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Soft-sensor Modeling of SMB Chromatographic
Separation Process Based on Incremental
Extreme Learning Machine

Qing-Da Yang, Cheng Xing*, Jie-Sheng Wang, Yong-Cheng Sun, Yi-Peng ShuangGuan

Abstract—Simulated Moving Bed (SMB) chromatography
separation is an innovative technology that combines
conventional fixed bed adsorption and true moving bed (TMB)
chromatography separation techmiques. Through analysis of
the SMB chromatography isolation method, we have identified
auxiliary variables for the soft-sensing model and key economic
and technical indicators for the forecasting model. Our
objective is to predict the component purity and yield of the
elicit and residual solution in the SMB chromatographic
separation process. To achieve this, we have utilized three
different soft-sensing modeling methods: incremental extreme
learning machine (I-ELM), inverse-free extreme learning
machine (IF-ELM), and incremental regularized extreme
learning machine (IR-ELM). Our simulation results
demonstrate the effectiveness and accuracy of these ELM
methods in predicting essential economic and technical gauges
in the SMB chromatographic separation process. These
methods enable instantaneous, optimized, and resilient
operation of SMB chromatography separation. Overall, SMB
chromatography separation represents an advanced technology
that enhances traditional techniques, and our study highlights
the efficacy of various ELM methods in predicting essential
process indicators, thereby ensuring optimal operation.

Index Terms—SMB chromatography separation, Soft-sensor
modeling, Incremental extreme learning machine

[. INTRODUCTION

MB chromatography chromatography separation is an
innovative technology that combines conventional fixed
bed adsorption and true moving bed (TMB) chromatography
separation techmiques [1]. Simulated Moving Bed (SMB)
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chromatographic separation technology 1s widely recognized
as a highly efficient method in adsorption separation. It
involves the use of multiple columns operated in a periodic
manner to replicate counter-current flow between two phases,
maintaining a continuous feed stream and product discharge.
This technology has gained significant recognition across
various industries, including chemical, biological, and food
sectors, due to its exceptional continuity, low energy
consumption, and high separation efficiency [2]. During
continuous production, the SMB system operates in a
periodic manner, which presents challenges in achieving
optimal periodic stability while meeting performance
objectives. For instance, product cleanliness, output, and
usage of mobile phase. The complexity involved in the SMB
chromatographic separation process, combined with the
influence of various parameters and disturbances, further
complicates the task of maintaining the optimal operating
point over an extended period [3]. Accurately measuring
component purity and yield poses a significant challenge in
practical production settings, as limited detection devices and
field constraints hinder the acquisition of real-time essential
economic and technical metrics of chromatographic
separation. As a result, achieving direct quality closed-loop
control becomes a formidable task [4-5]. However, soft
sensing technology emerges as a viable approach for
effectively forecasting key indicators in complex industrial
processes [6].

A comprehensive review conducted by Ref [7] examined
the identification of auxiliary variables for soft measurement
models and significant economic and technical predictors in
SMB chromatographic separation techniques. Ref. [8]
proposed an adaptive soft-sensor modeling approach to
predict the composition degree of purity in the extract and
extraction solution trough-out the SMB chromatographic
separation process. This method utilized a dynamic fuzzy
neural network (D-FNN) and a moving window strategy,
comparing algorithms such as Kalman filter (KF), linear least
squares (LLS), and extended Kalman filter (EKF) with the
generalized dynamic fuzzy neural network (GD-FNN)
relying on soft-sensor. Ref. [9] introduced a soft-sensor
modeling method employing improved particle population
optimization (PSO) and minimum mean square (LMS3)
techniques. Building upon the foundations of the adaptive
neural fuzzy inference system (ANFIS), a novel soft-sensor
modeling approach was introduced by the authors in Ref.
[10]. This approach was specifically designed to accurately
forecast extract purity level and extract components in the
context of SMB chromatographic separation techniques.
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In 2006, Professor Huang from Nanyang Technological
University in Singapore introduced Extreme Learning
Machine (ELM) is an example of feed-forward neural
network architecture [11-12]. The architecture of the ELM
model resembles that of a BP neural network, but with a fixed
number of layers, including the input stage, intermediate
stage, and output stage. The input laver to hidden layver
connections are initialized with random weights and offsets,
whereas the weights associated with the connections from the
hidden layer to the output layer are derived using the least
squares method. ELM has gained popularity in various fields,
such as face recognition [13], fault diagnosis [ 14], soft-sensor
modeling [15], resilient setup and smart management of
photovoltaic systems [16], on account of its swift learmng
time, efficient execution, and effective generalization power.

This article proposes a soft-sensing modeling technique for
SMB chromatographic separation processes employing three
incremental extreme learning machines. The article is
organized as follows. Section 2 presents a comprehensive
overview of SMB chromatographic separation technology
and the structure of the soft-sensing model. Section 3
introduces the concept of extreme learning machines. Section
4 elaborates on the methodology of incremental extreme
learning machines. Section 5 demonstrates the experimental
simulation and result analysis. In conclusion, the paper
concludes by summarizing the findings.

II. SMB CHROMATOGRAPHIC SEPARATION
TECHNOLOGY AND SOFT-SENSOR MODELING

A. SMB Chromatographic Separation Technology

The Simulated Moving Bed (SMB) chromatographic
separation technology aims to emulate the motion of the
stationary phase adsorbent by constantly interchanging the
positions of the feed and discharge ports. This technique
utilizes a loop configuration consisting of a series of
interconnected chromatographic columns By sequentially
shifting raw material inlet: the inlet for the raw material, and
raffinate outlet in the direction of the mobile phase, SMB
successfully emulates the counter-current flow between the
mobile phase: the moving phase or the mobile component,
resulting in the segregation of two components. Fig. 1
provides a visual representation of the fundamental principle
behind SMB chromatographic separation [8].

In the given illustration, it assumes that constituent
elements A and B are the two substances to be separated, with

Auxiliary variables

component A exhibiting a higher adsorption power than
component B. The eluent, referred to as D, acts as the
desorbent, while the extract, denoted as E, represents the
desired product. The feed 1s labeled as F, and the raffinate as
R. The entire bed can be divided nto four zones (I, 11, 111, TV,
or 1, 2, 3, 4) based on the sites of liquid entry and exit and
their respective functionalities. Each zone serves a distinct
purpose in the overall separation process.

B. Seoft-sensing Model of SMB Chromatagraphic Separation
Process

In the SMB chromatographic adsorption separation
process, real-time measurement of the purity and component
yield in the extraction product and residual solution is
challenging. Moreover, various factors influence the
variability of component purity and yield during the SMB
separation process. Hence, the inauguration of a soft-sensor
model for component purity and vield is of great theoretical
significance and engineering applied significance. The
soft-sensing model can be represented as follows:

X = fduy, X" (1)

where, X is the estimated worth of the model, 4 1s the
turbulence factor, # 1is the input control parameter, ¥ is the
response variable, X is the off-line sampling value of the
estimated variable or the value calculated by analysis.

Fig. 2 presents a visual depiction of the layout of the
soft-sensor model utilized in the SMB chromatographic
separation process.
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Fig. 1 Operating principle of SMB chromatographic separation process.
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Fig. 2 Structure of soft-sensor model.
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To develop the model, several awaliary variables were
selected guided by the process flow and preexisting
knowledge. These variables are used to enhance the
accuracy and relhiability of the soft-sensor model.

(1) Fluid throughput of feed liqud injection inlet and
injection pump (F pump), and unit is ml/min;

(2) Fluid throughput of the rinsing pump at the rinsing
liquid inlet (D pump), and unit is ml/min;

(3) Time to switch the valve, and unit is min.

Determine the following variables as the output variables
of the soft-sensor model.

(1) Integrity of the target substance in the effluent from
port N (If there is an impurity effluent from port N, purity <
1)

(2) Degree of impurity in the outlet M (if there 1s a target
outlet M, purity < 1);

(3) Mass recovery of the target object at port Nithe
injection mass of the target object can be obtained by the
yield of the target object at port N;

(4) The quality of the impurities flowing out of port M/the
quality of the impurities injected into the sample, to assess
the productivity of the impurities at port M.

Table T shows the primary and the secondary variables
incorporated within the soft-sensor model for the SMB
chromatographic separation process. The auxiliary variables
serve as inputs, while the outputs include the purity of the
target component in port N, the purity of the impurity
component in port M, the yield of the target component in
port M, and the yield of the impurities in port M. These
variables are employed to develop a forecasting model for
the relevant economic and technical indicators utilizing the

ELM neural network. To build the soft-sensor model, a
dataset consisting of 1000 data points is utilized, as shown in
Table 0.

III. SMB CHROMATOGRAPHIC SEPARATION
TECHNOLOGY AND SOFT-SENSOR MODELING

A Incremental Extreme Learning Machine(I-ELM)

The ELM is an innovative Single-hidden-layer
multi-layer perceptron that demonstrates similarities to the
conventional BP neural network. The ELM neural network
adopts a fully connected structure as its foundation, but
three-layered architecture with input, hidden, and output
layers. The Incremental Extreme Learning Machine (I-ELM)
is a single hidden layer feed-forward neural network that
provides advantages such as reduced traiming parameters
and accelerated convergence rate.The structure of the
1-ELM network is depicted in Fig. 3. has an #? nputs and
m outputs. fa.ay.0 0, represents input weights of
neurons in the hidden layer; &, represents the threshold of
the L neurons in the hidden layer; B, B2 B} s weight
parameters from hidden layer to output layer;
X = [xl,xz,---, me is input representation; The dimension is
mxN . Y= [yl,yz,---, me is output representation with
dimension AxN

Install the maximum hidden unit quantity as A , the
expected value error as & | and the residual difference as E,
that 1s, the variation matrix between the actual outcome
generated by the network and the target. The number of
hidden layer neurons L increases from 1. The steps to train
I-ELM are described as follows.

TABLE I. UNITS AND RANGES OF SELECTED VARIABLES

Injection pump flow  Injection pump

Switch

Purity of target

Impurity purity in ~ Yield of target Yield of impurity

Name (;agig% ﬂ?g /E:ﬁi;i)ty time substance in N port M port at port N at port M
Unit ml/min ml/min min mg/ml mg/ml % %
Range 0-1 0-1 0-1 11-20 0-1 0-100 0-100
TABLE II. DATA OF SMB CHROMATOGRAPHIC SEPARATION PROCESS
F pump flow D pump flow . . Purity of target Impurity purity ~ Yield of targetat . Yi_e d of
Serial number rate_ ratc_ Swttrfl}i]nt)]me substance in N in M port port N 1mpur1§\y{ atport
(ml/min) {ml/min} port (%) (%) (%) %)
1 0.15 0.50 11.00 41.25 24.96 12.53 64.20
2 0.15 0.50 12.00 85.11 34.21 32.16 88.75
3 0.15 0.50 13.00 97.38 42.46 92.03 97.35
4 0.15 0.50 14.00 99.55 51.24 63.61 9942
5 0.15 0.50 15.00 99.92 59.75 74.12 99.89
6 0.15 0.50 16.00 99.99 69.69 83.27 99.98
7 0.15 0.50 17.00 100.00 84.35 92.97 100.00
8 0.15 0.50 18.00 100.00 95.32 98.11 100.00
9 0.15 0.50 19.00 100.00 99.37 99.75 100.00
1000 0.15 0.50 20.00 100.00 99.98 99.98 100.00
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Fig. 3 I-ELM network structure.

When Z<M and the error is greater than the expected
error ¢, there are the following steps.

() L=L+1.

(2) Input weight and threshold of intermediate layer units
are randomly obtained.

(3) Calculate the input of intermediate layer units.

1) Addition of intermediate layer units. Extend to a matrix
of (the same for each column), and then calculate:

x=aX +b @

2) Radial hidden layer neurons. Extend to a matnix of
{each row 1s the same) and then calculate:

w=t7 - ®

(4) Calculate the intermediate layer units.
Additive neuron output is derived by:

_ _ 1
H*S(x)*ﬁp(_x) C))

Radial basal hidden layer neuron output is calculated by:

H=g"(x) (5)
(5) Compute the output weight of hidden layer neurons.
E'=E-fH (6

Compute the residual difference after adding § hidden
layer neuron, and repeat the above operations until the
residual difference 7' is less than & | stop learning. If the
error is consistently greater than the expected value, learning
stopsat L > M.

T
= EH

S @,
HH

B. Inverse-free Extreme Learning Machine (IF-ELM)

In the model of extreme learning machine, the traimng
error decreases with the increase of quantity of nodes in the
hidden layer. But in the experiment, considering the
computational complexity, quantity of hidden layer nodes
should be reduced as far as possible. In order to balance the
two factors of training error and computational complexity, it
is urgent to determine the optimal value of the node number
of hidden layer. The inverse-free extreme learning machine
(IF-ELM) comes into being. It uses hidden layer nodes and

increases the strategy. Node output weight coefficients with
I +1 hidden layers can be calculated from the output weights
of the nodes with L hidden layer nodes, without
re-calculating the output weights of all hidden layer nodes.

When there are L hidden layer nodes, the hidden layer
output matrix is # , and the output weight #° can be
expressed as:

pr=ncy =Ty Ty (8)

When a hidden layer node is added, the output weight
i+l and offset value gI*! are updated to the following
form.

T ©)

where, #" and £ are the output weight and deviation with
L hidden layer nodes number; WS the output weight of
the newly added hidden layer node, and e s the newly
added hidden layer node and deviation, both of which are
randomly selected parameters. Then the hidden layer output
matrix of ELM with £+! hidden layer nodes is #*" in Eq.

(10).
HL+1 _ g(XWL+1 +EI,+1)

:g(X[WL w1+1]+[EL eL+1D (10)
=[H 7]
where, & = g(Xw I gt ) The calculation formula of cutput

weight #°*' of nodes with £+1 hidden layers is:

ﬁL+1 _ (H L+l )‘?Y
= ([H A'lH At IH n'y
=Uy

(11

where, (H“l)g 1s the Moore-Penrose generalized matrix of
g o -(a Wz W) Al

In order to avoid over-fitting in learning, the regularization
term € is added. Then:

v=ler,, +[m W W)'E AT

a1, +H™H  H"h
Y a*+h'h
[4 B|HT (12)
lC DAt
[aHT + BH
|CH” +DH
According to Schuer complement formula, obtain:
{2 T T 2 T b T 1
A—(a I,+H H-H H(a I; +h h}a H}
B=—4H"Ha’L, +n"n)"
(13)

c=—a*1, ~n"n) 0" HA

D=-cH a1, +hh)" +(a1, +n7h)"
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Suppose m=a’l;, +hThthH(a21L +HTH)_1HTh . A can
be obtained from the Sherman-Morrison-Woodbury formula.

A=, +HTH) + s
(@1, +BH) B W BT, HH)

Eq. (15) can be obtained from Eq. (12)-(13).
T T L Ly - L 2 Ty Y157
AHT 4+ Bi =" +U ™ HU Ilfh(a I, +h")h ]

CH™ +Dh" = (21" h) ‘W (1 + H(4H" + Br" )
(15)

IF-ELM algorithm gradually increases the hidden layer
nodes in ELM algorithm, and the calculation results in each
step are completely similar to the classical ELM algorithm,
but the process of pseudo-inverse operation is eliminated, and
the training efficiency is improved.

C. Inverse-free Extreme Learning Machine (IF-ELM)

In a previous study [18], Feng et al. introduced the Error
Minimization Extreme Learning Machine (EM-ELM), which
is a fast incremental learning algorithm. It allows for
incremental updates of the output weights as the network
grows. Experimental results demonstrated that EM-ELM
outperforms other sequential or incremental algorithms in
terms of generalization performance and speed. However, the
EM-ELM algorithm has some drawbacks. Firstly, there
might be rank deficit in the initial hidden layer's output
matrix, leading to reduced calculation accuracy. Secondly,
the algorithm's generalization performance is sometimes
compromised by over-fitting. To tackle these concerns, a
refined iteration of EM-ELM, known as IR-ELM, 1s
introduced.

The central concept behind IR-ELM is to achieve swift
computation of output weights while preserving the
algorithm's ability to generalize. In the initial phase of
R-ELM, a starting network comprising N randomly assigned
hidden nodes is established, and subsequently, the output
weights are computed utilizing the R-ELM algorithm. As
new hidden nodes are gradually incorporated into the existing
network, the output weights are recursively adjusted until the
test accuracy reaches the desired criteria.

Assuming that there are already $-1 hidden nodes in the
network, the output weight can be obtained, where Hs_; 1s the
output matrix of the hidden layer, and subscript §-1 is the
number of hidden nodes. When a new node is added, the
output weight is g, = (c1+ HIH, | HLT, where H = [Hyovs]is
the hidden laver output matrix of the new network, and
vy =gy X, +bg ) gy X, +8; ) is the hidden layer
output vector associated with the hidden node. Suppose
D, =lc1+H: B, V'L, and b, =(c1+HEH, ' HE , and the left
side of Dg can be written as;

1 HI
(CI+H§HJ = {a{ VSTI

o)

[HS—D VS]J_

4
T
Hy v
viv, +C

(16)
_ Hg—lHS’—l
VgHS—l

Since CI+H{H; is symmetric, the inverse matrix is also
symmetric. So it can be expressed as:

(crengm, )" - Li; Er {A' B'l

BY E a7

where:

A=HL H,  +CI
B:Hg—lvs
E=vivg+C

(18)

So:

(A BT A B
|B" E| |BT E

Find the solutionto 4, B ,E

AB +BE'

BTA'+EX7 B'B+EE

_{AA#BB'T } a9)

= in o (20)

The following results can be obtained:

AR Hi A'Hi +BvL
D; = T ol Tl il Tl ' b; (21)
B E v B H, ,+Evg

5

It can be expressed as:

i

By substituting Eq. (18) and Eq. (19) into Eq. (22), obtain:

(22)

_ BTATHE . v
B'A'B-E B-B'A'B

(23)
_ vell-Hg Dy )
Vg(I_HS—lDS—l )Vs +C
T N A A A, T
I A ]?(A1 B)HS_1 . A ?VSI AHL
B"A"B-E E-B'A™B
_ Ds-1VsV§(HS—1Ds-1 _I) 24)

+D
Vg(I*Hslesfl)VstC -

=Dg, (I* VSM)
The proposed IR-ELM algorithm can be summarized in

Table III. Given a training dataset, highest number of hidden
nodes allowed, and desired learning accuracy.
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TABLE [II. ALGORITHM PROCEDURE (IR -ELM)

Algorithm: IR-ELM

In relation to a given training data set y = iXI,ti. ]XI eR* 1eR™,i=1,. N } the hidden node amount at the outset N, the

largest hidden neuron number &__, and the speculated learning accuracy & :

I Initialization neural network:

1. Randomize mput weight vector j and basis b,,i =

2. Evaluate the output matrix of hidden layer Hy;

Loy Ny

3. Evaluate the output weight 5 : g, =D,T = (H?D"HD + CI)_ngT , where T= [‘tlv'”?‘tf\l ]T )

4. Set s =0 and evaluate the leaming accuracy &, = &,

I Recursive update network. When N, <N__and &, > &,

L1 Sets=s+1, N, =N_,+1;

2. Append a new randomly generated apply a hidden node to the existing network and calculate the corresponding

output matrix H, = [H, ,,v,];

3. The output weight is changed according to the following procedure:
Vg (I — Hs—le—l )

- Vl;(:[iHs—le—l)vs +C
LS = Ds—l(IistS)

LS‘
soor [T

4. Calculate the new learming precision &, .

&

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Performance Index

A soft-sensor model was developed utilizing the
Incremental Extreme Learning Machine (I-ELM) neural
network to predict the purity factor of the desired outcome
compound in outlet N, the purity of impurities in outlet M,
the yield of the target compound at outlet N, and the yield of
impurities at outlet M in the SMB chromatography
separation process. The ELM neural network model was
configured with 30 hidden layer nodes. To train the
soft-sensor model, the data set consisting of 1000
representative data points was compiled from historical data
related to the simulated SMB chromatography separation
process. Out of these, 900 data points were randomly
selected as the training set, while the remaiming 100 data
points were reserved as the test set to evaluate the predictive
performance of the model Four specific indicators were
selected shown in Table IV to evaluate the accuracy of the
soft-sensor model's predictions. In these indicators, § is the
estimated value and Y is the actual value.

B. Forecasting Results and Analysis

The developed soft-sensing model for the SMB
chromatographic  separation process incorporates the
subsequent assisting variables: the raw fluid inlet pump flow
velocity (F pump), the pump flow performance for flushing
fluid inlet (D pump), and the valve transition duration. The
outputs of the soft-sensor models are the quality of the
desired compound in the outflow at port N, the purity of
impurities in the outflow at port M, the yield of the quality of
the desired compound at port N, and the vield of impurities

at port M. These outputs are predicted using the Incremental
Extreme Learning Machine (IELM), Improved Fast Extreme
Leaming Machine (IFELM), Incremental Regularized
Hxtreme Learning Machine (IRELM), and ELM.

The simulation results are presented in Fig. 4-11. InFig,. 4,
the comparison of the Forecasting outputs for the purity
level for the intended target substance in the effluent at port
N is shown for IELM, IFELM, IRELM, and ELM. Fig. 5
displays the comparison of the Forecasting error curves. Fig.
6-7 demonstrate the predicted output comparison and
Forecasting error curves for the impurity purity in the cutlet
R effluent. Similarly, Fig. 8-9 show the Forecasting outputs
and error curves for the yield percentage for the target at port
N. Finally, Fig. 10-11 present the Forecasting output and
error curves for the yield of impurities at port M. Table V
provides a comparison of the predictive performance
indexes of the established soft-sensing models.

TABLE IV. PERFORMANCE INDEX OF SOFT-SENSCR MODEL

Name Calculation method
MPE MPE = max {;— y],o}
»n s E
SSE SSE=3" [ yi— y!.]
i=1
Y= ¥
MAPE > ——1x100
MAPE = — %

n

R
RMSE=|:— [y!—y]]:|
L=

RMSE
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Fig. 7 Forecasting error of M port purity.
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Fig. 11 Forecasting error of M port vield.
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TABLE V. COMPARISON OF FORECASTING PERFORMANCE INDEXES OF
SOFT-SENSOR MODELS

Performance index RMSE SSE MAPE MPE
IELM 0.1261 1.5897 0.9399 0.7791
IFELM 0.0827 0.6843 0.0339 0.7850

N-port purity
IRELM 0.0688 04730 0.0405 0.6049
ELM 0.0758 0.5748 0.0406 0.6954
IELM 0.1933 3.737% 0.3950 0.6154
IFELM 0.1473 2.1705 0.5363 0.4284

M-port purity
IRELM 0.1167 1.3612 0.5277 0.3277
ELM 0.1424 20284 0.5353 0.3943
IELM 0.2692 7.2482 0.2107 0.7662
IFELM 0.2161 4.6717 0.3316 0.8257

N-port yield
IRELM 01656 2.7427 0.2542 0.4400
ELM 0.2087 4.3576 0.3009 0.7977
IELM 00148 00219 0.9871 0.1012
IFELM 0.0111 0.0124 0.0069 0.0791

M-port yield
IRELM 0.0079 0.0062 0.0065 0.0512
ELM 0.0085 0.0072 0.0071 0.0503

V. CONCLUSION

A soft-sensor model was constructed for the SMB
chromatographic separation process, considering the model
inputs as the flow rate of the raw material liquid inlet pump
{(F pump), the flow rate of the {lushing liquid inlet pump {D
pump), and the valve switching time. The desired outputs of
the model were determined to be the degree of
contamination in the desired compound in the outflow Liquid
at port N, degree of impurity concentration in the outflow
liquid at port M, the vield of the target compound at port N,
and the vield of the impurity at port M.

By utilizing three incremental extreme learning machines,
the soft-sensor model for the SMB chromatographic
separation process was successfully established. The
simulation results demonstrated a small error and a high
level of Forecasting accuracy for degree of contamination in
the desired compound in the outflow liquid at port N, the
purity of impurities in the outflow liquid at port M, the vield
of the target compound at port N, and the yield of impurities
at port M. Moreover, the established soft-sensor model
exhibited notable capability in accurately predicting the
economic and technical indexes within the SMB
chromatographic separation process.
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