Output: Results of diseases-auxiliary diagnosis

1: for i=1. . .| T (u) | do
2: Sampling and constructing medical path sets ρ(set)i for

diseases in Vi
3: vt = tanh (Mxt)

4: The representation hi of medical path set ρ(set)i is
calculated by Formula (7).

5: Calculate the current patient representation vector oi
by Formula (10)

6: ŷt+1 = σ (Wpot + bp)
7: Calculate the loss function L by Formula (12)
8: end for
9: Optimize loss function L using Adam optimizer

10: Convergence of the model
11: return Prediction results

VI. EXPERIMENT

In this section, we first describe the dataset used. Then
we list the available state-of-the-art algorithms and compare
them with our model. Finally, the ablation experiment and
the parameter analysis experiment performed to prove the
effectiveness and superiority of the proposed model.

A. datasets

1) MIMIC datasets: We conducted experiments to vali-
date the medical path representation learning-based diagnosis
of diseases by utilizing two public datasets, namely MIMIC-
III [32] and MIMIC-IV [33]. MIMIC-III is an medical infor-
mation database of intensive care, which contains inpatient
records in the intensive care unit of Beth Israel Deaconess
Medical Center from 2001 to 2012, with more than 40,000
patient-related electronic medical record data.

The main statistics of the above two datasets are shown in
TABLE I. For the MIMIC-III dataset, the average number of
patients admitted to hospital is small. We use the MIMIC-III
dataset to evaluate the performance of the model when the
training data is insufficient. However, the admission records
in the MIMIC-IV dataset have a wide time range, To assess
the model’s performance in handling long series data, we
specifically choose patients with more than 10 admissions.

The first step is to extract patient diagnosis records from
the MIMIC dataset. For the MIMIC-III dataset, the fields and
their meanings are shown in TABLE II. ”SUBJECT ID” and
”HADM ID” can uniquely determine the patient ID and the
medical ID. The ”ICD9 CODE” field records the ICD9 code
of the patient’s disease. We traverse the diagnostic records in
the MIMIC-III dataset, using ”SUBJECT ID” as a keyword
to build a dictionary containing multiple lists, each of which
stores a record of a patient’s medical record in the form
of an ICD-encoded list. When the traversal is complete, the
dictionary is stored for quick access by the model.

For the MIMIC-IV dataset, the fields and their meanings
are shown in TABLE III. The MIMIC-IV dataset removes the
field ”ROW ID” from the MIMIC-III dataset, which has no
practical meaning. As the version of the MIMIC-IV dataset is
relatively new, the field ”ICD VERSION” has been added to
distinguish the version of the ICD code. The value is 9 or 10.
Traverse the diagnostic records in the MIMIC-IV dataset and
build a dictionary with ”SUBJECT ID” as a keyword. Due
to the inconsistent version of the ICD code in MIMIC-IV,
an additional open source tool is required to map the ICD-
10 version to the ICD-9 code. As the ICD-10 code is richer
and more complex than the ICD-9 code, some information
is missing in the mapping process.

2) CCS datasets: We use the CCS multi-level diagnostic
hierarchy to build a medical knowledge network with exter-
nal medical expertise. ICD-9-CM coded clinical information
classification software is a classification scheme for medical
diagnosis and treatment methods, which can be used for
data mining and analysis. The medical knowledge network is
constructed by using the CCS multi-level diagnosis hierarchy.

In the CCS classification data, each row represents the
CCS classification corresponding to an ICD code, and the
category to which each ICD code belongs is marked accord-
ing to the hierarchical results, which can reach up to 4 levels
of classification. By traversing the CCS classification data
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TABLE I: Dataset information

Dataset MIMIC-III MIMIC-IV
Number of patients 7,499 73,181

Admissions 19,911 294,235
Average number of patients admitted 2.66 4.02

Number of ICD-9 codes 5,549 6,820
Number of ICD-9l categories 939 982

TABLE II: MIMIC-III Dataset fields and their meanings

fields meaning
ROW ID Line Number

SUBJECT ID Patient ID
HADM ID Admission Record ID
SEQ NUM Serial Number

ICD9 CODE Disease Code

TABLE III: MIMIC-IV Dataset fields and their meanings

fields meaning
ICD VERSION Disease Code Version (ICD9 or ICD10)
SUBJECT ID Patient ID

HADM ID Admission Record ID
SEQ NUM Serial Number
ICD CODE Disease Code

row by row, the category information of each ICD code is
recorded, and each category information and the predecessor
and successor categories of the ICD code are simultaneously
recorded, which are used to construct a tree-like medical
knowledge network.

B. Experimental setup

For the proposed disease-assisted diagnosis method based
on medical information association path representation learn-
ing, it is recorded as ProAID in the experiment. We set
the number of self-attention encoder modules to 2 and the
number of multiple self-attention layers to 4. The hidden
vector dimension is set to 128 for both the MIMIC-III and
MIMIC-IV datasets. The model learning rate is 0.0006 for
MIMIC-III and 0.0002 for MIMIC-IV. For each disease,
200 co-occurring diseases were selected as candidates, and
10 related diseases were randomly selected each time as
the destination to construct the medical path. 50 medical
pathways associated with each visit of the patient were
selected on the MIMIC-III dataset and 20 paths are used
on the MIMIC-IV dataset. The dataset is randomly divided
into training, validation, and test sets in a ratio of 7:1:2. The
output of the model is calculated by taking the K diseases
with the highest probability as the prediction results, and
calculating the precision and recall values. The values of K
are 1,5,10,20.

C. Baseline Models

For the purpose of evaluating the overall accuracy of
diagnostic prediction, we apply our technique to the eight
baselines (LSTM [34], StageNet [22], RETAIN [35], Dipole
[20], Concare [36], GRU [37], GRAM [29], CAMP [21],
CHARACTER-BERT [38], LuPIET [35] and GRU-TV [37]).
All models are applied to our task, which requires only
historical diagnoses and treatments, with adaptation for a
fair comparison. Performances may differ from given in the
original articles, as side information such as ontology and
temporal intervals are not merged.

D. Performances comparison

The experimental results are shown in TABLE IV. It can
be seen from the results that the prediction results of the
model proposed in this paper outperform all the comparison
methods, which verifies that MiaPRL can effectively capture
the time information in the patient’s medical record and
effectively learn the patient’s embedding vector. All models
performed better on the MIMIC-IV dataset than on the
MIMIC-III dataset because the experiments on the MIMIC-
III dataset used patient information with more than 10
admissions.

The GRU model exhibited comparable prediction perfor-
mance to the MiaPRL method proposed in this paper when
K=2, 5, and 10 on the two datasets. The main reason is
that GRU also used co-occurrence information to pre-train
medical codes, and used attention mechanisms to learn the
association between medical codes in medical knowledge
networks. However, GRU only focuses on the inclusion rela-
tionship of connected nodes, or omits the connection between
medical codes at a greater distance. MiaPRL uses hyper-
bolic graph neural networks to capture medical knowledge
networks and make better predictions. When constructing
the medical pathway, GRAM selects only the most common
diseases as starting and ending points, but ignores some less
common but more critical concurrent diseases, resulting in
missing some important potential information.

In contrast, the CAMP model did not achieve the expected
performance and is better suited to training and prediction
using the 3-bit ICD-9 class code than the sparse 5-bit ICD-9
coding.

E. Ablation experiment

To verify the effectiveness of each component in the
model, we performed ablation experiments on two datasets.
First, the pre-training process of the medical code and
the learning module of the medical path representation are
removed to evaluate the contribution of these components
to the prediction task, which are recorded as MiaPRLa and
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TABLE IV: Performances comparison on predictions of MIMIC-III and MIMIC-IV datasets

Dataset Model K=2 K=5 K=10 K=20
Precision Recall Precision Recall Precision Recall Precision Recall

MIMIC-III

LSTM 0.615 0.105 0.492 0.246 0.387 0.397 0.315 0.547
StageNet 0.621 0.116 0.523 0.257 0.394 0.418 0.327 0.618
RETAIN 0.574 0.114 0.469 0.189 0.379 0.324 0.276 0.461
Dipole 0.647 0.128 0.508 0.239 0.385 0.328 0.274 0.439

Concare 0.681 0.129 0.564 0.267 0.426 0.419 0.324 0.561
GRU 0.589 0.121 0.487 0.218 0.385 0.332 0.284 0.473

GRAM 0.651 0.124 0.537 0.241 0.435 0.371 0.297 0.524
CAMP 0.612 0.121 0.481 0.215 0.371 0.312 0.264 0.425

GRU-TV 0.608 0.126 0.495 0.226 0.396 0.335 0.289 0.486
CHARACTER-BERT 0.628 0.122 0.543 0.263 0.416 0.428 0.337 0.581

LuPIET 0.621 0.119 0.537 0.259 0.407 0.419 0.328 0.571
MiaPRL 0.692 0.131 0.571 0.276 0.456 0.437 0.359 0.607

MIMIC-IV

LSTM 0.727 0.129 0.617 0.246 0.514 0.473 0.371 0.485
StageNet 0.731 0.134 0.635 0.253 0.527 0.489 0.378 0.514
RETAIN 0.719 0.124 0.607 0.258 0.476 0.403 0.368 0.569
Dipole 0.726 0.132 0.634 0.258 0.517 0.382 0.358 0.526

Concare 0.758 0.132 0.618 0.243 0.519 0.427 0.359 0.508
GRU 0.724 0.131 0.624 0.265 0.508 0.415 0.371 0.576

GRAM 0.735 0.132 0.651 0.274 0.539 0.417 0.385 0.602
CAMP 0.712 0.124 0.624 0.249 0.493 0.374 0.342 0.513

GRU-TV 0.731 0.138 0.629 0.273 0.536 0.438 0.374 0.591
CHARACTER-BERT 0.756 0.129 0.648 0.265 0.537 0.458 0.367 0.598

LuPIET 0.742 0.124 0.623 0.261 0.529 0.447 0.361 0.587
MiaPRL 0.785 0.148 0.675 0.287 0.582 0.495 0.392 0.627

MiaPRLb respectively. In addition, the Glove method in the
GRAM model is used instead of the hyperbolic graph neural
network to train the medical code in the medical knowledge
network. The prediction performance of the model is tested,
and the result is recorded as MiaPRLp.

The experimental results, showcased in TABLE V, high-
light the crucial role played by both the medical code pre-
training and the medical path encoder in the model’s disease
prediction. Removing any component of the model leads to a
degradation in performance, underscoring their significance.
However, the importance of these components varies. No-
tably, removing the medical code pre-training processing re-
sults in a relatively large decrease in prediction performance.
This is because the hyperbolic graph neural network pre-
training process effectively captures the hierarchical struc-
ture information within the medical knowledge network. By
doing so, it enhances the correlation between diseases and
significantly improves prediction accuracy. These findings
emphasize the necessity of incorporating both pre-training
processes to achieve optimal disease prediction performance.

In addition, since the medical path construction and
sampling process is random, the medical path with low
correlation is likely to affect the model prediction. The
model’s performance is similar when using the glove method
for pre-training medical paths and when using a hyperbolic
neural network. This similarity indicates the important role
of medical path pre training in learning effective medical
path feature embedding vectors.

F. Model sensitivity analysis
In this section, we focus on the sensitivity of the model to

hyper-parameters. These key parameters include the number
of sampled medical paths, the number of self-coding modules
and the number of multi-self-coding layers. According to the
experimental setup and evaluation method, the performance
of the model with different parameters is tested on the
MIMIC-III dataset. The results are shown in Fig. 3.

Start by setting the multi self-attention coding layers to
2, then set the number of self-attention encoder modules to
1, 2, 4, and 8 in succession. It can be observed that the
performance of the model is stable with different numbers
of multi self-attention coding layers. The evidence suggests
that the proposed method is robust and unaffected by changes
in the hyper-parameters.

The number of self-attention encoder modules is then set
to 4 and the number of multi self-attention coding layers to 1,
2, 4 and 8 respectively. The performance of the model did not
change much. Both tests show that the auto-attention encoder
module learns the most relevant features from the patient’s
historical medical records, helping the model to achieve good
predictive performance and strong stability.

G. Functional analysis

We used the PyTorch platform to build a program that
used the medical information association path representation
learning model, and then we refined and tested the model
using the pre-processed dataset. Once training was complete,
we packaged the model and built a calling interface using
Flask to provide diseases diagnosis support based on medical
path learning.

First, the user selects a patient from the medical record
list and extracts the patient’s historical medical records. The
ICD coding recognition module transforms the ICD coding
in medical records into a one-hot format. Since each medical
record contains multiple ICD codes, each patient has at least
one medical record. Therefore, the patient’s medical record
can be represented as a 3-dimensional tensor, with any all
sections filled with ’0’. The trained model takes the patient’s
past medical treatment data as input via the disease-aided
diagnosis module, which utilizes medical information link
representation learning. The model produces representative
feature embedding vectors that reflect the patient’s past med-
ical treatment history. Feed the patient’s feature embedding
vector into the trained classifier to obtain the probability
distribution of the patient’s potential disease risk. Select
the top-k ailments with highest probability as the predicted
results for the output.

VII. CONCLUSION

In this paper, we propose a representation learning method
based on the association path of medical information. We
construct a medical knowledge network with a tree structure
based on the categorisation of medical concepts, and use the
extracted association paths of medical data from the network
to discover the underlying connection between different
diseases. The model learns a representative medical con-
cept representation vector by effectively capturing medical
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TABLE V: Performances comparison of methods on predictions of MIMIC-III and MIMIC-IV datasets

Dataset Model K=2 K=5 K=10 K=20
Precision Reacll Precision Recall Precision Recall Precision Recall

MIMIC-III

MiaPRLa 0.642 0.124 0.536 0.249 0.419 0.378 0.314 0.517
MiaPRLb 0.678 0.126 0.559 0.264 0.442 0.387 0.316 0.534
MiaPRLp 0.681 1.128 0.557 0.259 0.448 0.416 0.324 0.586
MiaPRL 0.692 0.131 0.571 0.276 0.456 0.437 0.359 0.607

MIMIC-IV

MiaPRLa 0.776 0.135 0.628 0.254 0.496 0.387 0.387 0.603
MiaPRLb 0.773 0.125 0.672 0.271 0.542 0.436 0.373 0.618
MiaPRLp 0.768 0.135 0.671 0.274 0.567 0.463 0.381 0.583
MiaPRL 0.785 0.148 0.675 0.287 0.582 0.495 0.392 0.627

Fig. 3: Hyperparameter settings for comparative experiments

concepts and the hierarchical information of diseases. By
taking into account the patient’s past medical records and
their timeliness, an accurate prognosis of potential diseases
can be made.

This paper is not yet a definitive assessment of all the
diseases in the dataset. Future studies could focus on certain
diseases that are more relevant for diagnosis and treatment,
such as certain long-term diseases and rare diseases. Medical
facilities that complement traditional ones offer more precise
and tailored treatments to patients, ultimately leading to an
increase in the efficiency and effectiveness of healthcare.
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