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A Newly Proposed Aggregation of Weighted
Geometric Operator for Interval Valued Pentagonal
Fuzzy Neutrosophic Set and its Application in
Solving Multi-Attribute Decision Making
Environment

Hema R, Sudharani R* and Kavitha M

Abstract - This paper proposes interval valued pentagonal
fuzzy neutrosophic set in view with the combination of
pentagonal fuzzy sets, single valued neutrosophic set and the
interval valued neutrosophic set. Interval valued pentagonal
fuzzy neutrosophic weighted geometric averaging operator is
defined based on the operational laws, a theorem and some of its
properties have been established by the proposed operator and
also on the score and accuracy function. By assigning different
weights to various features in accordance with each choice, the
aggregation of the interval valued pentagonal fuzzy
neutrosophic set is used on an example to validate the efficiency.
Finally, a multi-attribute decision-making environment is
examined using the proposed methodology's ranking order and
collective ratings of each attribute's values for various
alternatives.

Index Terms- Interval Valued Neutrosophic set, Neutrosophic
set, Pentagonal fuzzy numbers, Score and Accuracy function.

I. INTRODUCTION

By introducing a different dimension concerning
membership functions ranging in the interval [0,1], Zadeh
[13] introduced fuzzy sets and provided insight into interval
valued fuzzy sets. The intuitionistic fuzzy set was discussed
by Atanassov and Gargov [2, 3]. Alrefaei [1] dealt with
operations on n-intuitionistic polygonal fuzzy numbers
successfully. In order to deal with everyday ambiguities,
inconsistent conditions, and complex circumstances,
Smarandache [9] proposed the concept of neutrosophic set,
which encompasses the degree of truthiness, indeterminacy,
and falsity. The aggregation operator plays a vital role to in
expressing the neutrosophic data of the alternatives in terms
of a single number, which is validated in accordance with
rating in  multi-criteria  decision-making  problems.
Aggregation of weighted arithmetic and weighted geometric
operator for neutrosophic set was initiated by Lu et.al.[8].
Recently, Yen [12] explained trapezoidal fuzzy neutrosophic
set and presented a method for trapezoidal fuzzy neutrosophic
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arithmetic and geometric weighted aggregation operators
which is been used for decision making problems.

Chakraborty et. al. [4] studied the representation and
properties of pentagonal fuzzy number. Interval valued
pentagonal fuzzy numbers was initiated by Umamageswari et
al. [10]. Literature survey reflects that this is the first time that
weighted geometric aggregation operator for interval valued
pentagonal fuzzy neutrosophic values has been studied which
can be used effectively to deal with uncertain information.

Multi attribute decision making [MADM] based on single
valued neutrosophic by Geng et. al. [6] and interval
neutrosophic was initiated by Xu et. al. [11], which helps us
to solve the problem with analytic approach. Comparison and
analysis of MADM by ranking was well explained by Deng

[5]
1. PRELIMINARIES

A. Interval-valued pentagonal fuzzy neutrosophic
Definition 1. [7] “An interval-valued pentagonal fuzzy
neutrosophic number (IVPFNN) N is defined as an (IVPFNS)
on X is represented by expressing
N(x) = [N}(x), N*(x)], where N! and N“ are lower and
upper pentagonal fuzzy neutrosophic sets on N such that N!
N,

N} = {[x, F, (x), B, (), Fy, (0): x € X[} where
T!N(x) c [0,1], {!N(x) c [0,1] and]?iq(x) c [0,1] are lower
pentagonal fuzzy neutrosophic numbers

T (o) = [ (), £ (), £ (), 8 (), 8 (0)]: X = [0,1],
B () = [i (0, 8 (), 15 (0), i (0, 15 (0)]: X > [0,1], and
Fr(0 = [85 60, £ 00, 6 (0, £ G0, £ (0)]: X — [0,1],
which  satisfies  the  condition mentioned  below:

15 .15 5
0 <5 (x) + i (1) + £ (x) < 3.
For convenience of representation, we consider
OO = @EEPD:X - [041],
K@) = (8,%85Y):X > [0,1] and
Fi@) = (%13,%2):X > [0,1].
Therefore,
i [@EEP3.(8353Y), (313K 3)]:
X -[01]"
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Definition 2. [7] “Let N! be the lower pentagonal fuzzy  Definition 3. [7] “Let N“ be the upper pentagonal fuzzy
neutrosophic number. Then T (x), 1§, (x) and F}, (x)is defined  neutrosophic number. Then g (x), {;(x) and Fy(x)can be

as follows: defined as follows:
Xx—8 ()f g)TK}ASXSﬁ
(é §)T{Q§5xs§ §-9
_ x—§ X A
X — ¥ 1 5 1—(§_A)(1—T‘$)ESXSS
1-|v—=< )1 -T)E<x<§ & R
528 Tl-k(x)=<1 X=5
— ¥ N H —
=41 x=5 1—(p AX)(l—T‘.*)§5xsﬁ
P —x vy . p—>5 N
1-(—)(1-T)§<x<p A
p—§ 3=X\ous o a
3—x A_a)INP=X=3
(V V)Tl.ﬁsxﬁ 3-P
3—-p/ N 0 otherwise
0 otherwise Sy
S (f A>};‘;83xss
= gilN85xss \§ -8
_ e—
‘(;_X 1—<A f)(1—f§;$§xsc
1—( )(1—{1.)“<x<v £7R
— WJisx<g 0 .
| . 6—s . {:}(X)=< s X=¢
KG = . Xx=¢ 1—<A f)(l—}‘*)ésm@
X—¢ . . 5—¢ N
1-(r—=)(1-K)e<x<3 -
e (f_ “i) Hs<x<¥
(v V){lNésXsa Y—35
0—9 1 otherwise
1 otherwise .
t— -
. ki Fis<x<t
( ‘l'_X 1 - v _% N
T—3 Fr¥sx<t §—x
_'X' - ~
- 1-(=—|(1-F)i<x<?
‘B — X 1 v ~ ‘8 - ’1’ N
1- ()1 -F)i<x<? -
9—1 FE(X)=<0 ~ x=19
) =10 s x=1 1—<)f_‘?)(1—f‘§53xs@
1—(v v>(1—]:1N)19SXSI§ ‘SX_A
k=9 ) FR<x<g
XK\ s §—R
I-% Fye=x=<3§ 1 otherwise"
1 otherwise An IVPENN 1y is represented by
Nt = {[x, T (%), (%), Fy; (%): x € X[} where
4 ’ ’ r vvvvv ! AAAAA u, \
Tl[é]h(x) C [011]1 {E(X) (- [0,1] and ‘F;%(X) C [0,1] |<(9! & s, p,3 Tl’})’(gl & s, p,3 Tl’}));l
are  upper  pentagonal  fuzzy neutrosophic numbers n= 4 ((g. 565V {L)(Q $85Y: ir-l“)), 5
00 = [6 00,4 00, £ (90,6 00,68 (0] X > [0,1], U(E85 58 (540885
00 = [ 00,12 (0,88 00, 14 (0, i 00]: X = [0,1], ’ ’
and Definition 4. [6]: “Let 11, and 1, be two I\VPFNNS,
w = [ 12 13 i 15 . e v Y % XN/ A & D oA A
00 = [y 09 09660, 700 00X = 0.1 (RN DACHE NN BTN
which satisfies the condition . 5 % % x T\N(B & A A O
us :u5 5 n, = <[(81:§1:G1:91:Y1): (81;51;91,91,Y1)]:}n1)
OStN(X)+}N(X)+fI§I(x)S3. (K% b9y k%), (32,0, 00,R A)]'F')
For convenience of representation, we consider UV B &) AT T Y B 81,
AAAAA V’V ’gl\’,\’ ] A)A )’S\)AIA :T'
U0 = @885.3):X - [01], (1 P 52, (@820 520 P 31 By )
1 () =(8,8%5,Y):X > [0,1] and B2 = <[(82'§2'f2'92'Y2)' (8, §z'fz'92'Yz)]:*r‘;z>
0 = (548,60 % - 01 (6t 55, Gt B ) )
Therefore R R o Then the following operations on IVPFNNSs are proposed as:
N {[(@ $50.3.(8%259). (3198 3)]}
X - [0,1]
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(§1 + §2 - §1§2'é1 + EZ - éléZ'gl + \S/Z - §1§2']\61 + ]52 - ]51]52’\3,1 + §2 - §1§2)' \I

4, = slszel Tez e LT e el
BT [(8182'§1§2'9192'9192'Y1Y2)'(8182'§1§2'9192'9192’Y1Y2)]'

(@1 + §2 - ,9\1,9\2'@1 + gz - gl@Z'gl + g2 - g1,5\2' ]31 + ]32 - ]31]32)3\1 + §2 - 3\13\2) 5
1Y - R1%2, P |
[(%‘1%2"}1*2' 191192' 'VS1'VS2' Zlgz)' (%1%2'*1*2' 191’92' KJIKZJ 3132)] J

(§1§2' 5152' §1§2' 1\511\52' 132); (@1@2' 3132' glgz' 131132: §1§2)];
Ez - éléz;§1 + é2 - é1§2»Y1 + Yz - Y1Y2);] ’

|
}
I

(
|

= { I (81 +8, —8:8,,8 +5 — 58,6
|

n; X1, 8, — 16,9, +5,-5.5,, ¥, +¥. - .Y
(%‘1 + %‘2 - %‘1%‘2'}1 + }2 - }1}2'51 + 52 - 5152' k;l + k;Z - k;lkjazt 31 + 32 - 3132)'

LIS +5, - %180k +h — b, 8, + 8, = 8,8, % + R, — RuRo By + 82 — 8182) | J
[(1 —A-g) 1= (=g 1= (=87 1= (=P 1= (= 5))) |
CJla-a-er1-a -8 -0 -8)%1- (- PN 1 - (1-5)7) ’¥

T [CARARAEAS AN AR A (0

(AT AR RS RS NCRE AR AN AF ] )
( (87875757 307), (807,807,808 3:7)) )
[[(1-(1-8)1-1-5)1-1-8)1-1-3),1-(1-¥,))] |

0, = { (1-(1-8)1-(1-8)1-(1—-¢)"1-(1-3)"1-(1-%,))| } x>0

Definition 5. [7] “The score and accuracy function of

IVPFNN based on t

are defined as follows

i [(1 =% 1-(1-H) - (1-8,) 11— -&)"1-(1 - zl)f),l i
a-a-s)1-(1-%)"1-(1-9,)"1-A-r)"1-1-28)")])

GHEHSHPHS | Q+EH8HP+S  F+HO4RAE
he pentagonal neutrosophic numbers 1 1) = L 5 5 5
P g P & Ac (Q) 2 _ FH 8R4

5

Ac() € [-1L,1]"

where

() = 1 [4 4 TSP | Qg HEApa3 B+3+E+5+Y
Brgreesty sesleger  sdedig] ,,  Definiton 6 [7] “Let iy and i, be two IVPFNNS,
5 N 5 5 ] @ S(ny), S(n,) be the score functions and A.(n,),A.(11,) be
where S(n) € [0,1]. the accuracy functions
S(m) = 0, then o IfS(,) > $(i,), thenny > 1,
[(0;0;0;0;0)1 (0;0;0;010)]1 L4 If S(fll) < S(flz)’ then f]ﬂl < flz

f] = [(111;1;1;1)1 (1;1;1;1!1)];
[(1’1)1)1)1)’ (1)1)1)1)1)]
which is the smallest IVPFNN.

Larger value of $(r) implies higher IVPFNN 1.

[(1,1,1,1,1),(1,1,1,1,1)],
[(0,0,0,0,0), (0,0,0,0,0)],
[(0,0,0,0,0), (0,0,0,0,0)]

IfS() =1, thenny =

which is the largest IVPFNN.

For convenience, it can also be written as

AAAAAAAA

([@55p.3, @85p,3]: T
n=1{.(6%55Y).(8%857):)),
(#19.%8) (319,8,8)]:Fs)

Accuracy function for IVPFNN 1, is given by

NEUTROSOPHIC

If $() = 5(1) and if
a) If Ac(r!) = Ac(flz)! then fll = flz
by If A.(ny)>A/(1,), then n;,>n,
o) IfA.(y) < Ac(np), then iy, <1,”.

INTERVAL-VALUED PENTAGONAL FUZZY

WEIGHTED GEOMETRIC

AVERAGING OPERATOR

(1G5, 9,505,350, G 650 503)] )

Let.ny =4 [(1 B, 5 v, §), (1,5, 7, ©)],

(552,50 8). (5,5,2,5.8)]

wherej =1,2,...,n.

be the representation of IVPFNS is the set of real numbers,
whereas [IVPFNWG: ¢ — ¢. The interval-valued pentagonal
fuzzy neutrosophic weighted geometric (IVPFNWG)
operator defined bylVPFNWG(n,, 1y, ..., 11,)
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is defined as IVPFNWG(1y;, 1, ..., ) = is also an IVPFNN, then we have

n,"1®n,"®..Qn,"" = ®irl=1(fliwi) where w; € [0,1] IVPFNWG (1), iy, ..., 1}) = r.!Iw1®r.!2W1® )

is the exponential weight vector of 1;(j = 1,2, ..., n) such = ®1n:1(fliwl)

n

that i, w; = 1. where w; € [0,1] is the weight vector of IVPFNN 1y

S T i=1,2,..,n) such that 2, w;, = 1.
I{[(ti'gi'bi'si'3i)'(§i'gi'bi'si'3i)]'\| a ) i

Theorem 1. Let 1, = {I [ By 3 o €), (1 By 3 fi)],% EFOOfi ematical induct -

P y mathematical induction we prove this theorem,

forn =1, itis trivial.
j =1,2,...n be a collection of IVPFNNSs in the set of real

numbers. Then aggregated value obtained from Forn=2, ®L,(1)"" =1,"1®n,"
IVPFNWG

[ & T T T 8 T3, (T 6 T 6 T T 87 T 5
(1-Tm (-9 -, (- 6) " 1 -T2, (1 - %)™ 1 - T, (1 - 5)™ 1 - TIL(1 - §)™),

S LW - wl AW AW S UW; )
_ ( -, (1-9) L1- ;;1(1—61) 1-Tn,(1-3) L1-T,(1-m) L1 -1, (1 - §) ‘) [
(1-T(1-8)" -, (1-5) L 1-TI (1-%) L1 -, (L -8)", 1 - T, (1 -8)™),
— (W - wi N AVA AW SANW
(=M= -n (8 - (1-2) - i) - I -6))

@

I(ﬁfriﬁ@m T ﬂ) ([T g T[T 0|
[ AR
I(l 1_[(1 14) 1 —1_[(1 —f] ) 1 —l_[(l gl)w’ 1— 1_[(1 nol)wi,l— H(l_fi) i :I
| i=1 ¥ L | |
] i(l [ Jo-v 1‘1_[(1‘*” 1—1_10 "1~ I_[<1 W) 1—ﬂ(1 o)Ji
(1 - g(l - si)wi, 1- Lil[ (1 —si)w‘ ,1— lli[ (1 - zi)wi’ 1— 11:1[(1 - Bi)wi, 1- D(l — Ei)""i)']i
(1 - f[(l -5)"1- j (1 - S:;)Wl 1- ﬁ (1 - 21) L1- l_i[(l -5)" 1~ f[(l _ gl)%)Ji

[ (Gl AR A H Gt AR A I A
[G-0-0" 1= 0-E)" - - a-mn - 0-8))] |
I ! (1 -(1 _11)WI’ 1-(1- El)WIJ 1-A-3)",1-1-n)", 1 (1~ El)m) Y I
[(1-(1-8)"1-(1-5)"1-(1-2)" 1-a -5 1-(1-5)")] |
\_(1 —(-F)" - (-5 - (1-7) - a a1 - (1-8)™) |
®

( [(L " 3zw2f Wz'hzwz 3 ) (A " Efzwzf e gzw2 §2W2) ’ \l
| I
I I
'\ )

l(l—(l—iz) - (-7 1—(1—az>wz1—(1—wz>W21—<1—fz)W2)I

(1-(-L)"1-(1-5)"1-A-%)"1-A-w)",1-(1-5)")
(1-(1-5)" 1= (1-5) " 1- (1-2,)" 1 - A=) 1 - (1-E)"),
(1-(1-9,)"1-(1-5)"1-(1-7,)" 1 -1 -5)", 1~ (1-,)")
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(ElW1fzwz 31
(%" 4. 4,
(1-(0-D)"+1-(-1)"

d>

Wi~ Wz __ Wi— Wy
b1 by

Wy = Wi— W3 Wi— Wy

yb1 b2

- (1--") (- -)")). |

A% Wy Wi Wy

)51 S2 31 32

Wi W2 ~ wij— Wy

51 8% 31 32

).
)|

(1 —(1-B)"+1-(1-8) - (1-(1-8) ") (1-(1- EZ)WZ)),
1-A-3)M+1-Q-3)"2 -1 -1 -3)"DA -1 -3,)"2)), |
1-Q-n"1+1-QA-n)"2 - (1— (1 -1 — (1 —&,)"2)),

_ (1 (-8 - (1-8) " - (1-(1-8)") (1-(1- Ez)wz)) |
(1-(0-W)"+1-(-)" - (1-(-W)") (1-0-1)"™)).]
(1-(-5)" +1-(1-5)" - (1-(1-5)") (1-(1-5)"™))

(1-(A-Z)"M+1-(1-3)"2 -1 -1 -3)"D)(1 - (1 —3%)"2))
1-A-B)"+1-(1-8)" -1 -1 -B)")A - (1 -1,)"2))

_ (1 (-8 +1-(1-8) " - (1-(1-8)") (1-(1- EZ)W2)> |

'(1 —(1-9) " 1= (1-8) " - (- (1-9) ") (1- (1 - 52)W2)),—
(1-(-5)"+1-(1-5)" -(1-(1-5)")(1-(1-5)")),
(1-(-2)"+1-(1-2)" -(1-(1-2)")0-(1-2)"). |
(1-A - +1-(1 -t )" — (1 — 1 —o)")A - (1 —5,)"2)),

| (1-(-8)" +1-(1-8)" - (1= (1-8)") (- (1-5)"™)) |

'(1 —(1-8)" +1-(1-5) " - (1-(1-8)") (1-(1- 52)“)),—

(1-(-5)"+1-(1-5)" - (1-(1-5)")-(1-§)"))

(1-(-2)"+1-(1-2)" - (1-(1-2)")(1-(1-2)"))

(1-A-D"M +1-(1-5)"2 — (1 — (1 —v)")(1 — (1 —7,)"2))

| (1-(-8)" +1-(1-8)" - (- (1-8)")(-(1-8)")) |

2
R
-;. bl' i’ 31 )

._;

i= i=

H(l— )" 1 - ﬂ(
Hu w)"1- ﬂ(
Hu 5)"1- H( -5)"

2

N

i=1

-%) 1

i=1 i=1
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IVPFNWG(1yy, 1), ..., Tiy) = 15 1®1, "1 @ ... @1,
k k k k k
o o Cw e
[ ‘.Hbi AEER
i=1 i=1 i=1 i=1 i=1
k

—U(l—mw‘.l —U(l—aowil
1—H(1 O 1—ﬂ(1—f3>
ﬂ(l—a)

i=

1—1_[(1—8)

i=1

ﬂ

k+1

- 1_[(1 -3)"1- 1_[(1 —iy) "1 - 1_[

JT0-9"-]

=1 =1 =1

1_[(1 —3)"1- 1_[(1 —my) "1 1_[(1 —)"
] (1 —z) 11— 1_[(1 -5)" 1~ 1_[(1 —g)"

ji=1
k

-2 - -] -

i=1 i=1 =1

\_/

N——

k+1 k+1 k+1 K+ k+1 k+1 k+1 k+1 k+1 ] 3\
L[] Jan] L] ﬂ (Ll e L[5
i=1 i=1 i=1 i=1
[ k+1 k+1 k+1 k+1 k+1 )
~\Wj — w Wi Wj
-] Ja-D" -] Ja-5)"1 ﬂ(1 %) 1- ﬂ(l—w | 1—ﬂ<1—f1> .
=1 =1
k+1 k+1 k+1 k+1 k+1
= (Wi — (W N X N X AU Ws
=i |(-T[a-D"a-[ Ja-n" - Ja-a"a-] Ja-m"a-] Ja-0" )¢
| i=1 i=1 i=1 i=1 i=1 |
[ k+1 k+1 k+1 k+1 k+1 T
— ; wj wj ) a X
1 —1—[(1 -9 "1 _ﬂ(l_éi) 1= 1_[(1 _21) - 1_[(1 —5)"1- 1_[(1 -5)" ),
=1 =1 i=1 i=1 i=1
k+1 k+1 k+1 k+1 k+1
— (Wi A\ A\ N X N .
_1—[(1—31) ‘,1—1—[(1—@1) ‘,1—1_[(1 -7) ‘,1—1_[(1—1;1)““*,1—1_[(1—1.;1)wl
=1 i=1 i=1 i=1 i=1
— i i . . . . \Wj .
forn =k + 1, the following expression holds good. IVPFNWG(1y;, 0z, o) gy q) = ®{<=1(r11) T (s ) Wit
Hence the theorem holds for all values of n. By mathematical induction, the theorem has been
. . incorporated based on the lower and upper intervals.
All the three membership functions
n; (i=12,..,n) €[0,1], and the following relations are  and it follows that
. . . Wi = \Wj
valid under the following conditions. 0< ( n, 3 LT Hin=1(1 — fi) Yyl — 1n=1(1 —
o R )V
0< (M 13W‘)31,os( n3) <1, £)") < 3,and

0 < l_[n ]__‘\Nl + 1 - H{Ll(l _EI)WL + 1 -
3.
Hence the theorem is proved.

n(1-t)" <

Property 1 (Idempotency):

If all

f(i=1.2,.,n) are equal, then for al
iIIVPENWG(11y, iy, ..., Ty) = 1.
Proof: By (2), we have IVPFNWG(,,1y,...,1,) =

IVPENWG(iy 1, ..., 1) = @, (iy) "
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1l

[y
1l
[y

- 1_[(1 -5)"1
i=1
n

1- H(1 -95)"1
i=1

)

(1 (1—19)2* M
(
@
(1-(-D""a
[(66553).(td553)],
(16,570, (06.28.0)],

(052065, (85755)]

Hence the property is proved.

Property 2 (Boundedness):

I[(El'gv bj» 1'31) ('51'9[1' bj» 1'31 \|
=4 (B3 % 5. (LB A D)1
([( V55 08), (85,2, Ul't’)]}

i=1,2,..n be a collection of IVPFNNSs in the set of real
numbers.
Assume
(m,axT;i ,max d;, max b, , max gi , max§i> A1)
i i i i i
(maxf1 , Max d;, max b; , max §1, max§1>
i i i i i
(m n‘h mlnﬁl,mlngl,mlnnol,mmf>
nt = : X
(m mln f]l ) mln 31 ) mln nal , mm fl>
i
(m 19 m1n§ mlnz mlnol,ml 1>'
i i
mlng mlnz mlnol,ml 1)
1 i
and

1 —D(l - —D(l _'Ei)Wil -
—ﬁ(l_gi)ml— _
i=1 i

[(‘Z?:lwi aZ?:lWi,521":1‘”1321":1‘”162{’:1%) ' (EZ{Llwi’azin:lwi' R §Zin=1Wi,§Zi":1W1)] |

-(1- E)Zinﬂwi, 1-(1- 2)Zin=1wi’ 1-(1- S)Zinﬂwi, 1— (1 _ E)Z{Llwi ’
1-(1-9) i=1Wi’ 1— (1=, 1 — (1 - )B1%, 1 — (1 - B)S™i, 1 —
(@-DF" - -5
—(1- E)Zinﬂwi, 1

- -1 - - - (-9,

—a-pH - -1 - (1-97)

S
S
S
S
S

—Wi w;
; 3i ,
i=1 i=1 i=1 i=1 i=1
n n
H(1 w-] Ja-m)-] a- a)“”*)
i= i= i=1
L n L
[a-ama-] Ja-ma- ﬁl‘ﬁ)Wl) |
i=1 =1 i=1
n n n
[(1-7) "1 1_[(1 -5)"1-| |- El)w‘>,
i=1 i=1 j=1
n n n
| (1-%) 1- 1_[(1 -5)"1-| |- Ei)w‘>
i=1 i=1 j=1

|
a-oF) |

mint;i ,min g"1 , Minb;, min §;, min
i

Immt;l,mmg"l,mmbl,mms m1 §>
i i i

ma

(ms
(m

ma X‘L max[jl,maxgl,maxn,l,ma f1>'
i i
- )
XL max[jl,maxgl,maxn,l,maxf

i i i

max 19 max g max z maxu;,
i i

)
(max 9;, max g max z max o1 , max t,l> ‘
i i i i i

max k;
i

forallj=1,2,..n.

Then i~ < IVPFNWG(iy;, iy, .., 13,) < 1.

Proof: We infer that miin(§i) <3< miax(gi),
miin(%i) < %i < miax(%i), miin(Ei) =< Ei =< miax(f,i);
miin@i) <3< mf‘X@i)' miin(Ei) <f< mf‘X(Ei)’
miin(fi) < Ei < miax(f,i), fori=12,..,n

Then,

n

1_[ (mim(gi))vvi

i=1
n

1_[ (mim(gi))vvi

=1

©)

sﬁ@ﬁsﬁ@wwﬁ

n

sﬁ@ﬁsﬂ@wwﬁ

(5 TR n (5\Vi <\ ZE1 Wi
[(minG)) ™ <TG < max(3)™™,
rniin(gi) <L, (3)" < miax(§i) by (3), for j=1,2,..,n
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l1 - j (1 - miin(%i))wi
<1 —ﬁ(1 6" <1
- 1_11 (1 - mialx@))ww

S, w
[1 ~(1-min(®)) "
!

<1-[ [a-8)" <1

i=1
S, w

— (1 - m_ax(%i)) - !]

1

min() < 1 -2, (1 _%i)wi <max(§) and
i !

n

1- 1_[ (1 - miin(Ei))Wi

i=1
n

31—1—[(1—Ei)w‘s1

=1
n

[](-m)”

i=1

O\ 2V
1- (1 —~ m_in(ti))
1

n
<s1-[Ja-5)" <1
j=1
Ly wi
— (1 - max(f;i)) -
i

n
miin(Ei) <1- 1—[(1 - Ei)wi < miax(f,i)
i=1
In the same way,

miin@i) <Me,G)" < mf‘X@i)'
m_in(fi) <1- ]_[inzl(l — fi)wi < max(ﬁ),
: i

fori=12,..,n.

Let IVPENWG(1, 1, .., 1) < 1)
By applying the aggregation operators with the weightage for
i=12,..,n

IVPFNWG(y, 1, ..., 11,) < 1
((((Ed553),(6d5583)]: T
where 1y = { (08380 0635014, }
W((8,5258), (0,5255):Fy) )

Similarly,
min(t) <TIL.(5)" < max(y),

min(d) <TIL,(6) " < max(g)),
miin(gi) = Hill(ﬁ)wi = miax(EJ

min(§) <TT, (5)™ < max(s,):

min(f) <1 - TI%,(1 - V< max({),
min(f) <1~ T, (1~ 5)"' < max(),

min(3;) <1-TI%,(1 - %)™ < max(3),
min(iy) <1-TT%,(1 - 5)" < max(i,);
miin(gi) <1-TIr,(1- si)wi = mﬁx(si)v
miin (Sl) <1- D (1 - Sl) ‘< max (Sl)
min (21) <1-1IL (1 B zi) = i (21)’
miin(ﬁi) <1-TIE,(1-5)" < mfx(ﬁi)-
And also,

miin(fi) < I—[1n=1(f31)wi = miax(fi),

miin(ai) S Hin=1(ai)Wi = miax(ai),

miin(Bi) < I—[1n=1(_bdi)wi = mf‘x(si)’

min(%) <TT,(8)" < max(8);

min(}) <1-TL,(1 - )" < max({),
min(f) <1 - TT2,(1 - §)"" < max(5)
min(3) <1 -1, (1 - 3)" < max(),
miin(ﬁi) <1-IIL,(1- Ei)Wi = mf‘x(ﬁi);
miin (51) <1-TIk (1 - 51) ll = max (51)
min(7) <1 -l (1-7)" < max(z),

rniin(ﬁi) <1-[IL,(1- 51)‘”1 < miax(ﬁi).
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The score function of 1 is

ot

+

@«
W

A
S(fl)=g[4+g+

+E+E+B+§+§ +iv+ €

+b+
>
1+h+

+1

el
ol

1+h+3+0+ +

1| N on

ant

NI +

+ U1{ANr g ]eat
+
=1

9+5 +7+0++¢

miax(Ei) + miax(ai) + mf‘x(gi) +]
max(§;) + max(3)
5
miax(fi) + miax(gfi) + miaX(Bi) +
max(§;) + max(3)
5
miin(i-) + miin(ﬁi) + miin(zi) +
miin(ﬁi) + miin(%i)

4+

+

IA
N -

_ 5 o =s@*)
miln(i-) + miln(ﬁi) + mim(gi) +

miin(ﬁ,fi) + miin(fi)
5
miin({)i) + miin (él) + miin (21) +
miin(ﬁi) + miin(Ei)
5
miin(ﬂi) + miin (5}) + miin (21) +
miin(ﬁi) + miin(fi)
5

In the same way,

Here we discuss the different cases:

Case (i)
If S() < S(n*) and S(1) > S(n~) then,

i~ < IVPFNWG(), iy, .., ;) < 0.
Case (ii) If S(n) = S(n*), we consider

S = ¢

N =

+ N
5 + miax(si) + mf‘X@i)

_l miinﬁ{-) + miin(ﬁi) + miin(zi)
B 1 miin(i-) + miin(ﬁi) + miin(zi)

— % (miin(si) + miin (51) + miin (21))

1 miax(fi) + miax(ai) + miax(Ei) ]
5 + miax(gi) + miax(§i)

1 max(t) +max(d)) +max(h;)

5 + miin(ﬁi) + miin(fi)

5 + miin(ﬁi) + miin(fi)

1 miin(gi) + miin (51) + miin (21)

5 + miin(ﬁi) + miin(f»i) )

+ miin(ﬁi) + miin(Ei)

Then, it also follows

tHdth8+3

max ) +max(§) +max(5) +max(5) +max(3)

5

THd+p+8+3

5

miax(ﬁi)+miax(a’i) +m1ax(51)+miax(§i)+miax(§i)

5

)

5

TR+t _ miin@-)+miin(ﬁi)+m1in(31)+miin(ﬁi)+miin(?i)

5

)

5

T+t _ miin(ﬁ)+miin(ﬁi) +miin(31)+miin(ﬁi)+miin(?i)

5

DHHTHOHE

miin(51)+miin(§1) +min (Zi)+miin(61)+miin(ii)

)

5

5

45 +7+0+E

. ,an

miin(§i)+miin(§i) +min (Zi)+miin (Gi)+miin(r:1)

5

5

The accuracy function
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[ miax(fi) + miax(ai) + miax(Si) + ]
miax(gi) + miax(§i)
SA
miax(fi) + miax(gi) + miax(Bi) +

miax(gi) + max @;)
~ 5
miin (9) + miin(si) + miin(ii) +

11+

N |

miin(ﬁi) + miin(Ei)
B 5
miin(ﬂi) + miin(éi) + miin(zi) +

miin(ﬁi) + miin (&)

5
=A%) (4)
which implies IVPFNWG (1,1, ..., 11,) <10t
In the same way,
[ t+d+b+5+3 t+d+p+5+3 ]
1} s 34 = I
Ac(f})=_| — o = L. I
2| 9+§t+ztoti 9+5 +7+0+8
| 5 5 =
miin(ii) + miin(gfi) + miin('Bi) +
miin(gi) + miin(§i)
Sd
miin(fi) + miin(gfi) + miin(Bi) +
m_in(gi) + min(§1)
+ 1 !
_1 5
2 miax({)i) + max (51) +max (21) +
max (5) + max (%)
B 5
max(ﬂ )+ max (§ ) + max (zl) +
miax (Ui) + miax (t’i)
B 5
=A.(17) ®)
which implies IVPFNWG (1, 1y, .., 1) <117
From 4 and (5), we infer that
I~ < IVPENWG (i, Dy, ..., 11,) < 1.
Hence the proof is verified.
Property 3 (Containment):
(((5. 50503, (8, 9150803 0

| |
ifiy! = {I [ O e DI Ihmd
U[(Bl 51,‘_.1,6!, ) (81 21 Zl’All'tl)] F. 1))

([(tjl; 1;51; ;31) (El) 12;512; 12;§12;)]T2)\
(

(

|

{ (A BRI AT ARG 5

W[(s2.8%20 5, 8), (92,5725 5..8) | - F, 2))
(i=1,2,...,n)be a collection of IVPFNNVs in the set of real
numbers.

WG <@ g <dhbl <Bf8 <83 <3 <. di <

LB ShSi<S, 31<3 U=V bl =6
=%, ni=nd, f1>f2°l}>°lf b =67, 3 =%,
ni>w? B8 029, § 2%, 727, b 20,
B >t0 202 5 25, 7,270 20, b=t
Thenn <nffori=12,..,n

flEtof

Proof: In order to prove this, we consider 31,31,f1, i

o and 32,37, €, 8,82, tPof n?.
We assume, 3! <37, € > €, &
b=t for
Then,
P25 (-8 2 (1),
()" = ()"

= (-8 = (-8,
(1-8)" > (1-)"

H?131 H?lgfw'

1- 1_[(1 fl)‘<1—l_[(1 fZ)l
LT - )" < 1- T (- )"

n?ﬂgilwi = Hfl 1312Wl:
1—11{‘:1(1—51) Ys1- Hnl(l—fz)w‘
1=, (1-8)" < 1 -T2, (1 - )™

>t 3 <3 § =€,

r‘;il < fgiz for i=12,..,n

In the same way,

Mg = Hil:laiz.%' W
=T, (1-1) '<1-TL,0-9)
— (W; W
1-I,(1-9) <11, (1-91)
—_ W;j —_W;j
Mgt =108 6
— W; — w;
1-Te,(1-6)) "< 1-TIL(1-67)
n n
-] a-)" == [(-5)"
i=1 j=1
Hl" b =TI, 52,
(- <1 (-7,

1—111(1_211)% Sl_ﬁ(l—if)wi

=1 i=1
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—q Wj —n Wj

| R |
—1\Wj — o\ Wj
1-T,(1-5) ' <1-TI,(1-52) 7,

n n
1- 1_[(1 —5) ' <1- 1_[(1 —5)"
i=1 ji=1

and

e, & = I, 2

-, (- <1 - (-9
11—, (1-9)" <1 -T2, (1-82)"

Mgt =TI, g,
-ML(-5)" < 1-Tn (-5
n n
-[[a=)" < -] [G6-9)"
=1 i=1
M5 2 T 52
1-11 1 1(1_51) ‘< 1‘“?1(1_A2)Wl'

102" = -T2

i=1 =1

M, 8 > e, 827,
1- 1=1(1 - 1)Wl <1- Hinzl(l _E'Z)Wi'
n n

1- H(1 —5) " <1 —U(1 —5)"

Hence n} <nf forj=12,..,n

Property 4 (Monotonicity):

([ 9855530), (8 95 55531 Fp) )
=4 LA ). B2 kg | ane
U[(’f’l 5.7.58), (955,205, 8) P

(%, 97 57.52.37). (. 92 5L 5 EDIEEN
o7 = 4 0058 R0 G 62 )L $
[(82 &5 6 tz) (82 §_2’22,12";2)] F. 2))

(i =1,2,...,n)be acollection of IVPFNNVs in the set of real

numbers.

If i} <n?forj=12,..,nthen IVPFNWG(@, 0}, .., i}) <
IVPENWG (12,12, ..., 112).

Proof: In order to prove this, we consider
3t §1,ff,f§,tal t-l of nf and 37,37, ff. ff. laz lazof n’.
We assume, 3 <3!,f1 >f2 & >3 <31'f1 >f2 5>
t,f for 0 <n? for i=12,..,
Then,
31W1 > '—zwil (1 _%il)wi > (1 _%f)Wi,

W YW
(-8)" 2 (L -8)"

s = Wi
Bz -2 0-8)",
(1—;;) l2(1—1,:12) L

—q Wj —y Wj
H?1311 =3 | LA

1—1_[(1 &) 1<1—1_[(1 ©)",

1- r[;* (=) <1- H;1=1(1 )"
[T 1311W! [T 1312w1'

-, (1-8)" <1 -, (1-8)",
-, -e)" <1 -, (1 -8)™
In the same way

e, & = e, 2

=TI (- 1) <1 =T, (- 7)",
-, (1-8)" <1 -T2, (1 - 9)™

Mg =1, g
1- Hinz1(1 - ﬁi) " <1- Hinzl(l - Ef)Wl'

= =8)" <= [(-9)"

=1 i=1
M b = T b,

- W;j
1- H': (1—311) '<1- in=1(1_312) g

1- 1_[ <1—1_[(1—212)Wi

i=1

s W

| R R D

L1 ) £ 1 - TR
n n

1 —1_[(1 —5)"' < 1—1_[(1—61)W1
i=1 i=1
and
M, &7 = e, 2
=T (-1 < 1- T -1
-, (1-8)" <1 -1, (1 -92) ™,
ni"=laiiwi = [, a?%'
— (W e (W
1-TIL,(1-6)) "< 1-TIL,(1-5f)
n n
-] [a-9) s -] [(-5)"
i=1 i=1

ML 5™ 2 I B

1-TIn,(1-3)" (< 1-TI(1- )"
n

1—H(1—23)W*s1—ﬂ(1-25>w‘
=1 =1

P | LR

1=, (1 - r“’il) ‘<1 -, (1 _Eiz)Wi'

n n

-l a-@" <= Ja-a"

=1 i=1
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Consider,
nt = IVPF]EWG(r'ﬁ,r';%, r;}Q
(G g% 54834, (8 ¢ 5843 7))
= { ([ﬁl El 71l fl) ﬁ1 61 71 pl E1)].{ 1) }
W[(Ls 25 8), (34528 8] Fa))

andn? = IVPFNWG(2, 13, ..., n2)
(2. 6%, 52,82.32), (. 6%, 52,8232 |: 7))

= { ([(?[2 Ez 72 72 %2) ﬁz Ez 22 72 fz)].{ 2) ¢,

were

W([(02,5%,2%5%82), (82,5%.2°. 8", 82)]: Fe))
=TI ()™, " =TI 1(9fT) b
pT = H:‘l 1(‘5T Wi 5T = Hn 1(ST)W1
‘§T _ HI‘[ 1(§T Wx’
T — _Hn1(1 L)! AT — _Hnl(l_ﬁT)l
AT = HII 1(1 - )W!’

=1- Fl(TiT)Wi T =1-T12,(1- ) and

L (1-5)"

:S—T =1- Hin:1(1 _‘g-ir)wl’ ET =1—
2T =1- Hin:1 (1 - 2:)‘”!.

e =1, (1) L E = 1T, (1 ED)™
Also
& =TI, (8™, ¢" =TT (9D,
b =1L 1(BT) LET = Hjnzl(siT) :
3 =GN |
clT =1- Hin=1(1 _L'T) ]' fJT =1 _Hin=1(1 _fliT) l'
ZT= - n=1(1_31T) g
and

sT—1—[]@—sf',

_T\Wi
n
1=1(1 _Dl ) ’

() or T = 1,2,

o =1-

=

The score function,

W=

IN
N =

4+

T 4+dl+pl + 5+ 3]

4 + c

t+dt+pl+ 5!+ 3t
5

T+ +3+nl+ €
B 5

T+ 4+ +nt+ €
B 5

N 4+F +T T+
B 5

4§ 47 +T +E
5

2+ d%+ b2+ 52 + 32
5
€+ g2 + b% + 52 + 32
* 5
C+h+5+02 + 8
B 5
V+h2+3 +02 +
B 5
AT AT HT +E
B 5
AT AT HT +E2
5

Here we discuss the different cases:

Case (i):

If S(n!) < S(n?), then

IVPFNWG (i}, 03, ...

Case (ii):

Ifs@b) = s®@?),

then by score function, we consider

[N

a1 =1 .4 41 .17
T 4+d +5 +5 +3
5
a4 =1 g a1
T +d +5' +8 +3'
5
1 -1
1+ﬁ-+g+m + ¢
5
=1 -1 -1 1 =1
1+6 +3 +n +¢
5
=1 1 1 21 -1
9 +s +7 tv +¢
5
-1 9 .1 .1 -l
9 +s +7 tv +¢
5

4+
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© 4+ g%+ b2 +52+32]
5
4 d2+p2+52+32
5
'iz +'62 +zz + 2
B 5
P+H2+2 +n2+ 2
B 5
2+ +T+T + 12
B 5
2 +5+7 +0 +12
5

4+

+

N -

IVPFNWG (03,113, ..., i) =
IVPENWG (02, 13, ..
Thisimpliesni <nZ, h=12,..,

,03) (7
ni.e., for

G<T dh <dhbh <hh S <83 <3H <,
g%l gh’ bh < ba.Sh < 82,3% < 3%
Clh>1hl[jh>[jh15h>5hln"h thfh>f Ezﬁv

AL =02, 3L =32, B =02, € > &; then by (6), (7) the
following results follows:

IVPENWG(n3, 0, ..., 0iz) < IVPFNWG(E, 13, ..., 7)

1 w92 <l <2 =1 22 21 <2 21 _%2.381 - o2 =1
O =08, 8, =8, 7y, =7y On = Op, by = By Oy = 0, 8, =

-2 o1 -2 1 =2 21 22
S 4y = Zp'n = Oy, by 2= b

R N R R I
§1=§2,§1=§25 b2,51_523 =32
1=2,f]1=f]23—3,‘_ﬂ—o _wz f1_f2
i1=izlﬁ1=‘szz=3lﬁ _wz f1_f2
9t = 92 51 <2 1 t1=t2

Then accuracy function is given by,

[ +d" +b' +5 +3
5
£ +d +5 +51+3
4y 1 5
Ar) =7 R e =
5
O +§ +7 +0 +i
N 5
[P+ P +b? 82+
5
P+ +p2+82+73
1
) §2+§+i§+#+£2 = A
5
24T+ +T +E?
5

then by definition of n; X n,, we have

Thus, it completes the proof of the property.
Example. Let

[(0.000,0.002,0.004,0.006,.008),

(0.802,0.804,0.806,0.808,0.810)]’

A = ([(0.212,0.214,0.216,0.218,0.220),])

1 (0.578,0.580,0.582,0.584,0.586
(0.348,0.350,0.352,0.354,0.356),
[ (0.702,0.704,0.706,0.708,0.710

(0.466,0.468,0.470,0.472,0.474),
[ (0.684,0.686,0.688,0.690,0.700
A = ([(0.110,0.112,0.114,0.116,0.118),])
2 (0.502,0.504,0.506,0.508,0.510
[(0.380,0.382,0.384,0.386,0.388),
(0.742,0.744,0.746,0.748,0.750)

(0.222,0.224,0.226,0.228,0.230),
[(0.662,0.664,0.666,0.668,0.670) ’
(0.532,0.534,0.536,0.538,0.540),
{ [ (0.912,0.914,0.916,0.918,0.920 ] )
[(0.460,0.462,0.464,0.466,0.468),
(0.708,0.710,0.712,0.714,0.716)

A; =

are three IVPFNVs. By using IVPFNWG Operator defined
by (2) the aggregation is done for A;,A, and A; with the
weight vector w = (0.22,0.15,0.33,0.12,0.18) which is
represented as

A = IVFNWG(A,, A,, As) = w; A, @w,A, @w, A,

[ (0,0.281,0.077,0.414,0.281),
(0.800,0.860,0.720,0.888,0.840) ]’
B <[(0.217,0.155,0.312,0.128,0.187),] )
~ Y1 (0.584,0.453,0.738,0.388,0.524) |
[(0.285,0.205,0.399,0.170,0.245),
(0.506,0.436,0.718,0.371,0.503)

IV. APPLICATION OF IVPFNWG OPERATOR TO
SOLVE THE MULTI CRITERIA DECISION MAKING
ENVIRONMENT

Let us assume an automobile company wants to recruit a
public relations officer (PRO). A candidate selected for this
position should be prioritized in many aspects without
leaving any minor qualities, a person should have for this
designation. After initial stages of scrutinizing, four
candidates P,(i = 1,2,3,4) were selected for the final
evaluation with five criterions to decide C;(i = 1,2,3,4,5)
namely,

1. Communication skill - C,
2. Experience - C,
3. Confidence - C4
4. Knowledge - C,
5. Personality - Cg

The decision matrix is given in terms of number of candidates
and the criterion with the weightage of w=
(0.16,0.12,0.22,0.24,0.26)T which is expressed in the
following table |

Steps involved in solving the above problem using
IVPFNWG operator:
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Step 1: Aggregation of the rating values is calculated using  Step 3: Ranking is allotted according to the highest calculated
the INPFNWG operator. score value.

Step 2: The Score value is calculated for all the alternatives.  Step 4: We arrive at the conclusion based upon the ranking.

TABLE |
RATING VALUES IN TERMS OF IVPFNNs

Cc1
A [(0.000,0.002,0.004,0.006,0.008),(0.502,0.504,0.506,0.508,0.510)],[(0.202,0.204,0.206,0.208,0.210),
(0.600,0.602,0.604,0.606,0.608)],[(0.300,0.302,0.304,0.306,0.308),(0.802,0.804,0.806,0.808,0.810)]

B [(0.222,0.224,0.226,0.228,0.230),(0.568,0.570,0.572,0.574,0.576)],[(0.462,0.464,0.466,0.468,0.500),
(0.702,0.704,0.706,0.708,0.710)], [(0.352,0.354,0.356,0.358,0.360),(0.752,0.754,0.756,0.758,0.760)]

C [(0.212,0.214,0.216,0.218,0.220),(0.572,0.574,0.576,0.578,0.580)],[(0.432,0.434,0.436,0.438,0.440),
(0.666,0.668,0.670,0.672,0.674)],[(0.612,0.614,0.616,0.618,0.620),(0.918,0.920,0.922,0.924,0.926)]

D [(0.292,0.294,0.296,0.298,0.300),(0.564,0.566,0.568,0.570,0.572)],[(0.640,0.642,0.644,0.646,0.648),
(0.864,0.866,0.868,0.870,0.872)],[(0.472,0.474,0.476,0.478,0.500),(0.808,0.810,0.812,0.814,0.816)]

Cc2
A [(0.332,0.334,0.336,0.338,0.340),(0.742,0.744,0.746,0.748,0.750)],[(0.436,0.438,0.440,0.442,0.444),
(0.720,0.722,0.724,0.726,0.728)],[(0.078,0.080,0.082,0.084,0.086),(0.642,0.644,0.646,0.648,0.650)]

B [(0.012,0.014,0.016,0.018,0.020),(0.332,0.334,0.336,0.338,0.340)],[(0.072,0.074,0.076,0.078,0.080),
(0.552,0.554,0.556,0.558,0.560)],[(0.674,0.676,0.678,0.680,0.682),(0.844,0.846,0.848,0.850,0.852)]

C [(0.368,0.370,0.372,0.374,0.376),(0.642,0.644,0.646,0.648,0.650)],[(0.074,0.076,0.078,0.080,0.082),
(0.512,0.514,0.516,0.518,0.520)],[(0.502,0.504,0.506,0.508,0.510),(0.936,0.938,0.940,0.942,0.944)]

D [(0.064,0.066,0.068,0.070,0.072),(0.452,0.454,0.456,0.458,0.460)],[(0.372,0.374,0.376,0.378,0.380),
(0.772,0.774,0.776,0.778,0.780)],[(0.590,0.592,0.594,0.596,0.598),(0.882,0.884,0.886,0.888,0.890)]

C3

A [(0.098,0.100,0.102,0.104,0.106),(0.562,0.564,0.566,0.568,0.570)],[(0.362,0.364,0.366,0.368,0.370),
(0.712,0.714,0.716,0.718,0.720)],[(0.702,0.704,0.706,0.708,710),(0.972,0.974,0.976,0.978,0.980)]

B [(0.188,0.190,0.192,0.194,196),(0.444,0.446,0.448,0.450,0.452)],[(0.282,0.284,0.286,0.288,0.290),
(0.668,0.670,0.672,0.674,0.676)],[(0.502,0.504,0.506,0.508,0.510),(0.882,0.884,0.886,0.888,0.890)]

C [(0.042,0.044,0.046,0.048,0.050),(0.452,0.454,0.456,0.458,0.460)],[(0.312,0.314,0.316,0.318,0.320),
(0.606,0.608,0.610,0.612,0.614)],[(0.552,0.554,0.556,0.558,0.560),(0.972,0.974,0.976,0.978,0.980)]

D [(0.052,0.054,0.056,0.058,0.060),(0.222,0.224,0.226,0.228,0.230)],[(0.072,0.074,0.076,0.078,0.080),
(0.512,0.514,0.516,0.518,0.520)],[(0.652,0.654,0.656,0.658,0.660),(0.882,0.884,0.886,0.888,0.890)]

c4

A [(0.032,0.034,0.036,0.038,0.040),(0.342,0.344,0.346,0.348,0.350)],[(0.056,0.058,0.060,0.062,0.064),
(0.552,0.554,0.556,0.558,0.560)],{(0.432,0.434,0.436,0.438,0.440),(0.712,0.714,0.716,0.718,0.720)]

B [(0.112,0.114,0.116,0.118,0.120),(0.412,0.414,0.416,0.418,0.420)],[(0.302,0.304,0.306,0.308,0.310),
(0.612,0.614,0.616,0.618,620)],[(0.502,0.504,0.506,0.508,0.510),(0.910,0.912,0.914,0.916,0.918)]
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[(0.008,0.010,0.012,0.014,0.016),(0.442,0.444,0.446,0.448,0.450)],[(0.202,0.204,0.206,0.208,0.210),
(0.662,0.664,0.666,0.668,0.670)],[(0.500,0.502,0.504,0.506,0.508),(0.712,0.714,0.716,0.718,0.720)]

’

[(0.090,0.092,0.094,0.096,0.098),(0.440,0.442,0.444,0.446,0.448)],[(0.222,0.224,0.226,0.228,0.230),
(0.542,0.544,0.546,0.548,0.550)],{(0.378,0.380,0.382,0.384,0.386),(0.846,0.848,0.850,0.852,0.854)]

c5

[(0.070,0.072,0.074,0.076,0.078),(0.356,0.358,0.360,0.362,0.364)],[(0.264,0.266,0.268,0.270,0.272),
(0.572,0.574,0.576,0.578,0.580)],[(0.622,0.624,0.626,0.628,0.630),(0.950,0.952,0.954,0.956,0.958)]

[(0.082,0.084,0.086,0.088,0.090),(0.442,0.444,0.446,0.448,0.450)],[(0.272,0.274,0.276,0.278,0.280),
(0.682,0.684,0.686,0.688,0.690)],[(0.526,0.528,0.530,0.532,0.534),(0.942,0.944,0.946,0.948,0.950)]

[(0.172,0.174,0.176,0.178,0.180),(0.376,0.378,0.380,0.382,0.384)],[(0.402,0.404,0.406,0.408,0.410),
(0.732,0.734,0.736,0.738,0.740)],[(0.522,0.524,0.526,0.528,0.530),(0.902,0.904,0.906,0.908,0.910)]

[(0.342,0.344,0.346,0.348,0.350),(0.552,0.554,0.556,0.558,0.560)],[(0.072,0.074,0.076,0.078,0.080),
(0.652,0.654,0.656,0.658,0.660)],[(0.554,0.556,0.558,0.560,0.562),(0.972,0.974,0.976,0.978,0.980)

TABLE Il
AGGREGATED RATING VALUES OF IVPFNNs

[(0.000,0.044,0.050,0.055,0.059),(0.450,0.452,0.454,0.456,0.458)],[(0.257,0.259,0.261,0.263,0.265),
(0.627,0.629,0.631,0.633,0.635)],[(0.514,0.516,0.518,0.521,0.523),(0.894,0.897,0.901,0.904,0.908)]

[(0.099,0.102,0.105,0.108,0.111),(0.438,0.440,0.442,0.444,0.446)],[(0.295,0.297,0.300,0.301,0.310),
(0.653,0.655,0.657,0.659,0.661)],[(0.513,0.515,0.517,0.519,0.521),(0.893,0.895,0.897,0.900,0.902)]

[(0.068,0.073,0.078,0.082,0.086),(0.464,0.466,0.468,0.470,0.472)],[(0.309,0.311,0.313,0.315,0.317),
(0.657,0.659,0.661,0.663,0.665)],[(0.537,0.539,0.541,0.543,0.545),(0.911,0.914,0.917,0.919,0.922)]

[(0.131,0.133,0.136,0.139,0.141),(0.419,0.421,0.423,0.426,0.428)],[(0.271,0.273,0.275,0.277,0.279),
(0.673,0.675,0.677,0.679,0.682)],[(0.535,0.537,0.539,0.541,0.546),(0.906,0.909,0.912,0.915,0.918)]

TABLE 11l
RANKING BASED ON SCORE VALUES

Score Value Rank
A 0.3641 1
B 0.3625 2
C 0.3523 4
D 0.3593 3

V. CONCLUSION

This work seeks to increase decision-making precision in
multi-criteria decision-making (MCDM) situations, which
frequently arise in complicated and uncertain situations in
daily life. Fuzzy decision making, which involves ranking the
preferences, is one of the best techniques for handling
MCDM problems. We have outlined the notions of IVPFNS

and established some of its operational laws for \VPFNNS.
The goal of this work is to overcome the limits that were
pointed out while managing the value of dishonesty,
ambiguity, and falsehood in a constrained context. The score
and accuracy functions in this study were used to construct
the IVPFNWG operator, a theorem, and some of its
properties. An MCDM problem has finally been resolved
using the proposed operator to increase the accuracy level for
each alternate being evaluated with different weights for
different attributes. This method is suitable for all fields when
the decision-making problem is uncertain. To increase the
efficacy and level of accuracy in medical diagnostics, pattern
recognition, ranking preferences, etc., this recommended
strategy can be widely employed in various MCDM
scenarios. The suggested score and accuracy function will
serve as the foundation for future work because it makes it
simple to answer other MCDM problems with higher
accuracy using fewer computations.
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