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Abstract—In the present work a class of p-Laplacian frac-
tional hybrid-Sturm-Liouville-Langevin integro-differential e-
quations with functional boundary value conditions involving
Caputo-Hadamard fractional derivative is studied. Using the
hybrid fixed point theorem for three operators by Dhage, the
existence result is obtained. Finally, an example is given to
illustrate the main result.
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integro-differential equation, Fixed point theorem.

I. INTRODUCTION

OVER the past few years, the fractional calculus (which
is an expansion of integer derivatives and integrals)

has become an important area of investigation due to their
wide application. It has been shown in several literature
works that fractional differential equations (FDEs) can be
applied better than ordinary differential equations to describe
some practical problems in the field of natural sciences. In
particular, the FEDs have been successfully used to model
the complexity in mathematics, physics and societies, such
as the fractional evolution equations, control theory, anoma-
lous diffusion processes, relaxation phenomena in complex
viscoelastic materials, finance and so on [1-4]. Therefore, the
qualitative analysis of FDEs has gained significant popularity
and importance, especially for the equations with practical
application background, which are particularly valued by
scholars, for instance, fractional hybrid equations (FHEs),
fractional Langevin equations (FLEs), and fractional Sturm-
Liouville equations (FSLEs). On the other hand, the de-
velopment of differential equations and the study of new
operators are closely related to inequalities. Therefore, many
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researchers today employ various inequalities to prove the
existence and uniqueness (EU) of solutions for ordinary
(partial) differential equations. Scientists have established
excellent results on the existence of solutions (ES) to FDEs
by various fixed point theorem.

The Langevin equation is a stochastic differential equation
which describes the time evolution of a subset of degrees of
degrees of freedom. Some of the recent fractional Langevin’s
problem is discussed in [5-7]. Based on the Banach contrac-
tion principle and Schaefer’s fixed point theorem, the EU
results for a coupled system of FLEs with p-Laplacian were
obtained by the author [5]. Salem et al. [6] considered EU
results for FLEs with three-point boundary conditions by
applying the Banach contraction principle, Krasnoselskii’s
fixed point theorem, nonlinear alternative Leray-Schauder
theorem and Leray-Schauder degree theorem.

Another equation that is very well known and that plays
an important role in engineering and mathematics is the
Sturm-Liouville equation. In [8], Rivero et al. proposed the
fractional form of the Sturm-Liouville equation. Later, Liu
et al. [9] considered the ES to the FSLEs with two-point
boundary conditions by means of the nonlinear alternative
Leray-Schauder theorem. Batiha et al. [10] studied the frac-
tional Sturm-Liouville and Langevin equations. The EU are
established via the Banach contraction principle, Krasnosel-
skii’s fixed point theorem and Leray-Schauder alternative.

In addition, the study of fractional hybrid differential equa-
tions has always been a particularly interesting topic. Zhao
et al. [11] first studied hybrid equations of nonlinear FDEs
with initial condition by using Dhage fixed point theorem.
Ahmad et al. [12] studied the ES by using the Dhage fixed
point theorem. In [13], Gao et al. further considered the ES
for a system of coupled hybrid fractional integro-differential
equations.

Recently, some scholars are keen to work on the gen-
eralized fractional Sturm-Liouville equations, Langevin e-
quations and hybrid equations, such as combining Sturm-
Liouville and Langevin fractional differential equations
(FSLLEs)[14–16]; combining hybrid and Langevin fractional
differential equations(FHLEs)[17, 18]; combining hybrid,
Sturm-Liouville and Langevin fractional differential equa-
tions(FHSLLEs)[19, 20]. For example, Kiataramkul et al.
[14] studied the EU of solutions for the FSLLEs of Hadamard
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type, with anti-periodic boundary conditions of the form{
H
CD

%
a+([w(σ)HCD

ρ
a+ + Υ(σ)]κ(σ) = Z(σ, κ(σ)),

κ(1) = −κ(T ), Dρκ(1) = −Dρκ(T ),

where HCD
ρ
a+ and H

CD
%
a+ are the Caputo-Hadamard fractional

derivative with ρ, % ∈ (0, 1); σ ∈ (1, T ), w,Υ∈C([1, T ],R),
Z∈C([1, T ]×R,R) and |w(t)|≥Q>0. The authors obtained
EU results by utilizing Banach fixed-point theorem, and
Leray-Schauder nonlinear alternative.

In [19], Boutiara et al. considered the ES for the nonlinear
FHSLLEs, with two-point boundary conditions of the form{

CDρ,Y (O(σ)) = Z(σ, κ(µ(σ))), σ ∈ (a, b),

κ(a) = 0, u(b)
CD%,Y

( κ(σ)
m(σ,κ(v(σ)))

)
σ=b

+ g(b)κ(b) = 0,

where O(σ)=u(σ)CD%,Y
( κ(σ)
m(σ,κ(v(σ)))

)
+g(σ)κ(σ), CDρ,Y

and CD%,Y are the Y -Caputo fractional derivative with
ρ, % ∈ (0, 1); u ∈ C(J,R\{0}), g ∈ C(J,R), m ∈
C(J × R,R\{0}), Z ∈ C(J × R,R), µ, ν : J → J are
given functions. From that Darbo’s fixed point theorem, the
author obtained the existence results.

Differential equations containing p-Laplacian operators
have extensive applications in heat conduction, engineering
physics, and mathematics [21]. From these points of view,
the p-Laplacian FDEs has been considered by many authors,
see for example [22-24]. To the author’s knowledge, there
is currently no literature on the ES for fractional hybrid
Sturm-Liouville-Langevin integro-differential equations with
p-Laplacian operators.

Motivated by the remarkable developments indicated
above, we want to examine the ES for p-Laplacian frac-
tional hybrid-Sturm-Liouville-Langevin integro-differential
equations with functional boundary value problems (BVPs)
as follows:{

H
CD

ρ
a+φp

(
H(σ)

)
= Z(σ, κ(µ(σ))), σ ∈ (a, b),

κ(a) = θ(κ), H(σ)σ=b = 0,
(1)

where HCD
ρ
a+ and H

CD
%
a+ are the Caputo-Hadamard fractional

derivative with ρ, % ∈ (0, 1); HIγia+ is the Hadamard frac-
tional integral of order γi > 0, i = 1, 2 · · · l, H(σ) =

u(σ)HCD
%
a+

(
κ(σ)−

∑l

i=1

HI
γi

a+
hi(σ,κ(σ))

m(σ,κ(v(σ)))

)
+ g(σ)κ(σ); m ∈

C(J × R,R\{0}), u ∈ C(J,R\{0}), g ∈ C(J,R) and
Z, hi ∈ C(J × R,R), J = [a, b]; µ, ν : J → J are
given functions; φp(ς)=|ς|p−2ς represents the p-Laplacian
operator, (φp)

−1 = φq , 1
p + 1

q = 1; the functional boundary
value conditions in (1) is given function θ : C[J,R]→ R.

The following summary summarizes the work’s contribu-
tion based on that interpretation:
• A new problem consisting of p-Laplacian hybrid-Sturm-

Liouville-Langevin integro-differential equations sup-
plemented with functional BVPs is proposed.

• Sufficient criteria to ensure ES for the problem (1) are
established and an example that illustrates and validates
the theoretical contributions has been presented.

• The problem discussed in this paper are more general.
By fixing different parameters in BVP (1) and obtain
some new results in this paper. For the special case, if
we consider the case when p = 2, hi(σ, κ(σ)) ≡ 0,
θ(κ) = 0, then the BVP (1) is reduced to the problem
studied in [15]. By selecting m(σ, κ(v(σ))) ≡ 1, we
obtain the results for a nonlinear p-Laplacian fractional

Sturm-Liouville-Langevin integro-differential equation-
s with functional boundary conditions; In case we
choose u(σ) ≡ 1, the results correspond to nonlin-
ear p-Laplacian fractional hybrid-Langevin equations
equipped with functional boundary conditions.

The rest of the paper is organized as follows: Section 2
briefly introduces some basic concepts related to fractional
calculus and fixed point theorems. The main results which
are established by means of Dhage fixed point theorem in
Section 3. An example is constructed for the illustration of
the obtained results.

II. PRELIMINARIES

This section, is assigned to recall some basic definitions
of fractional calculus and some other related results to be
used in section 3. We define a space ACnδ [a, b] as follow

ACnδ [a, b] =
{
κ : [a, b]→ R| δn−1κ(σ) ∈ AC[a, b]

}
,

where 0 < a < b < ∞, κ(σ) is a function and AC[a, b]
denote the space of all absolutely continuous real valued
function on [a, b]

(
δ = σ d

dσ

)
.

Definition 1. (see [25]) The Hadamard fractional integral of
the order ρ for a function Z : J → R is outlined as

HIρa+Z(σ) =
1

Γ(ρ)

∫ σ

a

(
ln
σ

ϕ

)ρ−1
Z(ϕ)

dϕ

ϕ
.

Definition 2. (see [25]) Let ρ > 0, n = [ρ] + 1. The
Hadamard fractional derivative of order ρ for a function
Z : J → R is outlined as

HDρ
a+Z(σ) =

1

Γ(n− ρ)

(
σ
d

dσ

)n ∫ σ

a

(
ln
σ

ϕ

)n−ρ−1
Z(ϕ)

dϕ

ϕ
.

Definition 3. (see [26]) Let ρ > 0, n = [ρ] + 1. The Caputo-
Hadamard fractional derivative of order ρ for a function
Z(σ) ∈ ACnδ [a, b] is defined by

H
CD

ρ
a+Z(σ) = (HIn−ρa+ δnZ)(σ)

× 1

Γ(n− ρ)

∫ σ

a

(ln
σ

ϕ
)n−ρ−1δnZ(ϕ)

dϕ

ϕ
.

Lemma 1. (see [26]) Let ρ > 0, Z ∈ ACnδ [a, b] and n =
[ρ] + 1. Then

(HIρa+
H
CD

ρ
a+Z)(σ) = Z(σ)−

n−1∑
l=0

δlZ(a)

l!

(
ln
σ

a

)l
.

Theorem 1. (see [27]) Let S be a nonempty, closed convex
and bounded subset of a Banach algebra Ω and let A, C :
Ω→ Ω and B : S → Ω be three operators satisfying:

(a) A and C are Lipschitzian with Lipschitz constants δ and
`, respectively;

(b) B is compact and continuous;
(c) κ = AκBχ+ Cκ⇒ κ ∈ S for all χ ∈ S;
(d) δT + ` < 1, T = ‖B(S)‖.
Then the operator equation κ = AκBκ+ Cκ has a solution
in S.
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III. MAIN RESULTS

In this section, we prove the existence result for the BVPs
(1) by using Theorem 1. Let Ω = C(J,R) be the space of
continuous real-valued functions defined on J = [a, b], we
define a norm ‖·‖ in Ω by ‖κ‖ = sup

σ∈J
|κ(σ)|, ∀σ ∈ J .

Lemma 2. The BVPs (1) is equivalent to the following
integral equation:

κ(σ) = m(σ, κ(v(σ)))

×
[
HI%a+

1

u(σ)
φq (T (σ))−HI%a+

(g(σ)κ(σ)

u(σ)

)
+

θ(κ)

m(a, κ(v(a)))

]
(2)

+
∑l

i=1

HIγia+hi(σ, κ(σ)), σ ∈ J,

where T (σ) = HIρa+Z(σ, κ(µ(σ)))−HIρa+Z(σ, κ(µ(σ)))σ=b.
Proof. Applying the operator HIρa+ on both sides of (1) and
then applying Lemma 1, we obtain

φp(H(σ)) = HIρa+Z(σ, κ(µ(σ))) + c0, c0 ∈ R. (3)

By using the boundary condition H(σ)σ=b = 0 in Eq.(3),
we get c0 = −HIρa+Z(σ, κ(µ(σ)))σ=b. Thus we get

H
CD

%
a+

(κ(σ)−
∑l
i=1

HIγia+hi(σ, κ(σ))

m(σ, κ((σ)))

)
=
φq(T (σ))− g(σ)κ(σ)

u(σ)
. (4)

Similarly, taking the HI%a+ to the both sides (4) and using
Lemma 1, we have

κ(σ)−
∑l
i=1

HIγia+hi(σ, κ(σ))

m(σ, κ(v(σ)))
(5)

= HI%a+
1

u(σ)
φq (T (σ))− HI%a+

(g(σ)κ(σ)

u(σ)

)
+ c1,

where c1 ∈ R.
Applying the functional boundary conditions κ(a) = θ(κ)

in (5). Then

κ(a)−
∑l
i=1

HIγia+hi(σ, κ(σ))σ=a

m(a, κ(v(a)))

= HI%a+
1

u(σ)
φq
(
T (σ)σ=a

)
−HI%a+

(g(σ)κ(σ)

u(σ)

)
σ=a

+ c1,

it follows that,

c1 =
θ(κ)

m(a, κ(v(a)))
.

By substituting the value of c1 in (5), we obtain the solution
(2). This completes the proof.

In order to prove our main results, we list the following
hypotheses.

(A1) The functions m : J×R→ R\{0} and hi : J×R→ R
are continuous and there exist positive functions φ and
ψi, with bounds ‖φ‖ and ‖ψi‖, such that

|m(σ, κ)−m(σ, χ)| ≤ φ(σ) |κ− χ| , (6)

and

|hi(σ, κ)−hi(σ, χ)| ≤ ψi(σ) |κ− χ| , (7)

for any σ ∈ J , κ, χ ∈ R and i = 1, 2, · · · l.
(A2) There exist a continuous function Z : [a, b] ×R → R

and non-negative functions d1(σ), d2(σ) ∈ J [a, b] such
that

|Z(σ, κ)| ≤ d1(σ) + d2(σ)|κ|p−1
, (8)

for any σ ∈ J and κ ∈ R.

(A3) There exist a constant h0 > 0, such that

|hi(σ, κ)| ≤ h0, (σ, κ) ∈ J ×R, i = 1, 2, · · · l. (9)

(A4) There exist a constant K > 0, such that

∣∣∣ θ(κ)

m(a, κ(v(a)))

∣∣∣ ≤ K, ∀κ ∈ C(J,R). (10)

(A5) There exist a number r > 0, such that

(
r ‖φ‖+m0

)(
V +

ḡr(ln b)
%

Γ(%+ 1)ū
+K

)
(11)

+
∑l

i=1

(r ‖ψi‖+ h0)(ln b
a )γi

Γ(γi + 1)
≤ r.

and

‖φ‖
[
V +

ḡr(ln b
a )
%

Γ(%+ 1)ū
+K

]∑l

i=1

‖ψi‖ (ln b
a )
γi

Γ(γi + 1)
≤ 1. (12)

where m0 = sup
σ∈J
|m(σ, 0)|, ū = min

σ∈J
|u(σ)|, ḡ = max

σ∈J
|g(σ)|,

h0 = sup
σ∈J
|hi(σ, 0)|, i = 1, 2, · · · , l, and

V =
22q−2(ln b/a)

ρ(q−1)+%
(‖d1‖q−1

+ ‖d2‖q−1
r)

Γ(%+ 1)ū(Γ(ρ+ 1))
q−1 .

Theorem 2. Assume that the hypotheses (A1)−(A5) hold.
Then the BVPs (1) has at least one solution defined on J .
Proof. we consider a subset S of Ω given by

S = {κ ∈ E : ‖κ‖ ≤ r},

where r satisfies inequality (11). Clearly S is closed, convex,
and bounded subset of the Banach space Ω. By Lemma 2,
the BVPs (1) is equivalent to the equation

κ(σ) = m(σ, κ(v(σ)))

{
1

Γ(Ψ)

∫ σ

a

(
ln
σ

ϕ

)%−1

× 1

u(ϕ)

[
φq

( 1

Γ(Φ)

∫ ϕ

a

(
ln
ϕ

τ

)ρ−1
Z(τ, κ(µ(τ)))

dτ

τ

− 1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1
Z(τ, κ(µ(τ)))

dτ

τ

)]dϕ
ϕ

(13)

− 1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1 g(ϕ)κ(ϕ)

u(ϕ)

dϕ

ϕ
+

θ(κ)

m(a, κ(v(a)))

}
+
∑l

i=1

HIγia+hi(σ, κ(σ)), σ ∈ J.
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Define three operators A, C : Ω→ Ω and B : S → Ω by

Aκ(σ) = m(σ, κ(v(σ))), σ ∈ J, (14)

Bκ(σ) =
1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1

× 1

u(ϕ)

[
φq

(
1

Γ(Φ)

∫ ϕ

a

(
ln
ϕ

τ

)ρ−1
Z(τ, κ(µ(τ)))

dτ

τ

− 1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1
Z(τ, κ(µ(τ)))

dτ

τ

)]
dϕ

ϕ

− 1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1 g(ϕ)κ(ϕ)

u(ϕ)

dϕ

ϕ

+
θ(κ)

m(a, κ(v(a)))
, σ ∈ J,

Cκ(σ) =
∑l

i=1

HIγia+hi(σ, κ(σ)), σ ∈ J. (15)

The integral equations (13) can then be written as

κ(σ) = Aκ(σ)Bκ(σ) + Cκ(σ), σ ∈ J.

We now prove that the operators A, B, C satisfy the
conditions of Theorem 1. To show this, we divided our prove
into four steps.

Step 1. We first show that A and C are Lipschitzian on
Ω. Let κ, χ ∈ Ω. Then by the condition (A1), for σ ∈ J , we
have

|Aκ(v(σ))−Aχ(v(σ))|
= |m(σ, κ(v(σ)))−m(σ, χ(v(σ)))|
≤ φ(σ)|κ(v(σ))−χ(v(σ))|
≤ ‖φ‖ ‖κ− χ‖ ,

taking the supremum over the interval J , we obtain

‖Aκ−Aχ‖ ≤ ‖φ‖ ‖κ− χ‖ ,

for all κ, χ ∈ Ω. Thus, A is a Lipschitzian on Ω with
Lipschitz constant ‖φ‖. Similarly, we have

|Cκ(σ)− Cχ(σ)|

=
∣∣∣∑l

i=1

HIγia+hi(σ, κ(σ))−
∑l

i=1

HIγia+hi(σ, χ(σ))
∣∣∣

≤
∑l

i=1

1

Γ(γi)

∫ σ

a

(
ln
σ

ϕ

)γi−1
ψi(ϕ)|κ(ϕ)− χ(ϕ)|dϕ

ϕ

≤ ‖κ− χ‖
∑l

i=1

‖ψi‖
Γ(γi + 1)

(
lnσ − lnϕ

)γi∣∣a
σ

≤ ‖κ− χ‖
∑l

i=1

(ln b
a )γi ‖ψi‖

Γ(γi + 1)
, σ ∈ J,

which implies that,

‖Cκ−Cχ‖ ≤ ‖κ− χ‖
∑l

i=1

(
ln b

a

)γi‖ψi‖
Γ(γi + 1)

,

for all κ, χ ∈ Ω. Thus, C is a Lipschitzian on Ω and constant
` =

∑l
i=1

(ln b
a )γi‖ψi‖

Γ(γi+1) .

Step 2. The operator B is completely continuous on S.

lim
n→∞

Bκn(σ) = lim
n→∞

{
1

Γ(%)

∫ σ

a

(ln
σ

ϕ
)%−1 1

u(ϕ)

×
[
φq

( 1

Γ(ρ)

∫ ϕ

a

(ln
ϕ

τ
)ρ−1Z(τ, κn(µ(τ)))

dτ

τ

− 1

Γ(ρ)

∫ b

a

(ln
b

τ
)ρ−1Z(τ, κn(µ(τ)))

dτ

τ

)]dϕ
ϕ

− 1

Γ(%)

∫ σ

a

(ln
σ

ϕ
)%−1 g(ϕ)κn(ϕ)

u(ϕ)

dϕ

ϕ
+

θ(κ)

m(a, κn(v(a)))

}
=

1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1 1

u(ϕ)

×
[
φq

( 1

Γ(ρ)

∫ ϕ

a

(
ln
ϕ

τ

)ρ−1
lim
n→∞

Z(τ, κn(µ(τ)))
dτ

τ

− 1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1
lim
n→∞

Z(τ, κn(µ(τ)))
dτ

τ

)]dϕ
ϕ

− 1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)ρ−1
lim
n→∞

g(ϕ)κn(ϕ)

u(ϕ)

dϕ

ϕ

+ lim
n→∞

θ(x)

m(a, κn(v(a)))
= Bκ(σ), σ ∈ J

Therefore, the operator B is continuous in S. By using
Aezelá-Ascoli Theorem, we get that B is a uniformly bound-
ed and equicontinuous on S.

In fact, for any κ(σ) ∈ S, by using the conditions (A2)
and (A4), we first prove the B is uniformly bounded on S.

|Bκ(σ)| ≤ 1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1

× 1

|u(ϕ)|
φq

( 1

Γ(ρ)

∫ ϕ

a

(ln
ϕ

τ
)ρ−1 |Z(τ, κ(µ(τ)))| dτ

τ

+
1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1 |Z(τ, κ(µ(τ)))| dτ
τ

)dϕ
ϕ

+
1

Γ(%)

∫ σ

a

(
ln
σ

ϕ

)%−1 |g(ϕ)κ(ϕ)|
|u(ϕ)|

dϕ

ϕ
(16)

+
|θ(κ)|

|m(a, κ(v(a)))|

≤ (ln b/a)
%

Γ(%+ 1)ū
φq

(2(ln b/a)
ρ

Γ(ρ+ 1)

(
‖d1‖+ ‖d2‖ rp−1

))
+
ḡr(ln b/a)

%

Γ(%+ 1)ū
+K,

by using the (κ+ χ)p ≤ 2p(κp + χp), κ, χ, p > 0, then

φq

[
2(ln b/a)

ρ

Γ(ρ+ 1)

(
‖d1‖+ ‖d2‖ rp−1

)]
(17)

≤ 22q−2(ln b/a)
ρ(q−1)

(Γ(ρ+ 1))
q−1

(
‖d1‖q−1

+ ‖d2‖q−1
r
)
,

substitute (17) into (16),

|Bκ(σ)| ≤ 22q−2(ln b/a)ρ(q−1)+%
(
‖d1‖q−1+‖d2‖q−1r

)
Γ(%+1)ū(Γ(ρ+1))q−1

+ ḡr(ln b/a)%

Γ(%+1)ū +K,

which implies that B is uniformly bounded on S.
In the following part, for convenience in writing, put

y(κ) =
(

ln
σ2

ϕ

)%−1 −
(

ln
σ1

ϕ

)%−1
.
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Secondly, we will prove that B : S → Ω is equicontinuous.
Assume that σ1, σ2 ∈ [a, b] and σ1 < σ2, for any κ(σ) ∈ S,
then we have

|Bκ(σ1)− Bκ(σ2)|

≤ |θ(κ(σ2))− θ(κ(σ1))|
m(a, κ(v(a)))

+
1

Γ(%)

∫ σ1

a

y(κ)

|u(ϕ)|
φq

×
( 1

Γ(ρ)

∫ ϕ

a

(ln
ϕ

τ
)ρ−1 |Z(τ, κ(µ(τ)))| dτ

τ

+
1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1|Z(τ, κ(µ(τ)))|dτ
τ

)dϕ
ϕ

+
1

Γ(%)

∫ σ2

σ1

(
ln
σ2

ϕ

)%−1 1

|u(ϕ)|
φq

×
( 1

Γ(ρ)

∫ ϕ

a

(
ln
ϕ

τ

)ρ−1 |Z(τ, κ(µ(τ)))| dτ
τ

+
1

Γ(ρ)

∫ b

a

(
ln
b

τ

)ρ−1|Z(τ, κ(µ(τ)))|dτ
τ

)dϕ
ϕ

+
1

Γ(%)

∫ σ1

a

y(κ)
|g(ϕ)κ(ϕ)|
|u(ϕ)|

dϕ

ϕ

+
1

Γ(%)

∫ σ2

σ1

(
ln
σ2

ϕ

)%−1 |g(ϕ)κ(ϕ)|
|u(ϕ)|

dϕ

ϕ

≤ |θ(κ(σ2))− θ(κ(σ1))|
m(a, κ(v(a)))

+
1

ū
φq

[
(ln b/a)

ρ

Γ(ρ+ 1)

(
‖d1‖+ ‖d2‖ rp−1

)]
×
( 1

Γ(%)

∫ σ1

a

y(κ) +
1

Γ(%)

∫ σ2

σ1

(ln
σ2

ϕ
)%−1

)dϕ
ϕ

+
ḡr

ū

( 1

Γ(%)

∫ σ1

a

y(κ) +
1

Γ(%)

∫ σ2

σ1

(ln
σ2

ϕ
)%−1

)dϕ
ϕ

≤ |θ(κ(σ2))− θ(κ(σ1))|
m(a, κ(v(a)))

+
ḡr

Γ(%+ 1)ū

×
(2

%
(ln

σ2

σ1
)% +

1

%

(
(ln

σ1

a
)% − (ln

σ2

a
)%
))

+
(ln b/a)

ρ(q−1)
(‖d1‖q−1

+ ‖d2‖q−1
r)

Γ(%+ 1)ū(Γ(ρ+ 1))
q−1

×
(2

%
(ln

σ2

σ1
)% +

1

%

(
(ln

σ1

a
)% − (ln

σ2

a
)%
))
,

which is independent of κ(σ) ∈ S. As σ1 → σ2, the right-
hand side of the above inequality tends to zero. Hence, we
obtain B is equicontinuous on S. Therefore, it follows from
Aezelá-Ascoli theorem that B is a completely continuous on
S.
Step 3. We show that the condition (c) of Theorem

1 is satisfied. For any κ ∈ Ω and χ ∈ S be arbitrary
elements such that κ = AκBχ+Cκ, by using the conditions
(A1)−(A4), we have

|κ(σ)| ≤ |Aκ| |Bχ|+ |Cκ|
≤ |m(σ, κ(v(σ)))−m(σ, 0) +m(σ, 0)|

×
{

1

Γ(%)

∫ σ

a

(ln
σ

ϕ
)%−1

× 1

|u(ϕ)|

[
φq

( 1

Γ(ρ)

∫ ϕ

a

(ln
ϕ

τ
)ρ−1 |Z(τ, χ(µ(τ)))| dτ

τ

+
1

Γ(ρ)

∫ b

a

(ln
b

τ
)ρ−1 |Z(τ, χ(µ(τ)))| dτ

τ

)]dϕ
ϕ

+
1

Γ(%)

∫ σ

a

(ln
σ

ϕ
)%−1 |g(ϕ)κ(ϕ)|

|u(ϕ)|
dϕ

ϕ

+
|θ(χ)|

|m(a, χ(v(a)))|

}
+
∑l

i=1

1

Γ(γi)

×
∫ σ

a

(
ln
σ

ϕ

)γi−1 |hi(σ, κ(σ))− hi(σ, 0) + hi(σ, 0)| dϕ
ϕ

≤ (r ‖φ‖+m0)
[
V +

ḡr(ln b/a)
%

Γ(%+ 1)ū
+K

]
+
∑l

i=1

(r ‖ψi‖+ h0)(ln b
a )γi

Γ(γi + 1)
≤ r.

Therefore, κ ∈ S.
Step 4. Finally, we show that the (d) of Theorem 1 is

satisfied, that is, δT + ` < 1.

T = ‖B(S)‖ = sup
κ∈S
{sup
σ∈J
|Bκ(σ)|}

≤ V +
ḡr(ln b/a)

%

Γ(%+ 1)ū
+K.

Consequently, we have

‖φ‖T +
∑l

i=1

(
ln b

a

)γi‖ψi‖
Γ(γi + 1)

< 1,

where δ = ‖φ‖ and ` =
∑l
i=1

(ln b
a )γi‖ψi‖

Γ(γi+1) .
In consequence, the problem (1) has a solution on J. This

completes the proof.

IV. EXAMPLE

Example 4.1. Considering the following p-Laplacian hybrid-
Strum-Liouville-Langevin integro-differential equation with
functional boundary value conditions equations, in the frame-
work of Caputo-Hadamard derivative{

H
CD

1/2
1+ φpH(σ) = sinσ+σ cos(κ(σ))

5 , σ ∈ (1, 2)

κ(1) = δ
4 sin2(

∑n−2
j=1 κ(ξj)), H(σ)σ=2 = 0,

(18)

where

Z(σ, κ(σ)) =
sinσ + σ cos(κ(σ))

5
,

m(σ, κ(σ)) =
σ

100
(|κ(σ)|+ sinκ(σ)) +

σ

10
,

hi(σ, κ(σ)) =

∣∣κ(σ)
∣∣

(14 + i+ σ)(2 + |κ(σ)|)
, i = 1, 2, 3, 4,

and

H(σ)=H
CD

3/4
a+

(κ(σ)−
∑4
i=1

HIi+1
1+ hi(σ, κ(σ))

m(σ, κ(v(σ))

)
+

1

10
κ(σ).

Clear, for κ, χ ∈ R, we have

|m(σ, κ)−m(σ, χ)| ≤ σ

100
|κ− χ| ,

|hi(σ, κ)− hi(σ, χ)| ≤ 1

14 + i+ σ
|κ− χ| , i = 1, 2, 3, 4.

Here, we take ρ = 1
2 , % = 3

4 , k = 4, q = 3, p = 3
2 ,

γ1 = 2, γ2 = 3, γ3 = 4, γ4 = 5; µ(σ) = v(σ) = σ,
θ(κ) = δ

4 sin2
(∑n−2

j=1 κ(ξj)
)
, 0 < δ < 1, j = 1, 2, · · · , n−2,

ξj ∈ (0, 1), ξj < ξj + 1 and n ≥ 3.
Setting φ(σ) = σ/100 and ψi(σ) = 1/(14 + i+ σ),

which give norms ‖φ‖ = 1/50 and ‖ψi‖ = 1/(14 + i),
i = 1, 2, 3, 4.
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Hence we have,

|θ(κ)|
|m(1, θ(κ))|

≤ 5

2
, |hi(σ, κ)| ≤ 1

15
,

|Z(σ, κ)| =
∣∣∣ sinσ + σ cos(κ(σ))

5

∣∣∣ ≤ 1 + σ

5
.

It follows that u(σ) = 1, g(σ) = 1
10 , d1(σ) = sinσ

5

and d2(σ) = σ cos(x(σ))
5 , we get ū = 1, ḡ = 1/10,

‖d1‖ ≤ 1
5 , ‖d2‖ ≤ 2

5 , m0 = sup
σ∈J
|m(σ, 0)| = 1/5 and

h0 = sup
σ∈J
|hi(σ, 0)| = 0. Using these values, it follows by

inequalities (11) and (12) that constant 0.633 < r < 89.230.
Hence, the problem (18) has at least one solution on (1, 2).

V. CONCLUSION

In the present paper, we studied a kind of p-Laplacian frac-
tional hybrid-Sturm-Liouville-Langevin integro-differential
equation with functional boundary value conditions, involv-
ing Caputo-Hadamard factional derivative. By using the
Dhage fixed point theorem, the existence of solutions of the
problem (1) are proved. The main results are well illustrated
with the aid of an example. In future, we plan to study the
existence and stability results for p-Laplacian hybrid Sturm-
Liouville-Langevin integro-differential equation using the ψ-
Hilfer fractional derivative.
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