TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

A Data Placement Strategy for Distributed
Document-oriented Data Warehouse

Abdelhak Khalil, Member, I4ENG, Mustapha Belaissaoui, and Fouad Toufik

Abstract—Within the big data phenomenon, cluster computing
has attracted special attention for its impressive ability to
process a vast amount of data. Hadoop cluster is a promising
cluster computing framework for implementing big data
warehouses and conducting big data analysis, thanks to its
distributed file system and MapReduce paradigm. In this
paper, we propose a new data placement strategy for a
document-oriented data warehouse within the distributed
environment of Hadoop. Our contribution includes formalizing
the logical model and cube building operators. First, we
present the cube building algorithm's processing using the
MapReduce paradigm, and then we explore the possibility of
accelerating the process by using Spark instead. To evaluate
the proposed framework in terms of OLAP cube construction
cost, we conducted experiments on a physical cluster, which
yielded promising results, specifically, that the proposed
framework enables efficient data placement and significantly
speeds up cube building compared to a similar OLAP
infrastructure chosen from existing literature.
Index Terms— Decision support systems, OLAP, Data
warehouse, NoSQL, Data cube.

I. INTRODUCTION

LTP (Online Transactional Processing) systems have

made 1t possible, in the era of the technological
revolution, to enhance the performance of companies by
automating many of their business processes. However, they
are not well-suited for business intelligence analysis,
especially when dealing with Big Data requirements. This is
why a second decisional component called OLAP (Online
Analytical Processing) 1s necessary in an organization’s
information system [1]. The role of OLAP systems is to
promote the management monitoring of the activities that
form the business processes thanks to Key Performance
Indicators (KPIs), these KPIs are expressively grouped
together in a dashboard [2]. Just like the OLTP system
which relies on RDBMS, the OLAP decision-making
system relies on the data warehouse which is the core
component of business intelligence. OLAP systems use a
multidimensional view called OLAP cube to query
analytical data. The starting point of an OLAP cube is the
multidimensional model which defines two essential
concepts: fact and dimensions [3]. The fact contains
quantitative metrics of a business subject, while the

Manuseript received July 3, 2023; revised October 5, 2023.

Abdelhak Khalil is a software engineer and a PhD student at Hassan the
First University of Settat, Morocco {corresponding author to provide phone:
(+212) 523 723 577, e-mail: akhalil@uhp.ac.ma)

Mustapha Belaissaoui is a professor of computer science and a former
deputy director of the National School of Business and Management of
Settat, Morocco {e-mail: mustapha belaissaoui@uhp.acma)

Fouad Toufik is an assistant professor of computer science at
Mohammed V University, Moroceo (e-mail: toufik fouadi@gmail.com)

dimension provides descriptions of the facts being stored.
The main problem with multidimensional data structures is
that there are sparse with multiple null entries and not
distributed uniformly throughout the multidimensional
space, it is concentrated in groups in spaces-times where
business events occur most often [4]. This issue makes it
more complex to store and process cube data. Theoretically
there are main four technological approaches to store and
process analytical data namely Relational OLAP(ROLAP),
Multidimensional OLAP(MOLAP), (HOLAP)Hybrid OLAP
and Desktop OLAP(DOLAP), with these approaches, data is
stored either in a relational or multidimensional database in
single node architecture. With the emergence of Big Data
phenomenon, storing and processing a huge amount of data
with, eventually, a large number of dimensions becomes a
very challenging concern for classical OLAP approaches
and exponentially cost in memory and time [5], [6], [7], [8].
In order to mitigate this problem, in the last few years,
technical solutions for storing and processing data in the
context of big data started using a distributed approach
which consists of using cluster computing [9]. With this
approach, data processing 1s distributed and parallelized
between nodes m a clusterr As a result, the
multidimensionality specific to decision-making queries is
easily managed thanks to the cluster's computation nodes.

Actually, Big Data decision-making solutions use either a

Hadoop SQL engine which allows to write and execute
MapReduce jobs using the SQL language such as Hive and
Pig, or a massively parallel processing database in the same
way as Teradata which allows to execute analytical queries
on Hadoop. Among the cons of the existing solutions is the
processing speed which 1s relatively time-consuming as they
use classical cube computation approaches and join
operations tend to be slow because multiple joins are
performed to link a fact to its associated dimensions due to
the logical modelling of Star/Snowflake Schema.

In this paper, we propose a distributed OLAP engine
framework built atop of Hadoop which relies on
MapReduce paradigm and Spark This framework allows the
mplementation of distributed data warehouse using the
document-oriented model, and provides OLAP capability in
the big data context. Our contribution can be summarized as
follows:

s Data modeling formalization of document-oriented
data warehouse.

s The pre-calculation of OLAP cube using MapReduce
framework (MR-Cube). Then a re-implementation using
Spark is given to further speed up the OLAP cube
building.

The remaining of this paper is organized as follows. After
the introduction, Section II presents the related works.
Section IIT Introduces the background, the architecture, and

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

the formalization of the document-oriented data warehouse.
Section IV introduces MR-Cube and Spark-Cube operators
and details the execution steps of each operator. In Section
V an implementation is done to evaluate cube building and
storage cost performance metrics. Finally, Section VI
concludes the paper and discusses future work.

II. RELATED WORKS

As mentioned earlier, facing big data phenomenon, a new
era is emerging in the field of decision support systems.
Analysing a huge amount of data has been the motivation
for several research studies that aimed to explore new ways
for implementing data warehouses and cube building engine
on big data trend. In what follows, we will discuss some
related works.

In [10] , the authors present an OLAP system built on
Hadoop framework called HaoLap (Hadoop based OLAP).
The research includes the design, the implementation and
the evaluation of the proposed OLAP engine. The
MapReduce and data loading algorithm is detailed and
experiments are conducted by the authors to compare
HaoLap with some competitors like Hive, HadoopDB and
HBase Lattice on different configurations. In the same vein,
in [11] the authors propose a cloud computing architecture
to set up a data warehouse and to perform OLAP analysis.
The proposed environment uses MapReduce and Hive to
build OLAP cubes. In [12] the authors explore the feasibility
of performing small analytics queries on big data in Hadoop
while benefitting from secondary indexes and partitioning in
HBase. This research shows the impact of data placement
strategy and indexing technique on data availability and
accessibility.

In the last few years, a remarkable tendency toward using
NoSQL oriented databases for implementing OLAP engines
has increased [13], [14], [15], [16], [17], [18]. Column-
oriented model is a promising playground that has been
tested for OL AP features and data warehousing. In [19], the
authors propose three approaches in order to perform the
mapping from the conceptual model to logical columnar
models, each one leads to a different structure and attribute
types. Later the same authors proposed a new approach for
building OLAP cubes from columnar NoSQL data
warehouse based on an operator called MR Columnar
CUBE (MC-Cube) [20], [21]. This operator allows cube
construction using MapReduce paradigm according to a
column-wise approach. In [22], the authors propose a novel
framework to create a columnar data warehouse by applying
a set of transformation mapping rules. Additionally, they
introduced two aggregate operators, namely MRC-Cube and
SC-Cube. These operators leverage the Hadoop MapReduce
paradigm and Apache Spark to perform computations for
OLAP cubes. Like columnar databases, the use of key value
databases can be extended to the mmplementation of
distributed data warehouses. In [23], [24] , a new approach
is presented in order to instantiate big data mart under key
value stores and to perform OLAP analysis.

Regarding OLAP implementation using document-
oriented model. In [25], the authors present a new model for
extracting OLAP cube from document-oriented NoSQL
databases. The proposed model is based on parallel
similarity — algorithm implemented with MapReduce

paradigm to find documents with similar attribute and use
them as OLAP dimensions. In [26], The development and
design of data warehouses has been suggested using a
Model Driven Approach methodology.

Last but not least, in [27] the authors propose a solution to
mplement OLAP engines on NoSQL databases using a
MapReduce like execution with Resilient Distributed
Datasets (RDDs).

In summary, all the aforementioned works expresses the
mmportance and the motivation behind using new
technologies to support OLAP systems in big data era. The
use of document-oriented model for the storage and analysis
of big data represents a promising research direction in the
field. However, there is still a gap in the development of
OLAP systems based on the document-oriented model.

III. DOCUMENT-ORIENTED DATAWAREHOUSE

A, The multidimensional model

The starting point of an OLAP cube is the
multidimensional model. In this section we give an
overview of basic concepts related to multidimensional
modelling and present the formal representation for its
components.

Definition 1: The Multidimensional Schema (MS) 1s a
logical description used to design data warehouse systems.
The simplest multidimensional schema is Star schema, the
two other chiel types are Snowflake schema and Galaxy
schema. Formally, a Multidimensional Schema denoted S 1s

a triplet (FS,DS,StarS) where:
o F¥={F,..F} asetof facts.

o D’ ={D,. ... D,} aset of dimensions.
e Star’ E 2" is a function that associates each fact

Fi € F* to its associated dimensions Dj € D*.

Definition 2: A fact contains measurement about a business
process. It is located at the centre of the multidimensional
schema. It contains quantitative information for analysis
called measures or metrics used in aggregation functions
according to dimension attributes. Formally, we can present

a fact as a pair (Lk",MF), where:
o Lk*={k ...k _} a set of foreign attributes that link a
fact to its associated dimensions.
o M* ={m,,...m} a finite set of measures.

Definition 3: A dimension describes an analysis coordinate
of a measure. It holds dimensicnal attributes that are used in
restriction and grouping clauses. A formal representation of

a dimension is a triplet (A" H” T%), where:
o AP={a” ,...,apD} is a finite set of attributes.
e P ={h,,...h.} is a finite set of hierarchies.

e ["={I_,..1.} aset of dimension instances.

A hierarchy 1s a directed tree structure for a dimension
whose nodes are dimensional attributes and whose arcs
represent connections between dimensional attributes.
Hierarchies are used to perform aggregations with different
granularity levels. A hierarchy denoted HP is defined with a
pair (AR, Weak®), Where:

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, IJCS 50 4 44

o A"=fal ._.a"} an ordered set of attributes which

are used to present the level of granularity along
the dimension, the first level of granularity
represents the dimensional attribute,

vi E[l..n],aiH eA%and a,"=a".
o Weak™:a, > {wa,,..wa }is a function possibly

associating parameters to a set of weak attributes.

City
Dimension --------~" = O Continent
Fact -------
Measures =" Parameters =
Hierarchy -
Year Quarter

Fig. 1. The conceptual multidimensional schema representation

B. The Mapping rufes

The design of a data warchouse under the document-
oriented model revolves around data modelling and how the
model represents relationships between fact and dimensions.
Unlike the ROLAP implementation where the mapping from
the conceptual model to the logical one is standardized and
straightforward, the document-oriented model offers several
candidate models for representing relationships between the
OLAP schema components. The main challenge is to find a
compromise between the data retrieval performance and the
data storage capacity. As long as data storage is no longer a
big issue nowadays, we are interested more in query
performance against the data warchouse and especially in
OLAP cube building. In this paper we propose a model
which wuses references to link a fact document to its
associated dimensions. It corresponds to a model in which
the data is stored in a hierarchical structure and mandates
that each child dimension record has only one fact record.
To implement a data warchouse using this model, the
following rules are applied:

(R1) Each fact record, F; € F* is transformed into a
document instance.

(R2) Each measure m; € MF is translated into an atomic
ficld af* .

(R3) Each dimension record D; € D® is mapped to a
document instance.
(R4) Each dimension attribute a; € AP is mapped to an

atomic field af;” .

(R5) To represent link between the fact collection and its
dimensions we use a reference in the dimension collection
that store the path to the associated fact instance denoted
E id.

IV. OLAP CUBE CONSTRUCTION

A. Approach overview

Efficient data cube computation plays a major role in
OLAP system implementation. Among the well-known
techniques used in the standard database systems for such
computation we can cite the Multiway Aggregation which is
a typical MOLAP approach that compute the entire cube
using a multidimensional array structure and The Bottom-
Up Computation (known as BUC method). These
techniques are suited for a limited amount of data and single
node architecture. However, with the explosion in volume
and variety of data that characterizes big data phenomenon,
such task becomes very challenging to traditional softwires
and databases. To fix a part of this issue, several OLAP
solutions for big data appeared on the market. The most
popular is Apache Hive which 1s a data warchouse
infrastructure built on top of Hadoop. Hive offers several
mteresting features and can perform analytical queries
efficiently. To perform aggregations, Hive uses MapReduce
framework only with a row-wise approach. Consequently,
this leads to a big cost in terms of data transfer and
processing and does not allow us to benefit from the
advantages offered by in-memory computation engines. To
overcome this issue, MR-Cube performs OLAP cube
computation from data stored row by row using a column-
wise approach. The fact that the fact document and the
dimensions share a driving join key, the join operation can
be executed using one MapReduce join, which explains our
data warchouse modelling. Hence, reducing the number of
MR-jobs allows better performance and speeds up the full
cube computation. Furthermore, we propose a re-
mmplementation of MR-Cube on Spark (Spark-Cube) which
allows us to take advantage of in-memory computation. Our
approach relies on precomputation of aggregations over all
possible dimensions after performing a query predicate that,
selects only records satisfying certain conditions. The design
of MR-Cube and Spark-Cube is based on cube theory,
which means that the aggregation corresponding to each
combination of dimensions is a cuboid and the lattice of
cuboids is the full OLAP cube. As far as the technical
environment is concerned, we implemented a distributed
architecture based on Hadoop file system that allow the
partitioning of the data warehouse across highly scalable
clusters(nodes). The general architecture of the proposed
OLAP system is depicted in Fig. 2

# hadoop
" HDFS

—_— ml

Distributed OLAP Engine .

Stream tram HOFS

hadoop S J\f
ark -
MAPRE P Storing cubes In HOFS
DUCE

Cube building with MapReduce and Spark
Fig. 2. The general architecture of the proposed framework

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

B. MR-Cube

In this operator, as the name suggests, the MapReduce
framework 1s used to perform OLAP cube computation.
Recall that, MapReduce is a distributed programming model
for processing a large amount of data. One of the main
characteristics of this paradigm is to allow developers to
focus only on business-oriented processing because
MapReduce and the environment in which it runs support a
number of features such as data distribution, load balancing
and parallelization. The terminologies of Map and Reduce
come from the functional programming languages used for
their construction.

MR-Cube builds the OLAP cube through four steps. The
first one loads data from a data warehouse built on top of the
Hadoop file system and performs query predicate to filter
the tuple satisfying the query criteria. Then, performs a
reduce side join between the fact and its associated
dimensions. The output result is stored in the file system and
used in the second step as input to perform an aggregation
operation. This intermediate result is the first level of
granularity and is considered as the starting point of the
entire OLAP cube computation

In what follows the execution of MR-Cube operator is
described in details:

The first step: This step consists of selecting dimension
attributes and measures required to build the OLAP cube. It
starts by a map phase that reads the input data using a
stream from HDFS, then select, filter and emait the attributes
involved in the OLAP cube computation. Since the fact and
the dimensions are stored separately in two different
files/collections, a reduce join operation is performed to
ensure the link between documents instances. As the name
implies, the join operation happens on the reduce phase side.
Therefore, the mapper adds a tag to each tuple so that the
reducer can distinguish where it comes from (Algorithm 1:
line 5). The composite key consisting of the fact id and the
tag forms the key to the partitioner function, while the
measure (for the fact document) and dimension’s attributes
are mapped as the value. After partitioning tuples by the join
key which is the fact id and sorting them by the tag value, a
list of keys and associated values are generated and datasets
having the same key are sent to the same reducer to be
joined by fact id only (see Fig. 3)

Algorithm 1: MR-Cube — map function

input: - (F id,al value):
- & query predicate
output: (compositKey,value,, )

1.

if a” value satisfy G do
composit key <« F°. id
composit.tag < tag

value,, < a; .value

tmp
end

S U

emit (compositKey,value_ )

Algorithm 2: MR-Cube —reduce function

input: - compositKey (F_.id, tag)
- values: iterator
output: (I _idyvalue )

variables: value,_, « values.next()

stepl
begin
do
nextValue < values.next()
men
value,  « value  +"."+tnextValue

while values hasNextElement()

emit (F_.idvalue__, )

end

The second step: The second step: It consists of two
MapReduce phases. The first one is a map task which takes
the output entries of the first step and split the value part (of
the key-value pair) into another key-value pair, where the
key contains the parameters of the dimensions involved, and
the value holds the measure to be aggregated. After the
execution of the map function, a first aggregation is
performed by the combiner. The use of a combiner in
between map and reduces phases allows to reduce
effectively the number of kev-value pairs which will be
transmitted to the shuffle/sort phase and consequently to the
reducer. Reducing the number of key value pairs passing
from one node to another helps optimize job execution,
saves network from congestion and eases the reducer task.
This later performs aggregation by key and writes the output
n HDFS. At the end of this phase the first level of
granularity is calculated. (see Fig. 4)

Algorithm 3: MR-Cube — map function
input: (F _.idvalue_,) //output of stepl

output: (key, .value, )
variables: T: array of strings
begin

T=valuesep.split(**,2)

key,,, «T [O]

value,, <« T[l]

emit (key,,,.value, )
end

Algorithm 4: MR-Cube — reduce function
input: (key,, .value

ip )
output: (keystEpz ,valuestepz)
variables: M: array of integers
begin

foreach v evalue,_,

| Madd(v)

end

key, . < key,

step2
value,, ,=aggregate(M)
emit (key_ ,value ;)

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

The third step: Starting with the first level (REG, CUS),
in this phase MR-Cube operator performs aggregation as per
each dimension attribute separately, which correspond to
(REG, ALL) and (ALL, CUS) levels. As mentioned earlier,
at the end of the second step the first level of the OLAP
cube is calculated and stored on disk. Recall that, tuples of
the first level are key-value pairs where, the key is the
concatenation of dimension attributes involved in the
aggregation. At the map phase of the third step, this key 1s
splitted to generate a new key value pair for each dimension
attribute. This is followed by shuffle and sort phases, then, a
list of output is sent to the reducer which combines all these
values and performs aggregation for a specific key. After the
completion of the reducer task, the second level of the
OLAP cube is computed and sent back to the Hadoop file
system.

Algorithm 5: MR-Cube — map function
input: (keystepz,valuestepz)

output: (key, .value_ )

variables: K: array of string
K <« key, ,.sphit(",")
begin
foreach ke K
key,, <k

value, < value

emit (key_ .value, )

end
end

The fourth step: 1t corresponds to the final stage of the
OLAP cube computation operator which performs the
highest level of aggregation. The map function takes the
output of the second step as input, and replaces all keys with
the ‘ALL’ value. The reducer receives an iterator value
corresponding to “ALL’ key, combines these values and
performs aggregation to provide a single output key value
pair corresponding to (ALL, Aggregation{measure)).

MapReduce computation paradigm has been the standard
since Apache Hadoop’s inception for several reasons: large
scale, parallel processing and flexability. After a Map or
Reduce phase, MapReduce framework writes the
intermediate results to disk. The data written to disk allows
mappers and reducers to communicate with each other. It is
also writing to disk that allows some fault tolerance.
However, these input/output operations are costly and time-
consuming. As the use of Hadoop has grown, its commumity
has made room for other revolutionary architecture such as
Spark which writes data on memory. The ability to cache
intermediate result in memory has several important
consequences on the processing speed of calculations as
well as on the overall architecture of Spark. In the next
section we look forward to use Spark instead of MapReduce
algorithms to perform OLAP cube computation.

C. Spark-Cube

Apache Spark can be seen as the successor of MapReduce
computation paradigm. While MapReduce operates in a

series of discrete stages (map, shuffle, and reduce) which
involve reading from and writing to disk at each stage,
Spark embraces in-memory computation, which means it
can persist intermediate data in memory between stages
rather than writing to disk. That’s why, theoretically,
Spark’s  performance should be far better than
MapReduce’s, particularly for iterative algorithms or
interactive analysis due to reduced data movement and disk
/O overhead. Fortunately, it is completely possible to re-
mplement MapReduce computation algorithm in Spark.
The main innovation brought by Spark is the concept of
Resilient Distributed Dataset (RDD). An RDD is a
collection (to stick to our vocabulary) calculated from a data
source (e.g., a data stream from Hadoop File System or
another RDD)

Similarly, the process of computing the entire cube using
Spark comprises four distinct steps. These steps are outlined
below:

The first step: Spark reads text files from HDFS using an
input stream from its configuration, then split and load it to
multiple RDDs. Each RDD represents a dimension or a fact
collection of documents, and only tuples that satisfy the
query-filtering criteria are extracted. Another mapper
processes the input RDD adding a tag to each element in
order to distinguish its parent dataset. It then generates
another RDD where the key is made up of the join key and
the tag. Afterward, all RDDs are merged using a union
operator to a unique RDD that contains the combination of
different datasets sorted by the composite kev (join key, tag)
to ensure that a tuple from one collection comes before the
other collection. The resulting RDD 1s mapped to a paired
RDD which is the equivalent for a key-value pair in
MapReduce. This allows the reducer to consider only the
join key and to ignore the tag value, thus avoiding, for e.g.,
that two different reducers will be called for the same join
key {keyl, tagl}, f{key2, tag2} Finally, a reduceByKey
function is applied to join the tuples having the same key.

The second step: In this step, an RDD transformation is
applied on the output of the previous step. The result is a
new RDD containing the combination of the dimension
mvolved ({CusRegion, SupName}, revenue). Subsequently,
an RDD action is performed to generate the first level of
aggregation ({CusRegion, SupName}, Agg(revenue)).
Following the aggregation process, this consolidated data is
transmitted back to the driver node. This serves as a
foundation for the subsequent computation of aggregation
levels.

The third and fourth steps: These two concurrent steps
run in parallel and are aimed at computing the second and
the third aggregation levels corresponding to: {({CusRegion,
ALL}, Agg(revenue)), ({ALL, SupName}, Agg(revenue))
and ({ALL, ALL}, Agg(revenue)). These aggregation
operations are executed on an input Resilient Distributed
Dataset (RDD) consisting of key-value pairs. This RDD
serves as the foundational data structure for these
computations, where keys represent the attnbutes or
dimensions for aggregation and values hold the
corresponding revenue data.

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

(Fkey,(Region,Supplier,revenue))

{ {1}, AFRICA,Sup?,15)

{{AFRICA, SupT} 15}

Fkoy ,rovenus, discount
1.,15,015%
2, 20,020 (Fkoy, Tag.rovonus) ({1 .0 .15
3.14,040 {{1.0}, 15} {{11.1,AFRICA) | ——
430,036 {{2,0}, 20} 13 28up)
5,14,025 ‘:{{},%%, 1;));
7115508 (45,07 14) (21,0 .20
511, 8- 2}, 1, ASIA |
({6, 0} .28) fEhe 1, a0
o {47, 03,112} (42 25upT) {Fkey.(Reglon.5u ppller revenua))
Re gion="AFRICA"or Rs giow="ASI4"
{FKey.Tag, Raglon) R { {1}, AFRICA,5up7,15)
Fkey.CKey, Customar,Reglon M {{1.1} , AFRICA} E { {2}, ASIA,Sup 7,20}
({2, 13, ASIA} (i3t .0 14) D { {3}, ASIA,5up 5,14}
1,1, KHALIL , AFRICA A —— {{3.11 | ASIA} tantasia) L Ml i)
2,2,Zhang, ASIA P {43} 2.8ups) Ry ASURTIL)
.2, 3., 1{5.1} , AFRICA} c { {7}, AFRICA,5up7,112)
3,2, Wang, ASIA {{6,1} , AFRICA} E
4,3, Dubois , EURDP {{7.1} , AFRICA}
5,1, Nabih , AFRICA (st 0 a4
6,1, 5faxi , AFRICA {Fkey.SKey.Suppller) (15}, 1. AFRICA}
7,1 ,Amrani, AFRICA { {5} . 2.8up?
t{1.2}, Sup?}
ot 5a07er Setior— Sans" (12,2}, Sup)
Supphier="Sap7"or Supplier=""5up5 {323 » Sups } (471 .0 112)
(14,23 ,Sups) (473, 1, AFRICA)
Fkey,SKey,Supplier ,adress ({5:2}:5”,?) (173 .2.5up7)
1,7, 5up7, adress? ({72} Sup?)
2,7, Sup7, adress?
3,5, 5uph, adressh
4,5, 5upb, adresst
5, 7.5up7, adress?
6, 8.,5upé, adresss
7,7.5up7, adress?
Fig. 3. Performing Reduce side join
combine

({AFRICA, SupT},141)

R
({ASIA, SupT}, 20) . L
[ aslssipial e , ' combine ——» E { {ASIA, SupT}, 20)
{ {3}, ASIA,Sup5,14) 5 { {ASIA ,Sup5}, 14) D » ,
{ {5}, AFRICA,Sup7,14) P { {AFRICA ,Sup7},14) ] ({ASIA ,Sup5},14)
({7}, AFRICA,Sup7,112) ({AFRICA ,Sup7},112) / E
combine
Fig. 4. Performing aggregation according to different combinations of dimension attributes
Y-l loroys)
e
Fkey revenue discount (Frey.Tag.revenus)

({103, 15)
1,15,0.15 ({2,0}, 20)
2, 20,0.20 ({3.0}, 14)
3,14, 0.10 — WAP ({4 .0}, 30}
4,30,0.35 ({5, 0} ,14)
5,14, 0.25 ({6, 0} ,28)
6, 2B, 0.15 {7, 0} .112)
7,112, 0.18

{10 15)
O e gion="AFRICA" or Rz gion="ASI4" ({1}.1. AFRICA)
1} .25 i &
Fkey.CKey,Customer,Region i é)' o “;u? R (Fey. (Region.Supplier evenue])
CKey,Tag,Regi ({2}, 1, ASIA)

1, 1, KHALIL , AFRICA (( a ,};) ,a;g\i:;?cm:; ({2} 2.5upT) g [{(1{}2’;];';:?;;3“?;';? L
2,2, Zhang, ASIA ({2, 1}, ASIA) (13} -0 14 At
3,2, Wang , ASIA ({37}, ASI&) ({3} 1, ASIA) u ({3} ,Sup5,14)

4,3,Dubois, EUROP [ (" MAP A S 143} 2,5ups) c ({5}, AFRICA,Sup7,14)

5.!1,! P !-AFRch HG.‘I;.AFRICA; “5(){53 frg;lc)n E ({7}, AFRICA,5up7,112)

6.1, Sfaxi,, AFRICA
7.1, Amrani, AFRICA

({7.1} . AFRICA)

O Supplicr="Sup7"or Supplier="Sup3"

Fkey,SKey Supplier adress

1,7, Sup?, adress?
2,7, Sup? ,adress?
3,5, Suph, adressh ——t WAP -
4, 5, Sup5, adressh
5, 7,Sup?, adress?
6, B,SupB, adressB
7, 7,Sup?, adress?

(Fkey.SKey. Supplier)

({12}, Sup?)
({2 2, 5up7)
({32}, Sups )
({42} Sups)
({52} Sup?)
(47,2} Sup7)

\—(mmrilennn ) { MapRDD

({5} 2.5up7)
{{n 0 113
({7}, 1, AFRICA}
{in) 2.8u07)

UnionRDD )—(smaymmnn)—

—( MapToPairRDD Hreduceaykeykcm)—

Fig. 5. Performing reduce side join operation between fact and dimensions with Spark

Volume 50, Issue 4: December 2023




TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

V. IMPLEMENTATION

In this section we run an implementation and report
results of the experiments we conducted to validate our
proposal using different test scenarios. The first experiment
aims to measure the storage space metric at different scales
between the proposed model and the default model of the star
schema, in which the fact has references to associated
dimensions (normalized model). In the second experiment
we compare the execution time of the full OLAP cube
building with MR-Cube and Spark-Cube from a data
warehouse built using our model on one hand, then we use
Apache Hive to perform cube building against the default
model. The last experiment allows evaluating the response
time to process analytical queries having different dimension
numbers in grouping clauses.

Dataset: we used a big data benchmark generator which
extends the TPC-H benchmark, a famous specification for
testing decision support systems. It consists of the execution
of business ad-hoc queries and concurrent data modification
in order to report performance metrics of the system under
test. For the expeniments, we are interested in the data
generation part. Basically, the official benchmark is
compatible with relational databases only, that’s why we
used an extended version of the benchmark from the
literature which is conceived to work with the most database
solutions. Concretely, it is a Java application which generates
data in different file formats and different scale factors. We
adapted the source code to fit our proposed model. Data
generation is performed by calling the DBGen Java class and
loaded directly on HDFS.

Fxperimental environment: our experimental platform
consists of 6 machines having an Intel-Core 17-66000U CPU
(@ 2.60GHz and running Debian-10.10 that communicate
using 100 Mbps Ethemnet switches. One of these machines
hosts the HDFS NameNode and the JobTracker (head node),
the other machines are worker nodes which host data nodes
and TaskTrackers. It is worth mentioning that in a production
environment, it is highly recommended having a duplicate of
the NameNode which is eventually a single point of failure,
otherwise if the NameNode goes down, the file system does
the same.

A, First experiment

In the nitial phase of our expenimentation, we conducted
the first experiment to assess the storage space demands of
our proposed model in contrast to a normalized model. To
gauge this, we varied the scalability factor, exploring three
different scale factors: SF=5, SF=10, and SF=20. The
primary focus of this experiment was to measure the system's
capacity to efficiently store large volumes of data.

For this particular experiment, we opted not to employ a
cluster setup, as it wasn't deemed necessary at this stage of
our research. Instead, we utilized a single-node cluster
configuration to carry out the evaluations. The results of this
experiment, specifically the disk space requirements for both
the proposed and normalized models, are visually
represented in Fig. 6. These findings shed light on how our
model compares in terms of storage efficiency under varying
scalability conditions, providing valuable insights into its
suitability for handling substantial data volumes.

18
16 —
ey 14
g 12 3
8 10
m
& 8 3
_%‘2 6
(<] 4
0 - LY . it Mt
SF=5 SF=10 SF=20
m Normalized model 1,13 2,29 4,63
B Proposed model 3,83 7,73 15,5

B Normalized model Proposed model

Fig. 6. Disk usage by model and scale factor

It’s clear that the proposed model has a consequent
storage cost due to data redundancy. Unlike the normalized
model which is used by ROLAP systems, the proposed
model uses a hierarchical data structure and duplicates
dimension records to increase efficiency. As hard drives with
big disk space are getting cheaper, storage cost is not a big
issue anvmore, and we are rather interested in data
accessibility and reliability.

B. Second experiment

In this part we aim to compare the performance of MR-
Cube and Spark-Cube. The experiment evaluates the full-
OLAP cube computation on a cluster of machines described
previously. We choose Apache Hive as a competitor. Our
choice fell on Hive because it is an OLAP software based on
MapReduce too, and it is often used to perform analytical
queries from HDFS. In order to test the scalability of the
system to handle a large data volume, we increased gradually
the scalability factor which impacts the size of the generated
data (see Fig. 7).

25
=) 20
£
7 15
E "
= 10
= o)
. ml N
SF=1 SF=10 SF=20
M Spark-Cube 2,25 4,31 8,43
OMR-Cube 5.3 7,33 16,54
Hive 7,12 11,5 19,15

HSpark-Cube 0O MR-Cube EHive

Fig. 7. Elapsed time for full cube building by operator on different scale
factors.

Fig. 7 shows the elapsed time of the cube building by scale
factors. From the graph we can observe that the execution
time of the OLAP cube building increases proportionately
with the size of the data warehouse. Furthermore, according

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

to Fig. 7, Spark-Cube is the fastest. For example, in a data
warehouse size of 14G, Spark-Cube is 1x faster than MR-
Cube and Hive. This is easily explained by the fact that in-
memory processing speeds up the cube construction
considerably, and allows Spark to outperform Hadoop
MapReduce which 1s used by MR-Cube and Hive. More
importantly, the results show that data storage and
organization mode have a huge clout on OLAP cube
building. Indeed, in the data model we are using, the fact that
the dimensions inherit the key from the fact document allows
to use a single join instead of multiple joins to link the OLAP
schema components (the fact and its related dimensions),
which reduces considerably the processing time.

Overall, we can conclude that Spark boosts the cube
building and allows saving half time.

C. Third experiment

In this last experiment, we want to compare the response
time of MR-Cube, Spark-Cube and Apache Hive to process
queries with different dimensionalities at different scale
factors using the same cluster of machines. Details about
queries are reported in TABLE T

TABLE I. QUERY SET DESCRIPTION

Number of Dimension

dimensions attribute Fredicate Measuee
D Customer: Nation
Date: Year Date:
Customer: Nation Y ear between
D Part: Tpr 2010 and
Date: Year 2016 Sumrevenue)
Customer: Nation Customer:
D Part: Type Region=
Supplier: Name *Africa’
Date: Month
300
250
o
H]
20200
£
= 150
o
2
a 100
]
w
” ﬂ-l H-I
0 I
] ] ] ] ] ] ] ] ]
3 52 535 2 5 3§ 3
¢ ¢ T & ¢ T & 4 T
= -4 = [ = [
T = c = a =
o o j=1
w w [74]
SF=5 SF=10 SF=20

mQ1{2D) @Q2{3D) OQ3{4D)

Fig. 8. Queries response time by operator faced with variation in scale factor

Fig. 8 shows time required for processing analytical
queries with different dimension numbers involved. We
observe that the size of the data warehouse and the variation
of dimension numbers have a considerable 1mpact on
processing time. This observation 1s more obvious when

performing queries with Apache Hive and by moving the
scale factor from 5 to 10. Moreover, the speed of processing
between Spark-Cube in one hand and MR-Cube and Hive in
another hand differs significantly when scaling up. In fact,
the read and write operations on disk performed by
MapReduce jobs have a consequent execution time, while
Spark keeps intermediate results in  memory. More
importantly, memory-based computation outperforms disk-
based one for all data and query configurations. In other
hand, and as expected, the number of join operations
performed to fetch the query result influences the execution
time (multiple joins led to low performance). Indeed, our
algorithm which relies on one reduce-side join shows better
performance with the equivalent implementation in Hive.

VI. CONCLUSION

On a broad scale, the process of storing and analyzing
data is a complex task and a significant challenge for
traditional data warehousing approaches. As a result, vendors
of business intelligence solutions have begun adopting new
technologies that promote distributed storage and parallel
computing paradigms. This paper presents the design and
implementation of a distributed document-oriented data
warehouse, and aims to construct OLAP cubes using
MapReduce and Spark. Our work focuses on formalizing the
adopted document logical model by defining a set of
migration rules from the multidimensional conceptual model.
Additionally, we detail two operators for extracting OLAP
cubes: MR-Cube and Spark-Cube.

In the conducted experiments, we evaluated the storage
cost of the proposed model and compared the performance of
MR-Cube and Spark-Cube with Apache Hive as a
benchmark competitor. The experimental results showed that
both operators outperform  Apache Hive in terms of
execution time. The logical model of the data warehouse 1s
based on a parent-child relationship between the fact and its
associated dimensions, facilitating faster join operations as
the OLAP schema components share the same join key.

Undoubtedly, document-oriented storage and cluster
computing offer interesting perspectives for data warehouses.
In the short term, we plan to extend the experiments to
include other Spark and MapReduce-based OLAP system
competitors like Apache Kylin. In the medium term, we aim
to study the implementation of data warehouses using graph-
oriented databases.

REFERENCES

[1] C. W. Shen, “Factors of data infrastructure and resource support
influencing the integration of business intelligence into enterprise
resource planning systems,” IJIIDS, vol. 9, no. 1, p. 1, 2015, doi:
10.1504/1J11DS.2015.070822.

[2] S.M. Rosu, G. Dragoi, and M. Guran, “A Knowledge Management
Scenario to Support Knowledge Applications Development in Small
and Medium Enterprises,” AECE, vol. 9, no. 1, pp. 8-15, 2009, doi:
10.4316/aece.2009.01002.

[3] R. Kimball, “Kimball Dimensional Modeling Techniques,” pp. 1-24,
2013, doi: 10.1016/B978-0-12-411461-6.00009-5.

[4] E. I Otoo, H. Wang, and G. Nimako, “Multidimensional Sparse Array
Storage for Data Analytics” in 2016 IEEE 18th International
Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, Australia: IEEE, pp. 1520-1529,
20186, doi: 10.1109/HPCC-SmartCity-DSS5.2016.0216.

Volume 50, Issue 4: December 2023



TAENG International Journal of Computer Science, 50:4, [JCS 50 4 44

[5]

[6]

[']

(8]

[#]

[10]

1]

[12]

[13]

[14]

[15]

[16]

7]

(18]

[19]

[20]

[21]

A. Cuzzocrea, [.-Y. Song, and K. C. Davis, “Analytics over Large-
Scale Multidimensional Data: The Big Data Revolution!” in
Proceedings of the ACM 14th International Workshop on Data
Warchousing and OLAP, in DOLAP °11. New York, NY, USA:
Association for Computing Machinery, pp. 101-104, 2011, doi:
10.1145/2064676.2064695.

A. Cuzzocrea, L. Bellatreche, and I.-Y. Song, “Data Warehousing and
OLAP over Big Data: Current Challenges and Future Research
Directions,” in Proceedings of the Sixteenth International Workshop
on Data Warehousing and OLAP, in DOLAP °13. New York, NY,
USA: Association for Computing Machinery, pp. 67-70, 2013, doi:
10.1145/2513190.2517828.

R. K. Batwada, N. Mittal, and E. S. Pilli, “Uncovering Data
Warchouse Issues and Challenges in Big Data Management,” in Big
Data, Machine Learning, and Applications, R. Patgiri, S.
Bandyopadhyay, M. D. Borah, and D. M. Thounaojam, Eds., Cham:
Springer  International Publishing, pp. 48-59, 2020, doi:
https://doi.org/10.1007/978-3-030-62625-9_5.

L. Duan and Y. Xiong, “Big data analytics and business analytics,”
Journal of Management Analytics, vol. 2, no. 1, pp. 1-21, 2015, doi:
10.1080/23270012.2015.1020891.

I. Suh and Y. D. Chung, “A Workload Assignment Strategy for
Efficient ROLAP Data Cube Computation in Distributed Systems,”
International Journal of Data Warchousing and Mining, vol. 12, no. 3,
pp. 51-71, 2016, doi: 10.4018/IJDWM.2016070104.

I Song, C. Guo, Z. Wang, Y. Zhang, G. Yu, and J.-M. Pierson,
“HaoLap: A Hadoop based OLAP system for big data,” Journal of
Systems and Software, vol. 102, pp. 167-181, 2015, doi:
10.1016/).j8s.2014.09.024.

B. Arres, N. Kabbachi, and O. Boussaid, “Building OLAP cubes on a
Cloud Computing environment with MapReduce,” in 2013 ACS
International Conference on Computer Systems and Applications
(AICCSA), Ifrane, Morocco: IEEE, pp. 1-5, 2013, doi:
10.1109/ATCCSA.2013.6616498.

O. Romero, V. Herrero, A. Abelld, and J. Ferrarons, “Tuning small
analytics on Big Data: Data partitioning and secondary indexes in the
Hadoop ecosystem,” Information Systems, vol. 54, pp. 336-356, 2015,
doi: 10.1016/].is.2014.09.005.

M. Chevalier, M. E. Malki, A. Kopliku, O. Teste, and R. Toumnier,
“Implementation of Multidimensional Databases in Column-Oriented
NoSQL Systems,” in Advances in Databases and Information Systems,
vol. 9282, M. Tadeusz, P. Valduriez, and L. Bellatreche, Eds., in
Lecture Notes in Computer Science, vol. 9282, Cham: Springer
International Publishing, pp. 79-91, 2015, doi: 10.1007/978-3-319-
23135-8 6.

L. C. Scabora, J. I. Brito, R. R. Ciferri, and C. D. de A. Ciferri,
“Physical Data Warehouse Design on NoSQL Databases,” in
Proceedings of the 18th International Conference on Enterprise
Information Systems, in ICEIS 2016. Setubal, PRT: SCITEPRESS -
Science and Technology Publications, Lda, pp. 111-118, 2016, doi:
10.5220/0005815901110118.

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Toumier,
“Benchmark for OLAP on NoSQL technologies comparing NoSQL
multidimensional data warehousing solutions,” Proceedings -
International Conference on Research Challenges in Information
Science, vol. 2015-June, no. June, pp. 480485, 2015, doi
10.1109/RCIS.2015.7128909.

I. Oditis, Z. Bicevska, J. Bicevskis, and G. Kamitis, “Implementation
of NoSQL-based Data Warchouses,” BIMC, vol. 6, no. 1, pp. 45-55,
2018, doi: 10.22364/bjme.2018.6.1.04.

A. Khalil and M. Belaissaoui, “A Graph-oriented Framework for
Online Analytical Processing,” IJACSA, vol. 13, no. 5, pp. 547-555,
2022, doi: 10.14569/1JACSA.2022.0130564.

S. Bouaziz, A. Nabli, and F. Gargouri, “Design a Data Warchouse
Schema from Document-Oriented database,” Procedia Computer Sci-
ence, vol. 159, pp. 221-230, 2019, doi: 10.1016/j.proes.2019.09.177.
K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Using the
column-oriented NoSQL model for implementing big data
warchouses” International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’15), pp. 469475,
2015.

K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big Data Warehouse:
Building Columnar NoSQL OLAP Cubes,” International Journal of
Decision Support System Technology, vol. 12, no. 1, pp. 1-24, 2020,
doi: 104018/1JDSST.2020010101.

K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Columnar
NoSQL CUBE: Agregation operator for columnar NoSQL data
warchouse,” in 2014 IEEE Intemational Conference on Systems, Man,
and Cybernetics (SMC), San Diego, CA, USA: IEEE, pp. 3828-3833,
2014, doi: 10.1109/SMC.2014.6974527.

[22] A. Khalil and M. Belaissaoui, “An Approach for Implementing Online
Analytical Processing Systems under Column- Family Databases,”
TAENG International Journal of Applied Mathematics., vol. 53, no. 1,
pp. 31-39, 2023.

A. Khalil and M. Belaissaoui, “New approach for implementing big
datamart using NoSQL key-value stores,” in 2020 Sth International
Conference on Cloud Computing and Artificial Intelligence: Technol-
ogies and Applications (CloudTech), Marrakesh, Morocco: IEEE, pp.
1-6, 2020, doi: 10.1109/CloudTech45835.2020.9365897.

A. Khalil and M. Belaissaoui, “Key-value data warehouse: Models and
OL AP analysis,” presented at the 2020 IEEE 2nd International Confer-
ence on Electronics, Control, Optimization and Computer Science,
ICECOCS 2020, Institute of Electrical and Electronics Engineers Inc.,
pp. 1-6, 2020, doi: 10.1 10%ICECOCS50124.2020.9314447.

F. Davardoost, A. Babazadeh Sangar, and K. Majidzadeh, “Extracting
OLAP Cubes from Document-Oriented NoSQL Database Based on
Parallel Similarity Algorithms,” Canadian Journal of Electrical and
Computer Engineering, vol. 43, no. 2, pp. 111-118, 2020,
doi:10.1109/CJECE .2019.2953049.

M. Hanine, M. Lachgar, S. Elmahfoudi, and O. Boutkhoum, “MDA
Approach for Designing and Developing Data Warehouses: A
Systematic Review & Proposal,” Int. J. Onl. Eng., vol. 17, no. 10, p.
99, 2021, doi: 10.3991/ijoe.¥17i10.24667.

H. Zhao and X. Ye, “A Practice of TPC-DS Multidimensional
Implementation on NoSQL Database Systems,” in Performance
Characterization and Benchmarking, vol. 8391, R. Nambiar and M.
Poess, Eds., in Lecture Notes in Computer Science, vol. 8391, Cham:
Springer International Publishing, pp. 93-108, 2014, doi: 10.1007/978-
3-319-04936-6_7.

[23]

[24]

[25]

[26]

[27]

Abdelhak Khalil received his engineering degree in computer science from
the National School of Applied Sciences, Marrakesh, Moroceo in 2014. He
joined the Information Systems and Decision Support Laboratory (LEFCG-
SIAD) of Hassan the First University in 2018. He participated in many
intenational conferences and published many articles in international
journals. His research interest includes business intelligence evolution in the
big data era, big data analytics, value creation from big data, and cluster
computing. He becomes a member of IAENG.

Mustapha Belaissaoui is a professor of computer science at Hassan the
First University, Settat, Morocco. He received his PhD in artificial
intelligence from Mohammed V University. His research interests include
artificial intelligence, combinatorial optimization, and information systems.
He authored more than a hundred papers, including journals, conferences,
chapters, and books that appeared in specialized journals and symposia.
Furthermore, he was deputy director of the National School of Business and
Management of Settat.

Fouad Toufik is an assistant professor of computer science at Mohammed
V University, Morocco. He works at Higher School of Technology SALE.
He received his PhD degree in computer science from Hassan the First
University in 2021. His interests in research focus on big data, parallel and
distributed systems, cloud computing and artificial intelligence.

Volume 50, Issue 4: December 2023



	1-camera- line disappear - fig 6-7-8 after processing_Page_1
	1-camera- line disappear - fig 6-7-8 after processing_Page_2
	1-camera- line disappear - fig 6-7-8 after processing_Page_3
	1-camera- line disappear - fig 6-7-8 after processing_Page_4
	1-camera- line disappear - fig 6-7-8 after processing_Page_5
	1-camera- line disappear - fig 6-7-8 after processing_Page_6
	1-camera- line disappear - fig 6-7-8 after processing_Page_7
	1-camera- line disappear - fig 6-7-8 after processing_Page_8
	1-camera- line disappear - fig 6-7-8 after processing_Page_9



