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Abstract—The concept of Drazin-Theta matrices are ex-
tended for rectangular matrices and defined W-weighted
Drazin-Theta matrices. Several characterizations and the alge-
braic and geometrical interpretations of Drazin-Theta matrices
are obtained here. The Drazin-Theta matrices are special cases
of W-weighted Drazin-Theta matrices. All the characterizations
obtained for W-weighted Drazin-Theta matrices are applicable
to its dual, that is Theta-Drazin matrices. Further, the concept
of W-weighted Drazin-Theta matrices are applied in solving
certain types of linear system of equations.

Index Terms—Drazin inverse, Moore-Penrose inverse,
Drazin-Theta inverse, DMP inverse, s-g inverse, secondary
transpose

I. INTRODUCTION

THE notion of Moore-Penrose inverse, Drazin inverse
and Core inverse are well known in literature. Recent

attempts at defining new generalized inverses and extending
the existing notion of inverses resulted in the development
of Core EP inverse, DMP inverse, CMP inverse, Drazin-Star
inverse, Drazin-Theta inverse etc. Extending the notion of
Core inverse, Mallik et al. [1] defined DMP inverse of a
square matrix using its Moore-Penrose inverse and Drazin
inverse. Using the core part of a matrix A and the Moore
Penrose inverse A†, Mehdipour et al. [2] defined CMP
inverse. For more properties and representations of Core EP
inverse one can refer [3], [4]. Motivated by the popularity
of these matrices, recent developments in this area led to the
introdution of Drazin-Star matrix, Drazin-Theta matrix and
Outer-Theta matrix [5]–[7].

The Moore-Penrose inverse is a unique inverse defined for
any rectangular matrix while Drazin inverse, DMP inverse,
CMP inverse, Drazin-Star inverse and Drazin-Theta inverse
are defined only for square matrices. Cline et al. [8] defined
W-weighted Drazin inverse by extending the definition of
Drazin inverse for rectangular matrices. For several char-
acterizations, properties and representations of W-weighted
drazin inverse the authors are referred to [9], [10], [11]. An
integral representation of W-weighted Drazin inverse is given
by Wei in [12]. An attempt to generalize DMP, CMP and
Drazin-Star inverses to rectangular matrices resulted in [13]–
[16]. In this article, Drazin-Theta matrices and Theta-Drazin
matrices are extended to rectangular matrices which give rise
to W-weighted Drazin-Theta matrix and its dual. Equivalent
expressions of W-weighted Drazin-Theta matrix AW−d,θ and
its characterizations are obtained here. Also, an application
of these matrices in solving linear system of equations are
provided.

Before moving to the main section, let us discuss some
notations and preliminary results that are necessary.
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II. PRELIMINARIES

An m × n matrix A of rank r defined over the set
of all complex numbers are denoted by A ∈ Cm×n

r . Let
R(A), N (A), Ind(A), Aθ be the column space, null space,
index and secondary conjugate transpose of the matrix A
respectively. Whenever Ind(A) = k, k is the smallest
nonnegative integer satisfying the condition rank(Ak) =
rank(Ak+1).

Definition 1: [17] Let A ∈ Cn×n. The secondary trans-
pose of A denoted by As, is defined as As = (bij) where
bij = an−j+1,n−i+1 for i, j = 1, 2, ...n.
Based on this idea, Vijayakumar [18] defined secondary
conjugate transpose and s-g inverse of matrices.

Definition 2: [18] Let A ∈ Cn×n. Then the secondary
conjugate transpose of A denoted by Aθ and is defined as
Aθ = A

s
= (cij) where cij = an−j+1,n−i+1.

Analogous to Moore-Penrose inverse, Vijayakumar [18] in-
troduced s-g inverse A†s for a square matrix and the s-g
inverse is unique whenever it exists. For more characteriza-
tions and construction of s-g inverse one can refer [19].

Definition 3: The s-g inverse of a square matrix A ∈
Cn×n is denoted by A†s and is defined as

(1) AXA = A (2) XAX = X
(3) (AX)θ = AX (4) (XA)θ = XA.

where Aθ denotes the secondary conjugate transpose of A.
This definition can be extended to a rectangular matrix
without loss of generality. It can be noted that s-g inverse and
Moore-Penrose inverse are two different inverses as given in
[6]. Consider a matrix A ∈ Cm×n. It is assured that there
exists a unique matrix G ∈ Cn×m, satisfying all 4 conditions
given below:

(1) AXA = A (2) XAX = X
(3) (AX)∗ = AX (4) (XA)∗ = XA.

Any matrix which satisfies condition (1) is called the gen-
eralized inverse of A whereas that which satisfies (2) is the
outer inverse. The matrix that satisfies (1) and (2) is the
reflexive generalized inverse of A.
The Moore-Penrose inverse A†, of A, is the matrix satisfying
the conditions (1) − (4). Here ∗ denotes the conjugate
transpose of A.
Assume m = n and consider the following additional
conditions -

(5) AX = XA (6) Ak+1X = Ak for some k ∈ {1, 2, 3, ....}

The matrix that satisfies conditions (1), (2) and (5), is the
group inverse of A. Similarly the unique matrix that satisfies
(2), (5) and (6) is the Drazin inverse Ad of A. The readers
are referred to [20]–[22] for more properties of Moore-
Penrose inverse and Drazin inverse.
Cline [8] extended the notion of Drazin inverse for rectan-
gular matrices and defined W-weighted Drazin inverse. In
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the same article, it was shown that whenever A is a square
matrix, both A† and Ad are special cases of W-weighted
Drazin inverse.

Definition 4: [8] Let A ∈ Cm×n and W ∈ Cn×m. The
matrix X = A(WA)2d is the unique solution to the equations

(AW )k = (AW )k+1XW, for some positive integer k (1)
X = XWAWX (2)
AWX = XWA (3)

is called the W-weighted Drazin inverse of A, and is denoted
as Ad,W .
The properties of W-weighted Drazin inverse plays an impor-
tant role in extending the definition of Drazin-Theta matrices
to rectangular matrices.

Definition 5: [6] Let A ∈ Cn×n, Ind(A) = p. Then the
Drazin-Theta matrix of A is denoted by AD,θ and is defined
as AD,θ = AdAAθ provided A†s exists.
The Drazin-Theta matrix G = ADAAθ provides a unique
solution to the set of equations

G(A†s)θG = G, ApG = ApAθ, G(A†s)θ = AdA

Whenever the index of matrix A is one, the Drazin-Theta
matrix reduces to Group-Theta matrix. The dual of Drazin-
Theta matrix is Theta Drazin matrix Aθ,D = AθAAd. Both
Drazin-Theta matrices and Theta-Drazin matrices are helpful
in solving linear system of equations.
In this article, we are extending the notion of Drazin-Theta
matrix, whenever it exists, to rectangular matrices. We have
also derived the algebraic and geometrical characterizations
of W-weighted Drazin-Theta inverse. An application to solve
the system of linear equations using W-weighted Drazin-
Theta matrix is obtained. Analogous to these results, the
characterizations for Theta-Drazin matrix which is the dual
of Drazin-Theta matrix follows.

III. RESULTS

Theorem 1: Let B ∈ Cm×n and W ∈ Cn×m where
p = max{Ind(BW ), Ind(WB)}.
Consider

G(B†s)θG = G(WB)pG = (WB)pBθ

G(B†s)θ = WBd,WWB
(4)

The system of equations (4) are consistent and
G = WBd,WWBBθ is the unique solution.

Proof: Assume that G = WBd,WWBBθ.
Then we have

G(B†s)θG = WBd,wWBWBd,WWBBθ

= WBd,WWBBθ = G.

G(B†s)θ = WBd,WWBBθ(B†s)θ

= WBd,WWB

and

(WB)pG = (WB)pWBd,WWBBθ

= (WB)p(WB)dWBBθ = (WB)pBθ

So G = WBd,WWBBθ satisfies the equations in (4).
Next, we will prove the uniqueness of G.

Assume there exists two n×m matrices G1 and G2 which
satisfy the equation (4).

G1 = G1(B
†s)θG1 = WBd,WWBBθ(B†s)θG1

= WBd,WWBG1 = (WB)dWBG1

= ((WB)d)p(WB)pG1 = ((WB)d)p(WB)pBθ

= ((WB)d)p(WB)pG2 = (WB)dWBG2

= WBd,WWBG2 = G2(B
†s)θG2 = G2

Hence the uniqueness.

Definition 6: Let B and W are two complex square
matrices of order m × n and n × m respectively with
p = max{Ind(BW ), Ind(WB)}. Then the W-weighted
Drazin-Theta matrix of B is defined as BW−d,θ =
WBd,WWBBθ.

Remark 1: Let B ∈ Cn×n and consider W = In×n. Then
we have the Drazin Theta matrixBW−d,θ = BdBBθ= Bd,θ.
Here Ind(B) = p. Whenever p = 1 we get a particular case
of W-weighted Drazin-Theta matrix of B, i.e. W-weighted
Group-Theta matrix BW−♯,θ.
Observe that BW−d,θ(B

†s)θBW−d,θ = BW−d,θ.
Here is an example which shows that the Drazin-Theta outer
inverse is different from Drazin Star outer inverse.

Example 1: Consider a column matrix A =

(
1
2

)
∈ C2×1

where rank(A) = 1.
Here A∗ =

(
1 2

)
and Aθ =

(
2 1

)
The Moore-Penrose inverse is A† =

1

5

(
1 2

)
and the s-g inverse is A†s =

1

4

(
2 1

)
By Theorem 3 of [8], we obtain Ad,W =

(
1 2

)
where

W =
(
1 0

)
. Then the W-weighted Drazin-Theta matrix is

AW−d,θ =
(
2 1

)
and the W-weighted Drazin-Star matrix

is AW−d,∗ =
(
1 2

)
.

Infact, these are the Weighted Group-Theta matrix and
Weighted Group-Star matrix respectively, since the index of
A is 1.

Remark 2: Observe that the existance of W-weighted
Drazin Star inverse is guaranteed. However, W-weighted
Drazin-Theta of A exists only when A†s exists.

The following lemma characterizes the Drazin-Theta outer
inverse as an outer inverse with prescribed column space and
null space.

Lemma 1: Let B ∈ Cm×n and W ∈ Cn×m with p =
max{Ind(BW ), Ind(WB)}. Then

(i) (B†s)θBW−d,θ is a projector onto C((B†s)θWBd,W )
along N (Bd,WBθ)

(ii) BW−d,θ(B
†s)θ is a projector onto C((WB)p) along

N ((WB)p).
(iii) BW−d,θ = ((B†s)θ)

(2)

(C((WB)p),N (Bd,WBθ))
.

Proof: (i) Since BW−d,θ is an outer inverse of (B†s)θ,
(B†s)θBW−d,θ is a projector.
Also

(B†s)BW−d,θ = (B†s)θWBd,WWBBθ

and

(B†s)θWBd,W = (B†s)θWBd,WWBBθ(B†s)θWBd,W
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implies that
C((B†s)θBW−d,θ) = C((B†s)θWBd,W )
Also,

N ((B†s)θBW−d,θ) = N ((B†s)θWBWBd,WAθ)

⊇ N (Bd,WBθ)

and

N (Bd,WBθ) = N (Bd,WWBD,WWBBθ)

= N (Bd,WBW−d,θ)

= N (Bd,WWBdD,WWBBθ(B†s)θBW−d,θ)

⊇ N ((B†s)θBW−d, B
θ)

which yields N ((B†s)θBW−d,θ) = N (Bd,WBθ).
(ii) Since BW−d,θ(B

†s)θ = (WB)dWB, we get
C(BW−d,θ(B

†s)θ) = C((WB)p)
and
N (BW−d,θ(B

†s)θ) = N ((WB)p).
(iii) From C(BW−d,θ) = C((WB)p) and
N (BW−d,θ) = N ((B†s)θBW−d,θ) = N (Bd,WBθ),

we have BW−d,θ = ((B†s)θ)
(2)

C((WB)p),N (Bd,W ,Bθ)
.

IV. CHARACTERIZATIONS OF W-WEIGHTED
DRAZIN-THETA MATRICES

A geometrical and algebraic approach to charaterize W-
weighted Drazin-Theta matrix is provided in this section.

Proposition 1: Consider two rectangular ma-
trices B ∈ Cm×n and W ∈ Cn×m. Here
max{Ind(BW ), Ind(WB)}= p. The W-weighted Drazin-
Theta matrix G ∈ Cn×m of B satisfies the following matrix
equations:

(i) (WB)pG = (WB)pBθ

(ii) G(B†s)θ = WBd,WWB
(iii) BG = BWBd,WWBBθ

(iv) GB = WBd,WWBBθB
(v) (B†s)θG = (B†s)θWBd,WWBBθ

(vi) WBd,WWBG = G
(vii) WBd,WWBGBB†s = G

(viii) GBB†s = G
(ix) (WB)pG(B†s)θ = (WB)p

(x) G(B†s)θ(WB)p = (WB)p

(xi) G(B†s)θWBWBd,WBθ = G
(xii) (B†s)θWBWBd,WG = (B†s)θWBd,WWBBθ

(xiii) G(B†s)θWBd,WWB = WBd,WWB.
Proof: The proofs follows directly from the definition

of W-weighted Drazin-Theta matrix given in definition 6 and
theorem 1.
The following theorem gives the equivalent conditions for a
rectangular matrix to be a Drazin-Theta matrix.

Theorem 2: Let B and W be rectangular matrices of order
m × n and n × m respectively, from the field of complex
numbers. Let p = max{Ind(BW ), Ind(WB)}. Then G ∈
Cn×m is the W-weighted Drazin-Theta matrix of B if and
only if any of the following statement is satisfied:

(i) (WB)pG = (WB)pBθ and WBd,WWBG = G.
(ii) WBd,WWBGBB†s = G and

(WB)pG(B†s)θ= (WB)p.
(iii) BG = BWBd,WWBBθ and WBd,WWBG = G.
(iv) (B†s)θG = (B†s)θWBd,WWBBθ

and WBd,WWBG = G.

(v) G(B†s)θ = WBd,WWB and GBB†s = G.
(vi) G(B†s)θ(WB)p = (WB)p

and G(B†s)θWBWBd,WBθ = G.
(vii) GB = WBd,WWBBθB and GBB†s = G.

(viii) WBd,WWBG = G and
(B†s)θWBWBd,WG = (B†s)θWBd,WWBBθ.

(ix) G(B†s)θWBWBd,WBθ = G
and G(B†s)θWBd,WWB = WBd,WWB.
Proof: Let G = WBd,WWBBθ. Now the conditions

(i) to (ix) holds by Proposition (1). To prove the converse,
it is enough to verify that every condition (i)-(ix) implies
G = WBd,WWBBθ.

(i) Assume that WBd,WWBG = G and (WB)pG =
(WB)pBθ. Then
G = WBd,WWBG = ((WB)d)p(WB)pG
= ((WB)d)p(WB)pBθ = WBd,WWBBθ.

(ii) Suppose that WBd,WWBGBB†s = G
and (WB)pG(B†s)θ = (WB)p. Then
G = WBd,WWBGBB†s

= ((WB)d)p(WB)pG(B†s)θBθ = WBd,WWBBθ.
(iii) Let WBd,WWBG = G and BG = BWBd,WWBBθ.

Then
G = WBd,WWBG = WBd,WWBWBd,WWBBθ

= WBd,WWBBθ.
(iv) Set WBd,WWBG = G

and (B†s)θG = (B†s)θWBd,WWBBθ. Then
G = WBd,WWBG = WBd,WWBBθ(B†s)θG
= WBd,WWBBθ.

(v) Assume that
GBB†s = G and G(B†s)θ = WBd,WWB.
Then

G = GBB†s = G(B†s)θBθ = WBd,WWBBθ.

The remaining part of the theorem can be proved in a similar
manner.
A geometrical approach to characterize W-weighted Drazin-
Theta matrix is given in the next theorem.

Theorem 3: Let B ∈ Cm×n and W ∈ Cn×m where
p = max{Ind(BW ), Ind(WB)}. Then the W-weighted
Drazin-Theta matrix BW−d,θ is the unique matrix G satis-
fying the condition

(B†s)θG = PC(B†s )θWBd,W ),N (Bd,WBθ), C(G) ⊆ C((WB)p).
(5)

Proof: Let G = BW−d,θ. By lemma 1, it can be easily
verified that BW−d,θ is a solution of both conditions in (5).
To prove the uniquness, assume that G1 and G2 satisfy the
conditions in (5). Also (B†s)θ(G1−G2) = 0. Now we have

C(G1 −G2) ⊆ N ((B†s)θ)

= N (B) ⊆ N (WBd,WWB) = N ((WB)p).

Since C(G1 −G2) ⊆ C((WB)p) ∩N ((WB)p) = 0.
Hence G1 = G2.

V. AN APPLICATION OF W-WEIGHTED DRAZIN-THETA
MATRICES

Here, we illustrate an application of W-weighted Drazin-
Theta matrix in solving linear system of equations.
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Theorem 4: Let B ∈ Cm×n and W ∈ Cn×m with
max{Ind(BW ), Ind(WB)} = k ≤ t. Let u ∈ Cm.
Consider

(WB)θx = (WB)tBθu, (6)

The solution of equation (6) is given by W-weighted Drazin-
Theta matrix.
The general solution of (6) is

x = BW−d,θu+ (I −WBd,WWB)y, (7)

for arbitrary y ∈ Cn.
Proof: It can be easily verified that BW−d,θ is a solution

of equation (6). Suppose x = BW−d,θb+(I−WBd,WWB)y
for arbitrary y ∈ Cn. Then

(WB)tx = (WB)tBW−d,θu+ (I −WBd,WWB)y

= (WB)tBW−D,θu = (WB)tBθu

which implies x is a solution of equation (6).
Now let us assume that x is a solution of equation (6).

WBd,WWBx = (WB)dWBx = ((WB)d)t(WB)tx

= ((WB)d)t(WB)tBθb

= WBd,WWBBθb = BW−d,θb

Therefore

x = BW−d,θu+ x−WAd,WWBx

= BW−d,θu+ (I −WBd,WWB)x

is a solution for equation (7).

VI. W-WEIGHTED THETA-DRAZIN MATRICES

Analogous to W-weighted Drazin-Theta matrices, we can
define its dual, the W-weighted Theta-Drazin matrix. All the
proofs of the theorems defined here are also analogous to the
theorems for BW−d,θ. We omit deriving those proofs here.

Theorem 5: Let B ∈ Cm×n and W ∈ Cn×m with p =
max{Ind(BW ), Ind(WB)}. Then the system of equations

G(B†s)θG = G, G(BW )p = Bθ(BW )p

(B†s)θG = BWBd,WW
(8)

are consistent and have a unique solution given by G =
ABθBWBd,WW .

Definition 7: Let B ∈ Cm×n and W ∈ Cn×m with
p = max{Ind(BW ), Ind(WB)}. The W-weighted Theta-
Drazin matrix of B is defined as Bθ,W−d = BθBWBd,WW .

Lemma 2: Let B ∈ Cm×n and W ∈ Cn×m with p =
max{Ind(BW ), Ind(WB)}. Then

(i) (B†s)θBθ,W−d is a projector onto C((BW )p) along
N ((BW )p).

(ii) Bθ,W−d(B
†s)θ is a projector onto C(BθBd,W ) along

N (Bd,WW (B†s)θ)

(iii) Bθ,W−d = ((B†s)θ)
(2)

C(BθBd,W ),N ((BW )p)
.

Proposition 2: Let B ∈ Cm×n and W ∈ Cn×m with
p = max{Ind(BW ), Ind(WB)}. The W-weighted Drazin-
Theta matrix G ∈ Cn×m of B satisfies the following matrix
equations:

(i) G(BW )p = Bθ(BW )p

(ii) (B†s)θG = BWBd,WW
(iii) BG = BBθBWBd,WW

(iv) GB = BθBWBd,WWB

(v) G(B†s)θ = BθBWBd,WW (B†s)θ

(vi) GBWBd,WW = G

(vii) B†sBGBWBd,WW = G

(viii) B†sBG = G

(ix) (B†s)θG(BW )p = (BW )p

(x) (BW )p(B†s)θG = (BW )p

(xi) BθBWBd,WW (B†s)θG = G

(xii) GBd,WWBW (B†s)θ = BθBWBd,WW (B†s)θ

(xiii) BWBd,WW (B†s)θG = BWBd,WW .

Theorem 6: Let B and W be rectangular matrices from
the field of complex numbers of order m×n and n×m re-
spectively. Let p = max{Ind(BW ), Ind(WB)}. Consider
the notation of items as in proposition 2. Then G ∈ Cn×m

is a W-weighted Theta-Drazin matrix of B if and only if any
of the following conditions are satisfied.

(1) (i) and (vi)

(2) (vii) and (ix)

(3) (iv) and (vi)

(4) (v) and (vi)

(5) (ii) and (viii)

(6) (x) and (xi)

(7) (iii) and (viii)

(8) (vi) and (xii)

(9) (xi) and (xiii)

Theorem 7: Let B ∈ Cm×n and W ∈ Cn×m with p =
max{Ind(BW ), Ind(WB)}. Then the W-weighted Theta-
Drazin matrix Bθ,W−d is the unique matrix G satisfying the
condition

(B†s)θG = PC((BW )p),N ((BW )p), C(G) ⊆ C(BθBd,W ).
(9)

Here, we give a relation connecting W-weighted Drazin-
Theta matrix and W-weighted Theta-Drazin matrix.

Theorem 8: Let B ∈ Cm×n and W ∈ Cn×m with
p = max{Ind(BW ), Ind(WB)}. Then the following
conditions hold:

(i) BW−d,θ = Bθ,W−d if and only if C((WB)p) =
C(BθBd,W ) and N (Bd,WBθ) = N ((BW )p).

(ii) BW−d,θ(B
†s)θ = (B†s)θ if and only if (WB)dWB =

BW (BW )d.

Proof: Proof of (i) follows directly from lemma (1) and
lemma (2).
(ii) Using the definition of W-weighted Drazin-Theta inverse
and W-weighted Theta Drazin inverse, BW−d,θ(B

†s)θ =
(B†s)θ if and only if WBd,WWB = BWBd,WW which
is same as (WB)dWB = BW (BW )d.

VII. CONCLUSION

Here, the Drazin-Theta inverses that are defined for square
matrices are extended to rectangular matrices. Exploring dif-
ferent characterizations, determinantal representation and it-
erative method to calculate W-weighted Drazin-Theta inverse
etc. can be considered for future research. Also, extending the
results obtained in this article to different algebraic structures
will open up new area of research.
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