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Abstract—The aim of blind image deconvolution is to re-
construct a clear image from a noisy blurred image when
the blur kernel is unknown. The approach for blind image
deconvolution could be divided into two steps, including blur
kernel estimation as well as non-blind image reconstruction.
Especially, the quality of the restored image is significantly
influenced by the estimation of the blur kernel. To acquire
a more accurate blur kernel, it is essential to get the edge
information of the image accurately. In this paper, a novel
blind image deconvolution model via an adaptive weighted
L0 gradient prior is proposed. Due to the incorporation of
the adaptive weighted matrix, our proposed model can more
effectively describe the edge information of the image so as
to make the estimated blur kernel more accurate. In addition,
an efficient algorithm is designed to leverage the sparsity of
patch-wise minimal pixels (PMPs) in deblurring. Experimental
results demonstrate the superiority of the proposed method
when compared to other related blind deconvolution methods.

Index Terms—Blind image deconvolution, Adaptive weighted
matrix, L0 gradient prior, Patch-wise minimal pixels.

1. INTRODUCTION

IN the process of image acquisition, the precision of the
acquisition equipment and external factors can cause a

degree of blurriness to the obtained image. Consequently, the
recovery of a high-quality image from its blurred counterpart
has emerged as a formidable challenge within the field of
image processing. Typically, we conceptualize the blurred
image as the outcome of a linear convolution involving the
original image as well as a blur kernel. The blur kernel
is also referred to as the point spread function (PSF).
Mathematically, the process of image degradation could be
expressed as

B = k ∗ I + η. (1)

In this equation, I stands for the original image, B denotes
the corrupted image, k represents the blur kernel, and η
signifies additive Gaussian noise. Depending on whether
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the blur kernel is known, image deconvolution could be
categorized into two distinct types: non-blind deconvolution
and blind deconvolution. Recently, there has been notable
progress in the research on non-blind image deconvolution
[1]–[5]. However, in numerous practical applications, the blur
kernel is commonly unknown. Under these circumstances,
one needs to estimate both I and k from B. This problem
is commonly referred to as blind image deconvolution. In
contrast to non-blind deconvolution, the blind one exhibits
sensitivity to noise and has the potential to generate multiple
solutions [6]. Therefore, research on blind image deconvo-
lution has consistently remained a hotspot in the field of
image processing [7]–[10]. To handle the inherent ill-posed
feature of blind image deconvolution, it becomes crucial to
apply regularization to both the image and the blur kernel by
integrating prior knowledge. When employing regularization
methods to address the issue of blind image deconvolution,
the choice of an appropriate regularization term plays a
pivotal role [11], [12].

To address the problem of blind deconvolution, numerous
regularization techniques have undergone extensive research.
In [13], a blind deconvolution approach was introduced,
using the H1 norm to optimize the image I as well as the blur
kernel k. However, the H1 norm exhibits robust isotropic
smoothing properties, which enables the approach falls short
in effectively preserving image edges. To overcome this
shortcoming, an innovative blind image deconvolution tech-
nique was presented by employing TV regularization rather
than H1 norm [14]. Although TV regularization can better
process the edge information of the image, TV norm readily
transforms the smooth signal into a signal that is piecewise
constant, resulting in staircase effects in the flat region of
the image. Subsequently, to alleviate the staircase effects, a
model based on high-order TV was introduced in [15].

In recent years, numerous models that leverage alterna-
tive sparse prior constraints have been employed in the
context of blind image deconvolution. In [16], the authors
discovered that the gradient of natural images follows the
heavy-tailed distribution. Consequently, they introduced a
mixed Gaussian model to emulate this characteristic when
estimating blur kernels. However, this method is time-
consuming and inefficient. Therefore, a normalized sparse
prior L1/L2 was presented in [17], which can significantly
reduce computational costs compared with the approach in
[16]. To further describe the sparsity of image gradients,
in [18], Xu et al. introduced a technique in their work
that employs a piecewise function to approximate the L0

norm. This approach enhances the deblurring performance.
In addition, Pan et al. [19] presented a new method for blur
kernel estimation by directly applying the L0 norm of image
gradients as the constraint term. This method can better
highlight the edge information of the image and enhance the
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accuracy of the blur kernel estimation. To further improve
the restoration effect of text images, in [20], Pan et al.
presented a blind image deconvolution model by integrating a
L0 sparse prior framework with a combination of image and
image gradient. This approach was developed based on an
analysis of the structural attributes inherent to text images. In
[21], they extended this method to the restoration of non-text
images and achieved satisfactory results. Moreover, inspired
by the dark channel prior in image defogging algorithms
[22], Pan et al. [23] proposed a blind image deconvolution
approach, using the dark channel prior as a foundation.
The experimental outcomes demonstrate that this approach
exhibits enhanced restoration performance across a range
of image scenarios. However, Yan et al. [24] pointed out
that in the absence of conspicuous dark pixels in images,
the approach in [23] may not always achieve satisfactory
results. According to this factor, they proposed an extreme
channel prior by merging the dark channel with the bright
channel. Afterwards, Chen et al. [25] found that when there
are not enough extreme pixels in images, the method in [24]
cannot accurately estimate the blur kernel. Therefore, they
presented a blind image deconvolution approach based on
local maximum gradient prior, which improved the accuracy
of blur kernel estimation. Nevertheless, these methods have
higher computational costs. For the purpose of enhancing
algorithmic efficiency, Wen et al. [26] put forward a sparse
prior model rooted in patch-wise minimal pixel (PMP). They
further devised a novel algorithm to efficiently address the
formulated model. The experimental results illustrate that this
method can significantly enhance computational efficiency
and achieve better restoration results.

While many of the methods studied earlier can yield
reasonably satisfactory results, they use ∥∇I∥0 as non-
natural image prior so as to find salient edges in the image
[27]. In more recent work, Pang et al. [28], [29] introduced
some novel regularization approaches for image denoising.
These involved integrating an adaptive weighted matrix with
the gradient operator. This special matrix has the capability
to change the orientation of the gradient operator, causing
it to lean towards a larger weight. Thus, it could more
effectively characterize the image local features. Inspired by
this observation, we incorporate the adaptive weighted matrix
into the realm of blind deconvolution. This article has three
main contributions:

• We construct a blind image deconvolution model by
employing an adaptive weighted L0 gradient prior. With
the incorporation of the adaptive weighted matrix, our
proposed model can better highlight edge information
of the image, resulting in the estimated blur kernel more
accurately.

• We design an efficient algorithm to solve the proposed
model, which can sparsely induce the PMP of latent
image during the blur kernel estimation process.

• Extensive experimental results concerning blind image
deconvolution have been furnished to showcase the
cutting-edge performance of the proposed method.

The rest of this paper is organized as follows. In Section
2, some related preliminary work are first introduced, and
then a blind image deconvolution model based on an adap-
tive weighted L0 gradient prior is proposed. The solution
method for the proposed model is provided in Section 3. In

Section 4, some relevant experimental results are presented to
demonstrate the effectiveness and superiority of the proposed
method. Finally, some conclusions are drawn in Section 5.

2. THE PROPOSED MODEL

In general, approaches for blind image deconvolution can
be categorized into two main groups, as discussed in [30].
The first category involves the joint estimation of both blur
kernel and potentially clear image. The second category
focuses on initially estimating the blur kernel and then
applying non-blind deconvolution using this estimated kernel
to obtain potentially clear image. In our work, we adopt the
second approach, and its success relies on emphasizing the
edge details of the image during the blur kernel estimation
phase.

More specifically, Pang et al. [29] introduced an
anisotropic total variation (ATV) model designed for de-
noising Gaussian images. This model exhibits improved
diffusion characteristics along the orientation of local fea-
tures’ tangents, thereby enhancing its denoising capabilities.
To couple more efficiently with the local structures, they
implemented a more effective approach by incorporating the
adaptive weighting matrix T to construct different weights.
The specific form of T is

T(i, j) =
[
t1(i, j) 0

0 t2(i, j)

]
=

[
1

1+ι|Gδ(i,j)∗∇xB(i,j)| 0

0 1
1+ι|Gδ(i,j)∗∇yB(i,j)|

]
.

(2)
Here, Gδ(·) represents a Gaussian convolution kernel. ∇xB
and ∇yB refer to the horizontal and vertical gradients of B,
respectively. δ and ι serve as two adjustable parameters.

In the context of blind image deconvolution, we explore a
method that involves integrating the image gradient operator
∇ with an adaptive weighted matrix T. We utilize L0 norm
as a means of imposing a non-natural image prior. Further-
more, we incorporate the patch-wise minimal pixel (PMP)
technique as a representation of the natural image prior, and
we enforce a constraint of ∥k∥22 on the blur kernel. As a
result of these considerations, we propose the following blind
image deconvolution model, termed the adaptive weighted
L0 gradient prior model:{

min
k,I
∥k ∗ I −B∥22 + γ∥k∥22 + µ∥T∇I∥0,

s.t. P(I)(o) ∼ p(x), for o ∈ {1, · · · , P}.
(3)

Here, γ and µ stand for two weighting parameters, and p(x)
signifies the probability density function subject to super
Laplacian distribution under the set threshold. P(I)(o) rep-
resents a collection of PMPs over non-overlapping patches,
which is denoted as

P(I)(o) = min
(i,j)∈Ωo

(
min

c∈{r,g,b}
I(i, j, c)

)
. (4)

In this way, the image I ∈ RM×N×c can be partitioned
into P non-overlapping blocks, each of size r × r, where
P = [Mr ] · [Nr ]. Ωo refers to the o-th non-overlapping block.
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3. ALGORITHM

The blind image deconvolution algorithm proposed in this
paper can be divided into two steps. The first step is to
estimate the blur kernel, and the second one is to utilize
this estimated blur kernel to carry out non-blind image
deconvolution, ultimately yielding the final estimated image.

In the first step, an alternating iterative algorithm is
employed to solve the intermediate latent image and the
blur kernel. To be more precise, the intermediate latent
image could be acquired by solving the following constrained
problem:{

min
I
∥kν ∗ I −B∥22 + µ∥T∇I∥0,

s.t. P(I)(o) ∼ p(x), for o ∈ {1, · · · , P},
(5)

where kν represents the blur kernel of the temporary esti-
mation. By introducing two auxiliary variables p and q, the
problem (5) can be approximated by

min
I,p,q
∥kν ∗ I −B∥22 + µ∥q∥0 + ω∥∇I − p∥22

+ β∥Tp− q∥22,
s.t. P(I)(o) ∼ p(x), for o ∈ {1, · · · , P},

(6)

where ω and β are two penalty parameters. Then, we need to
minimize three subproblems p, q and I with other variables
fixed.

It is noteworthy that during the solving process, we use
the threshold shrinkage step to promote sparsity within the
PMP of the image. To be specific, let Is(o) represent the
PMP subset of the image I . Within the iteration process, we
impose the following threshold constraint on this subset:

Ĩt+1,n
s (o) =

{
0, |It+1,n

s (o)| < λ,

It+1,n
s (o), otherwise,

(7)

where Ĩt+1,n
s (o) signifies the PMP subset following the

application of the threshold constraint, and λ > 0 is the
threshold parameter. Then It+1,n can be updated as follows:

Ĩt+1,n = It+1,n ◦ (1−M t+1,n) + PT (Ĩt+1,n
s ). (8)

Here, PT denotes the inverse operation of P , and M ∈
RM×N stands for the binary mask of the PMP subset
corresponding to image I .

The p-subproblem could be represented as

pt+1,n+1 = argmin
p

ω∥∇Ĩt+1,n − p∥22 + β∥Tp− qt+1,n∥22.
(9)

We delve into its optimality condition. Let p = [p1, p2], q =
[q1, q2]. Then the associated linear equation can be organized
as [

ω + βt21 0
0 ω + βt22

] [
pt+1,n+1
1

pt+1,n+1
2

]
=[

ω∇xĨ
t+1,n + βt1q

t+1,n
1

ω∇y Ĩ
t+1,n + βt2q

t+1,n
2

]
.

(10)

Evidently, the subproblem (9) is a smooth optimization
problem. Consequently, the explicit solution of pt+1,n+1 can
be achieved from (10) through a simple calculation, namely

pt+1,n+1
1 =

ω∇xĨ
t+1,n + βt1q

t+1,n
1

ω + βt21
,

pt+1,n+1
2 =

ω∇y Ĩ
t+1,n + βt2q

t+1,n
2

ω + βt22
.

(11)

The q-subproblem could be formulated as

qt+1,n+1 = argmin
q

µ∥q∥0 + β∥Tpt+1,n+1 − q∥22. (12)

This problem is solved via the approximate minimization
method [31]. Then we have

qt+1,n+1 =

0, (Tpt+1,n+1)2 <
µ

β
,

Tpt+1,n+1, otherwise.
(13)

The I-subproblem can be articulated as

It+1,n+1 = argmin
I
∥kν ∗ I −B∥22 + ω∥∇I − pt+1,n+1∥22.

(14)
In terms of the optimality condition, we can readily deduce
the Euler-Lagrange equation of (14). Under periodic bound-
ary condition, it can be efficiently computed using the fast
Fourier transform (FFT). The updated scheme can be found
in (15), where ∇x and ∇y represent difference operators
in the horizontal and vertical directions, respectively. F(·)
stands for conjugate operator. F and F−1 respectively denote
the FFT as well as its inverse transform.

To solve the blur kernel k, the estimation method based
on the gradient domain can be employed, which has been
shown to be more stable and accurate in [30]. Then we get

kν+1 = argmin
k
∥k ∗ (∇Iν)−∇B∥22 + γ∥k∥22. (16)

The solution of (16) can also be obtained through FFT:

kν+1 = F−1

(
F(∇xIν) ◦ F(∇xB) + F(∇yIν) ◦ F(∇yB)

F(∇xIν) ◦ F(∇xIν) + F(∇yIν) ◦ F(∇yIν) + γ

)
.

(17)

By iteratively solving the intermediate latent image and the
blur kernel, the final estimated blur kernel can be obtained.
We give the blur kernel estimation algorithm for solving (3)
in Algorithm 3.1. In the experiments, we set α = 2, J = 3,
βmax = 105, β0 = 2µ.

Algorithm 3.1 Blur kernel estimation algorithm

Input and initialization: degraded image B, initial blur
kernel k1.
for ν = 1 : 5 do
β ← β0, I0 ← B, t← 0.
while β < βmax do

It+1,0 ← It.
for n = 0 : J − 1 do

Compute pt+1,n+1 by (11).
Compute qt+1,n+1 by (13).
Compute It+1,n+1 by (15).

end for
It+1 ← It+1,J .
β ← αβ, ω ← αω.
t← t+ 1.

end while
Iν+1 ← It.
Compute kν+1 by (17).

end for
k ← kν+1, Î ← Iν+1.
Output: kernel estimation k, intermediate image Î .

In the second step, namely the stage of non-blind image
deconvolution, we employ the same algorithm as described

IAENG International Journal of Computer Science, 50:4, IJCS_50_4_40

Volume 50, Issue 4: December 2023

 
______________________________________________________________________________________ 



It+1,n+1 = F−1

F(kν) ◦ F(B) + ω
(
F(∇x) ◦ F(pt+1,n+1

1 ) + F(∇y) ◦ F(pt+1,n+1
2 )

)
F(kν) ◦ F(kν) + ω

(
F(∇x) ◦ F(∇x) + F(∇y) ◦ F(∇y)

)
 , (15)

in [23] and [26] to acquire the ultimate estimation of the
clear image.

4. NUMERICAL EXPERIMENTS

In this section, we unveil a wealth of experimental findings
showcasing the prowess and superiority of our proposed
method over other blind deconvolution approaches in the
field: the dark channel algorithm [23] (hereafter referred to
as“Pan-16”) and the patch-wise minimal pixels-based blind
image deconvolution algorithm [26] (hereafter referred to as
“Wen-20”). All the experiments happened in the MATLAB
environment, utilizing a PC equipped with a robust 3.20GHz
CPU and a generous 16GB RAM. To assess the quality of
restoration results, the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) are utilized as quantitative
indexes, whose definitions are as follows:

PSNR = 10 log10
12

1
MN

∑M
i=1

∑N
j=1(ui,j − Ii,j)2

, (18)

SSIM =
(2µIµu + c1)(2σIu + c2)

(µI
2 + µu

2 + c1)(σI
2 + σu

2 + c2)
. (19)

Here, I and u respectively stand for the original and restored
images, while µ and σ respectively signify the local mean
value and the standard deviation of the image. σIu corre-
sponds to the covariance between I and u. The constants c1
and c2 are employed to prevent extremely small denominator
values. In general, enhanced values of PSNR and SSIM mean
an improved quality for the recovered image.

In experiments, we initially evaluate our approach using
four grayscale images sourced from the dataset introduced
in [32], as illustrated in Fig. 1. And the blur kernels used for
image blurring are displayed in Fig. 2. Moreover, all blurred
images are added with zero mean Gaussian noise with a
standard deviation of 0.01. Table I presents the numerical
comparison results of the PSNR and SSIM indicators. It’s
evident that our approach consistently yields the highest
PSNR values, and in the majority of cases, it also attains
the highest SSIM values. Due to the addition of an adaptive
weighted matrix in this paper, which can better highlight the
edge information of the intermediate latent image during the
blur kernel estimation stage, a more precise blur kernel can
be achieved. This leads to an improved quality in the restored
image.

In the following experiments, some images of real scenes
are tested, including face images and natural images. In the
case of the first face image, our method’s primary param-
eters are configured as follows: µ = 0.004, ω = 0.0005,
ι = 0.00001, δ = 1. As for the second face image, our
method’s primary parameters are adjusted to µ = 0.00004,
ω = 0.0005, ι = 0.00001, δ = 1. The absence of
distinct edges and textures in face images poses a challenge
for achieving accurate kernel estimation. Fig. 3 shows the
restoration results of two face images. Compared with the

other two approaches, our method obtains higher image qual-
ity and estimates the blur kernel more precisely. In particular,
when examining the restoration outcomes of the first face
image, it becomes apparent that the restored image achieved
through our method exhibits superior visual characteristics.
This distinction is further highlighted through the locally
magnified view in the bottom-left corner, providing a clearer
observation. In addition, compared to other approaches, our
restored image is more natural. From the restored blur kernel
positioned in the upper left corner, we observe that our
approach excels in managing isolated noise within the blur
kernel, resulting in a more precise estimation of the blur
kernel. Regarding the second face image, from the locally
enlarged image positioned in the lower-left corner, we ob-
serve that the restored images obtained by other approaches
exhibit artifacts in a flat region. Fortunately, our method
effectively mitigates these artifacts. Moreover, in contrast to
the other two methods, our approach produces a more precise
estimation of the blur kernel.

For the first natural image, the main parameters of our
approach are set to µ = 0.004, ω = 0.0005, ι = 0.00001,
δ = 1. As for the second natural image, the primary
parameters of our method are adjusted to µ = 0.0004,
ω = 0.0005, ι = 0.00001, δ = 1. Fig. 4 presents the
experimental results of the two natural images. It is obvious
that our proposed approach acquires better visual effects
compared to the other two approaches. Specifically, from the
locally enlarged image placed in the lower-left corner, we
observe that our method reduces image artifacts to a certain
extent. Furthermore, it can be noted from the estimated blur
kernel in the upper-left corner that our method achieves a
more precise estimation of the blur kernel. It means that the
adaptive weighted matrix can enhance the accuracy of blur
kernel estimation, thereby enhancing the quality of restored
images. Particularly, for face images and natural images, we
provide the CPU time spent by different approaches in Table
II. From this table, it can be easily observed that our method
is considerably more time-efficient compared to Pan-16, and
is closer to the time used by Wen-20.

TABLE I Numerical results for blind deconvolution.

Method Pan-16 Wen-20 Ours
Image PSNR SSIM PSNR SSIM PSNR SSIM

im01 ker01 29.33 0.890 29.81 0.907 30.06 0.908
im01 ker02 28.73 0.887 28.90 0.888 29.01 0.891
im01 ker03 32.29 0.929 32.31 0.929 32.51 0.931
im02 ker01 29.94 0.923 30.33 0.916 30.65 0.918
im02 ker02 27.99 0.868 28.20 0.868 28.50 0.871
im02 ker03 31.23 0.928 31.34 0.909 31.70 0.913
im03 ker01 28.97 0.907 30.01 0.920 30.24 0.921
im03 ker02 29.07 0.911 29.61 0.917 29.75 0.920
im03 ker03 32.30 0.948 33.14 0.952 33.39 0.953
im04 ker01 30.97 0.916 31.58 0.920 31.85 0.923
im04 ker02 28.10 0.871 28.38 0.878 28.69 0.885
im04 ker03 32.65 0.931 33.45 0.942 33.82 0.944
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(a) im01 (b) im02 (c) im03 (d) im04
Fig. 1. Test images.

(a) ker01 (b) ker02 (c) ker03
Fig. 2. Blur kernels used in image degradation.

(a) Degraded image (b) Pan-16 (c) Wen-20 (d) Ours

(e) Degraded image (f) Pan-16 (g) Wen-20 (h) Ours

Fig. 3. Blind deconvolution results of two face images achieved by different methods.
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(a) Degraded image (b) Pan-16

(c) Wen-20 (d) Ours

(e) Degraded image (f) Pan-16

(g) Wen-20 (h) Ours

Fig. 4. Blind deconvolution results of two natural images gained by different methods.
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TABLE II Time comparison among different approaches.

Method Pan-16 Wen-20 Ours

Image CPU(s) CPU(s) CPU(s)

Fig.3(a) 163.50 12.23 13.30
Fig.3(e) 272.66 17.26 19.24
Fig.4(a) 752.75 41.45 48.12
Fig.4(e) 2293.91 113.85 128.36

5. CONCLUSION AND FUTURE WORK

To achieve more precise blur kernel and raise the quality
of restored image, in this paper, we introduced an adaptive
weighted matrix and developed a new blind image decon-
volution method based on an adaptive weighted L0 gradient
prior. Compared with the existing two approaches, in most
cases, our proposed approach could get the highest PSNR and
SSIM values. Additionally, the experimental results for real
scene images indicate that the proposed method can acquire
more accurate blur kernels and suppress image artifacts.

Looking ahead, we aim to delve into various acceleration
techniques to further diminish the computational cost. In
addition, our focus will extend to applying the adaptive
strategy to other image processing challenges, such as image
segmentation, hyperspectral image fusion and unmixing.
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