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Abstract—Let S = (G, σ) be a signed graph, where σ is
the sign function on the edges of the underlying graph G.
It is widely recognized that the adjacency spectrum alone
cannot uniquely determine a signed graph. Therefore, it is of
great interest to identify whether there exist any cospectral,
non-isomorphic signed graphs within a specific class of signed
graphs. In a significant contribution, Godsil et al. demonstrated
that two components of G1 × G2, where both G1 and G2 are
connected bipartite graphs, are cospectral if and only if at the
minimum one of G1 and G2 is balanced. In this paper, we first
generalize Godsil’s result for two connected signed bipartite
graphs S1 and S2. Furthermore, we will define partitioned
tensor product of two signed bipartite graphs, which will enable
us to generate multiple pairs of cospectral non-isomorphic
signed bipartite graphs.

Index Terms—Signed bipartite graph, adjacency matrix, GM-
switching, partitioned tensor product.

I. INTRODUCTION

A signed graph is an ordered pair S = (G, σ) consisting
of the underlying graph G with vertex set V (S), edge

set E(S) and a mapping σ: E(S) → {1,−1}, called the
signature. Each edge in the graph is associated with a value
that can be either positive or negative. For simplicity, we
assume that the graph G is simple, without multiple edges
or self-loops. The adjacency matrix A(S) = (aij) for a
signed graph S is a symmetric matrix with elements limited
to 0, 1, and −1, where aij = σ(xixj) when xi and xj are
neighboring vertices, and aij = 0 otherwise. The adjacency
spectrum of a signed graph S is the set of all eigenvalues
of A(S) including multiplicities. Two signed graphs are
cospectral for the adjacency matrices if they have the same
adjacency spectrum.

Assume that S = (G, σ) is a signed graph with vertex set
V (S) and edge set E(S). For a given vertex v ∈ V (S), we
define d+S (v) as the count of positive edges that are incident
to vertex v in S, and d−S (v) as the count of negative edges
that are incident to vertex v in S. Additionally, we introduce
d±S (v) = d+S (v)− d

−
S (v).

If V (S) can be partitioned into two parts X and Y such
that every edge of S has one end in X and the other end
in Y , then S is called the signed bipartite graph. We say
that X and Y as the partite sets of S. If |X| = |Y |, then

Manuscript received May 18, 2023; revised September 24, 2023. This
work was supported by NSFC (No. 12261016).

Shupeng Li is a postgraduate student of School of College of Big
Data Statistics, Guizhou University of Finance and Economics, Guiyang,
Guizhou, 550025, P.R. China.(e-mail:434744309@qq.com).

Juan Liu is a professor of School of College of Big Data Statistics,
Guizhou University of Finance and Economics, Guiyang, Guizhou, 550025,
P.R. China.(e-mail:liujuan1999@126.com).(Corresponding author)

Hong Yang is a postgraduate student of School of College of Mathematics
and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P.R.
China.(e-mail:1070556334@qq.com).

Hong-Jian Lai is a professor of Department of Mathematics, West Virginia
University, Morgantown, WV, USA.(e-mail:hjlai@math.wvu.edu).

S is balanced. Furthermore, if S is a signed bipartite graph

and its adjacency matrix can be expressed as
[

0 B
BT 0

]
,

where 0 denotes the zero matrix, then the matrix B is the
biadjacency matrix of S.

Let A be a square symmetric matrix with elements limited
to 0, 1, and −1 such that diagonal entries are zero. Suppose
SA denotes the signed graph whose adjacency matrix is given
by A. The Kronecker product of matrices A of size m × n
and B of size p×q, denoted by A⊗B, is defined as the block
matrix of size mp× nq constructed by replacing each entry
aij of A with the matrix product aijB. On the other hand,
the partitioned tensor product of two partitioned matrices

M =

[
P Q
R S

]
and H =

[
A B
C D

]
, denoted as M⊗H ,

is defined as the block matrix
[
P ⊗A Q⊗B
R⊗ C S ⊗D

]
, where

each block is obtained by taking the Kronecker product of the
corresponding submatrices. These notions were introduced
by Godsil et al. in [6].

Let S1 = (G1, σ1) and S2 = (G2, σ2) be two signed
graphs. Their direct product is the signed graph S1 × S2,
whose vertex set is V (S1)×V (S2), whose edges are all pairs
(xi, yk)(xj , y`) with xixj ∈ E(S1) and yky` ∈ E(S2). The
signature of the edge (xi, yk)(xj , y`) in S1 × S2 is defined
as σ((xi, yk)(xj , y`)) = σ1(xixj)σ2(yky`), where xixj ∈
E(S1) and yky` ∈ E(S2). The direct product construction
can also be applied to signed bipartite graphs.

If every signed graph that has the same spectrum as
S is also isomorphic to S, then we say S is determined
by its spectrum(DS). Otherwise, if there exist cospectral
signed graphs that are not isomorphic to S, then we say
that S has a cospectral mate or S is not determined by
its spectrum(NDS). Godsil et al. [6] utilized the concept
of partitioned tensor product to construct graphs that have
same adjacency spectrum. Ji et al. [9] introduced a method
of constructing cospectral bipartite graphs, which relies on
adjacency and normalized Laplacian matrices and employs
the unfolding technique. The notion of unfolding a bipartite
graph initially introduced in [5] is further expanded upon
by this construction method. This approach provided a more
flexible and generalized framework for generating cospectral
graphs. In recent research by Kannan et al. [10], bipartite
graphs with the same eigenvalues for both adjacency and
normalized Laplacian matrices were constructed using par-
titioned tensor product. For signed graphs, non-isomorphic
Laplacian cospectral signed graphs were obtained by Ji et
al. in [13] and used the operation of partial transpose. For
more details, we refer to [2], [3], [4], [8], [9], [11], [12],
[16].

The rest of the paper is organized as follows. In Section
2, we define the partitioned tensor product of two signed
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bipartite graphs and discuss the existence of cospectral non-
isomorphic signed bipartite graphs. In Section 3, we use the
GM-switching method to partitioned tensor product defined
as Section 2, this enables us to construct additional examples
of cospectral non-isomorphic signed bipartite graphs.

II. COSPECTRAL SIGNED BIPARTITE GRAPHS FOR
PARTITIONED TENSOR PRODUCT

Next, we first discuss the presence of cospectral direct
product for two signed graphs. Secondly, we define parti-
tioned tensor product and give a sufficient and necessary
condition of cospectral partitioned tensor product for two
signed bipartite graphs. The following notations will be used
in the rest of this paper.

Let S1 = (G1, σ1) and S2 = (G2, σ2) be two signed
bipartite graphs with V (S1) = X ∪ Y and V (S2) = U ∪
W, where X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn},
U = {u1, u2, . . . , up} and W = {w1, w2, . . . , wq}. Let B =
(bij)m×n and C = (ck`)p×q be the biadjacency matrices of
S1 and S2, respectively, with

bij =

{
σ1(xiyj), if xiyj ∈ E(S1),

0, otherwise,

and

ck` =

{
σ2(ukw`), if ukw` ∈ E(S2),

0, otherwise.

Then, S1 and S2 have adjacency matrices A(S1) =[
0 B
BT 0

]
and A(S2) =

[
0 C
CT 0

]
, respectively, rel-

ative to vertex orderings x1, x2, . . . , xm, y1, y2, . . . , yn and
u1, u2, . . . , up, w1, w2, . . . , wq, respectively. Define

A(S1)
# =

[
0 BT

B 0

]
and

A(S2)
# =

[
0 CT

C 0

]
.

It is simple to verify that S1 × S2 has adjacency matrix
A(S1)⊗A(S2) relative to the ordering (x1, u1), . . . , (x1, up),
(x1, w1), . . . , (x1, wq), . . . , (xm, u1), . . . , (xm, up), (xm, w1),
. . . , (xm, wq), (y1, u1), . . . , (y1, up), (y1, w1), . . . , (y1, wq), . . .
, (yn, u1), . . . , (yn, up), (yn, w1), . . . , (yn, wq) of its vertices.

In [14], Zhang gave the next lemma.
Lemma 2.1: [14] Assume that λ1, λ2, . . . , λm are

Am×m’s eigenvalues and µ1, µ2, . . . , µn are Bn×n’s
eigenvalues. Then the eigenvalues of the Kronecker product
A ⊗ B are λiµj for any i and j with i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.

This lemma yields the following theorem.
Theorem 2.1: Assume that S1, S2, S3 and S4 are four

signed graphs. If S1 and S3 are cospectral, S2 and S4 are
cospectral, then signed graphs S1 × S2 and S3 × S4 are
cospectral.

In order to construct cospectral non-isomorphic signed
bipartite graphs, we will define a pair of signed bipartite
graphs TS1×S2

as follows.
(i) The first signed bipartite graph of TS1×S2 has
a vertex set (X × U) ∪ (Y × W ), an edge set
{(xi, uk)(yj , w`)|xiyj ∈ E(S1), ukw` ∈ E(S2)} and a
signature σ((xi, uk)(yj , w`)) = σ1(xiyj)σ2(ukw`), where

xiyj ∈ E(S1) and ukw` ∈ E(S2);
(ii) the second signed bipartite graph of TS1×S2 has
a vertex set (X × W ) ∪ (Y × U), an edge set
{(xi, w`)(yj , uk)|xiyj ∈ E(S1), ukw` ∈ E(S2)} and a
signature σ((xi, w`)(yj , uk)) = σ1(xiyj)σ2(ukw`), where
xiyj ∈ E(S1) and ukw` ∈ E(S2).

By the definition of TS1×S2
, the adjacency matrices of

two signed bipartite graphs are A(S1)⊗A(S2) relative to the
ordering (x1, u1), . . . , (x1, up), (x2, u1), . . . , (x2, up) . . . ,
(xm, u1), . . . , (xm, up), (y1, w1), . . . , (y1, wq) . . . , (yn, w1),
. . . , (yn, wq) of its vertices and A(S1)⊗A(S2)

# relative to
the ordering (x1, w1), . . . , (x1, wq), (x2, w1), . . . , (x2, wq),
. . . , (xm, w1), . . . , (xm, wq), (y1, u1), . . . , (y1, up), (y2, u1),
. . . , (y2, up), . . . , (yn, u1), . . . , (ynup) of its vertices, respec-
tively. Therefore

TS1×S2
= {SA(S1)⊗A(S2), SA(S1)⊗A(S2)#}.

Moreover, if S1 and S2 are connected, then S1 × S2

will consist of exactly two components: SA(S1)⊗A(S2) and
SA(S1)⊗A(S2)# .

We call TS1×S2 the partitioned tensor product of two
signed bipartite graphs S1 and S2.

We start by recalling some properties of Kronecker product
of matrices in the following.

Proposition 2.1: [15] Let M1 = (m
(1)
ij )p1×q1 ,M2 =

(m
(2)
ij )p2×q2 , H1 = (h

(1)
ij )s1×t1 and H2 = (h

(2)
ij )s2×t2 . Then

each of the following holds:
(i) if both M1 and H1 are orthogonal matrices, then M1⊗H1

is also orthogonal matrix;
(ii) (M1 ⊗H1)

T =MT
1 ⊗HT

1 ;
(iii) if q1 = p2 and t1 = s2, then (M1 ⊗H1)(M2 ⊗H2) =
(M1M2)⊗ (H1H2);
(iv) if p1 = p2 and q1 = q2, then (M1 + M2) ⊗ H =
M1 ⊗H +M2 ⊗H .

Next, we shall also develop a number of similar properties
of partitioned tensor product for two partitioned matrices. All
these will be applied in our arguments.

Proposition 2.2: Let M1 = (m
(1)
ij )p1×q1 ,M2 =

(m
(2)
ij )p2×q2 , H1 = (h

(1)
ij )s1×t1 and H2 = (h

(2)
ij )s2×t2 . Then

each of the following holds:
(i) (M1⊗H1)

T =MT
1 ⊗HT

1 ;

(ii) let M1 =

[
P1 0
0 S1

]
and H1 =

[
A1 0
0 D1

]
, or

M1 =

[
0 Q1

R1 0

]
and H1 =

[
0 B1

C1 0

]
:

(ii-1) if q1 = p2 and t1 = s2, then (M1⊗H1)(M2⊗H2) =
(M1M2)⊗(H1H2);

(ii-2) if both M1 and H1 are orthogonal matrices, then
M1⊗H1 is also orthogonal matrix.

Proof: For (i), let M1 =

[
P1 Q1

R1 S1

]
and H1 =[

A1 B1

C1 D1

]
. Then by Proposition 2.1 (ii),

(M1⊗H1)
T =

[
PT
1 ⊗AT

1 RT
1 ⊗ CT

1

QT
1 ⊗BT

1 ST
1 ⊗DT

1

]
=

[
PT
1 RT

1

QT
1 ST

1

]
⊗
[
AT

1 CT
1

BT
1 DT

1

]
= MT

1 ⊗HT
1 .
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For (ii), we assume that M1 =

[
P1 0
0 S1

]
and H1 =[

A1 0
0 D1

]
. If q1 = p2 and t1 = s2, we can define M2 =[

P2 Q2

R2 S2

]
and H2 =

[
A2 B2

C2 D2

]
such that the number

of columns of P1 is equal to the number of rows of P2, the
number of columns of S1 is equal to the number of rows of
S2, the number of columns of A1 is equal to the number of
rows of A2 and the number of columns of D1 is equal to
the number of rows of D2. Then, by Proposition 2.1 (iii),

(M1⊗H1)(M2⊗H2)

=

[
P1 ⊗A1 0

0 S1 ⊗D1

] [
P2 ⊗A2 Q2 ⊗B2

R2 ⊗ C2 S2 ⊗D2

]
=

[
(P1 ⊗A1)(P2 ⊗A2) (P1 ⊗A1)(Q2 ⊗B2)
(S1 ⊗D1)(R2 ⊗ C2) (S1 ⊗D1)(S2 ⊗D2)

]
=

[
(P1P2)⊗ (A1A2) (P1Q2)⊗ (A1B2)
(S1R2)⊗ (D1C2) (S1S2)⊗ (D1D2)

]
=

[
(P1P2) (P1Q2)
(S1R2) (S1S2)

]
⊗
[

(A1A2) (A1B2)
(D1C2) (D1D2)

]
= (M1M2)⊗(H1H2).

Thus (ii-1) holds.
If both M1 and H1 are orthogonal matrices, then by

Proposition 2.2 (i) and (ii-1),

(M1⊗H1)(M1⊗H1)
T = (M1⊗H1)(M

T
1 ⊗HT

1 )

= (M1M
T
1 )⊗(H1H

T
1 )

= Ip1⊗Is1
= Ip1s1 .

So M1⊗H1 is also an orthogonal matrix.

The same holds true when M1 =

[
0 Q1

R1 0

]
and H1 =[

0 B1

C1 0

]
, respectively.

Next, we will discuss the existence of cospectral non-
isomorphic signed bipartite graphs in TS1×S2

. It is evident
that S1 and S2 are cospectral if and only if the corresponding
adjacency matrices exhibit orthogonal similarity.

Theorem 2.2: Assume that S1 and S2 are two signed
bipartite graphs. Then two signed bipartite graphs of TS1×S2

are cospectral if and only if S1 or S2 is balanced.
Proof: Assume first that S1 or S2 is balanced. We

just need to show that the matrices A(S1)⊗A(S2) and
A(S1)⊗A(S2)

# are orthogonally similar, which implies that
SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are cospectral. Therefore,
two signed bipartite graphs in TS1×S2 are cospectral.

If m = n, then it is possible to find two orthogonal
matrices R1 and R2, which can lead to RT

1 BR2 = BT . We

can define R =

[
0 R1

R2 0

]
. Now, we have RTA(S1)R =

A(S1). Let F =

[
0 Ip
Iq 0

]
. It follows that FTA(S2)F =

A(S2)
#. Clearly, both R and F are orthogonal matrices.

Let P = R⊗F =

[
0 R1 ⊗ Ip

R2 ⊗ Iq 0

]
. By Proposi-

tion 2.2 (ii-2), P is an orthogonal matrix. Now,

PT (A(S1)⊗A(S2))P = (R⊗F )T (A(S1)⊗A(S2))(R⊗F )
= (RTA(S1)R)⊗(FTA(S2)F )

= A(S1)⊗A(S2)
#.

Be aware that the second step uses Proposition 2.2 (i) and
(ii-1). Therefore, we can conclude that SA(S1)⊗A(S2) and
SA(S1)⊗A(S2)# are cospectral.

If p = q, then it is possible to find two orthogonal
matrices F1 and F2, which can lead to FT

1 CF2 = CT .
Clearly, it is also possible to find a permutation matrix

R =

[
Im 0
0 In

]
, which can lead to RTA(S1)R = A(S1).

Let F =

[
F1 0
0 F2

]
. We have, FTA(S2)F = A(S2)

#. It

is evident that both R and F are orthogonal matrices.

Let P = R⊗F =

[
Im ⊗ F1 0

0 In ⊗ F2

]
. By Proposi-

tion 2.2 (ii-2), P is an orthogonal matrix. Now,

PT (A(S1)⊗A(S2))P = (RT⊗FT )(A(S1)⊗A(S2))(R⊗F )
= (RTA(S1)R)⊗(FTA(S2)F )

= A(S1)⊗A(S2)
#.

It should be noted that in the second step, Proposition 2.2
(i) and (ii-1) are utilized. As a result, we can conclude that
SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are cospectral.

In contrast, suppose SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are
cospectral. This implies that mp + nq = mq + np, which
further simplifies to (m− n)(p− q) = 0. From this, we can
conclude that m = n or p = q. Therefore, we have proved
the theorem.

Hammack et al. in [7] established a cancellation law
for (0, 1)-matrices. This result can be further specialized to
(0, 1,−1)-matrices and the following lemma may be proven
using a similar approach as Lemma 3 in [7].

Lemma 2.2: Assume that A1, A2 and C are (0, 1,−1)-
matrices for which C 6= 0, and A1 is square and has at
least one nonzero entry in each row. Suppose it is possible
to find two permutation matrices Q1 and R1, which can lead
to Q1(C ⊗ A1)R1 = C ⊗ A2. Then it is possible to find
two permutation matrices Q2 and R2, which can lead to
Q2A1R2 = A2. Also, if Q1(A1 ⊗ C)R1 = A2 ⊗ C, then
it is also possible to find two permutation matrices Q2 and
R2, which can lead to Q2A1R2 = A2.

Then we get the following theorem.
Theorem 2.3: Assume that S1 and S2 are connected

signed bipartite graphs whose biadjacency matrices are B
and C, respectively. Then two signed bipartite graphs of
TS1×S2

are isomorphic if and only if it is possible to find
two permutation matrices R1 and R2, which can lead to
RT

1 BR2 = BT or RT
1 CR2 = CT .

Proof: Assuming the given condition, it is possible to
find a permutation matrix R that can be expressed in one

of R =

[
R′1 0
0 R′2

]
or R =

[
0 R′1
R′2 0

]
, where R′i is a

permutation matrix for i ∈ {1, 2}, which can lead to

RT

[
0 B ⊗ C

BT ⊗ CT 0

]
R =

[
0 B ⊗ CT

BT ⊗ C 0

]
.
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If R =

[
R′1 0
0 R′2

]
, then we have R′T1 (B ⊗ C)R′2 = B ⊗

CT , which implies that C is a square matrix. According to
Lemma 2.2, it is possible to find two permutation matrices
R1 and R2, which can lead to RT

1 CR2 = CT . Similarly, if

R =

[
0 R′1
R′2 0

]
, then we have R′T1 (B⊗C)R′2 = BT ⊗C,

which implies that B is a square matrix. By applying Lemma
2.2, we can find two permutation matrices R1 and R2, which
can lead to RT

1 BR2 = BT .
Suppose that it is possible to find two permutation ma-

trices R1 and R2, which can lead to RT
1 BR2 = BT . Let

R =

[
0 R1

R2 0

]
. Now RTA(S1)R = A(S1). Clearly,

R is a permutation matrix. Set F =

[
0 Ip
Iq 0

]
, then

FTA(S2)F = A(S2)
#. Let P = R⊗F . Clearly, P is a

permutation matrix. Now,

PT (A(S1)⊗A(S2))P = (RT⊗FT )(A(S1)⊗A(S2))(R⊗F )
= (RTA(S1)R)⊗(FTA(S2)F )

= A(S1)⊗A(S2)
#.

It should be noted that in the second step, Proposition 2.2 (i)
and (ii-1) are utilized. Therefore, the signed bipartite graphs
SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are isomorphic.

Similarly, if it is possible to find two permutation matrices
R1 and R2, which can lead to RT

1 CR2 = CT , then the
signed bipartite graphs SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are
isomorphic. This completes the proof of the theorem.

The following corollary follows from Theorem 2.2 and
Theorem 2.3.

Corollary 2.1: Assume that S1 and S2 are two connected
signed bipartite graphs, and assume that S1 or S2 are
balanced. Then two signed bipartite graphs in TS1×S2 are
cospectral and non-isomorphic if and only if it is impossible
to find permutation matrices R1 and R2, which can lead to
RT

1 BR2 = BT and RT
1 CR2 = CT .

III. COSPECTRAL SIGNED BIPARTITE GRAPHS WITH
GM-SWITCHING

Next, we provide some constructions of cospectral signed
bipartite graphs using the notion of partitioned tensor product
of two signed bipartite graphs and GM-switching.

In 2019, Belardo, et al. [1] constructed signed graphs by
GM-switching as follows.

Definition 3.1: [1] Suppose that S = (G, σ) is a signed
graph and π is a partition of its vertex set V (S) into sets
{U1, U2, . . . , Ut,W}, where |Ui| = ni with i = 1, 2, . . . , t
and |W | = d. The i-th net-degree of a vertex vi is defined
as the difference between the number of positive edges and
the number of negative edges that connect vertex vi to the
vertices in Ui. Suppose that each of the following holds for
any integers i and j with 1 ≤ i, j ≤ t:
(i) any two vertices in Ui have the same j-th net-degree;
(ii) for any vertex v ∈W :
(ii-1) either vertex v has an equal number of positive and

negative edges connecting it to Ui;
(ii-2) or vertex v is connected by positive edges to half

of the vertices in Ui and no edges are connected to other
vertices;

(ii-3) or vertex v is connected by negative edges to half
of the vertices in Ui and and no edges are connected to other
vertices;

(ii-4) or vertex v is connected to all vertices in Ui by
positive edges;

(ii-5) or vertex v is connected to all vertices in Ui by
negative edges.

Next, the signed graph SGM obtained from S utilizing
local switching with respect to the partition π can be de-
scribed as follows. For each vertex v ∈ W and 1 ≤ i ≤ t,
the following operations are performed:
(i) if the i-th net-degree of a vertex vi is equal to 0, then the
sign of any edge between v and a vertex in Ui is reversed;
(ii) if vertex v is connected by positive edges to half of the
vertices in Ui and no edges are connected to other vertices,
then existing positive edges connecting v to Ui are deleted.
Instead, v is connected to the other ni

2 vertices of Ui using
new positive edges;
(iii) if vertex v is connected by negative edges to half of the
vertices in Ui and no edges are connected to other vertices,
then existing negative edges connecting v to Ui are deleted.
Instead, v is connected to the other ni

2 vertices of Ui using
new negative edges.

We say that SGM is constructed utilizing GM -switching
of signed graph S.

Next, we introduce a special family of signed bipartite
graph as follows. Let S be a signed bipartite graph family
such that each signed bipartite graph S ∈ S with partite sets
X and Y if and only if V (S) can be partitioned into t + 1
vertex subsets X1, X2, . . . , Xt and Y with X = X1 ∪X2 ∪
· · · ∪Xt and |Xi| = ni satisfying Definition 3.1 (ii). Since
S is the signed bipartite graph with partite subsets X and Y ,
and X = X1 ∪X2 ∪ · · · ∪Xt, we have that for each 1 ≤ i,
j ≤ t, j-th net-degree of any vertex in Xi is 0. Hence S
satisfies Definition 3.1 (i). Therefore, S satisfies Definition
3.1.

Let the signed bipartite graph SGM be constructed from
S utilizing GM-switching with respect to the partition
{X1, X2, . . . , Xt, Y } is obtained as above. Belardo, et al.
[1] proved that S and SGM are cospectral.

Suppose SGM
1 and SGM

2 are constructed by GM-switching
for signed bipartite graphs S1 and S2, respectively. Let
B̃ and C̃ be the biadjacency matrices of SGM

1 and

SGM
2 , respectively. Then A(SGM

1 ) =

[
0 B̃

B̃T 0

]
and

A(SGM
2 ) =

[
0 C̃

C̃T 0

]
, hence SGM

1 and SGM
2 have

adjacency matrices A(SGM
1 ) and A(SGM

2 ), respectively,
relative to vertex orderings x1, x2, . . . , xm, y1, y2, . . . , yn
and u1, u2, . . . , up, w1, w2, . . . , wq, respectively. Define
A(S1)

∗ = A(SGM
1 ) and A(S2)

∗ = A(SGM
2 ).

For any positive integer `, let

Q` =
2

`
J` − I`,

where J` represents the ` × ` matrix whose entries are all
equal to 1 and I` represents the identity matrix of order `.

Recently, Belardo et al. presented several properties of the
matrix Q` in [1].

Proposition 3.1: [1] Let Q` = 2
`J` − I`, and x =

(xi)i=1,2,...,` be a vector with entries in {0, 1,−1}. Then
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each of the following holds:
(i) Q` is orthogonal and symmetric;
(ii) if a vector x with a sum of entries equal to 0, then we
have Q`x = −x;
(iii) if ` is an even integer and x is a vector with half of its
elements being 0 and the other half being 1, then we have
Q`x = 1` − x;
(iv) if ` is an even integer and x is a vector with half of its
elements being 0 and the other half being −1, then we have
Q`x = −1` − x;
(v) if x is the vector 1`, then we have Q`x = x;
(vi) if x is the vector −1`, then we have Q`x = x.

Let S1, S2 ∈ S. Then V (S1) can be partitioned into t1+1
vertex subsets X1, X2, . . . , Xt1 and Y with X = X1∪X2∪
· · · ∪ Xt1 , |Y | = n, |Xj | = mj for j ∈ {1, 2, . . . , t1} and∑t1

j=1mj = m. And V (S2) can be partitioned into t2 + 1
vertex subsets U1, U2, . . . , Ut2 and W with U = U1 ∪ U2 ∪
· · · ∪ Ut2 , |W | = q, |Uk| = pk for k ∈ {1, 2, . . . , t2} and∑t2

k=1 pk = p. Let

B =


B1

B2

...
Bt1

 and C =


C1

C2

...
Ct2

 ,
where Bj are mj×n for j ∈ {1, 2, . . . , t1} and Ck are pk×q
for k ∈ {1, 2, . . . , t2}. We get that the adjacency matrices of
S1 and S2 are

A(S1) =

[
0 B
BT 0

]
=


0 0 · · · 0 B1

0 0 · · · 0 B2

...
...

. . .
...

...
0 0 · · · 0 Bt1

BT
1 BT

2 · · · BT
t1 0


and

A(S2) =

[
0 C
CT 0

]
=


0 0 · · · 0 C1

0 0 · · · 0 C2

...
...

. . .
...

...
0 0 · · · 0 Ct2

CT
1 CT

2 · · · CT
t2 0

 ,
respectively.

Let QA(S1) = diag(Qm1 , Qm2 , . . . , Qmt1
) and QA(S2) =

diag(Qp1 , Qp2 , . . . , Qpt2
). According to Proposition 3.1, we

can obtain

QA(S1)B

=


Qm1 0 · · · 0 0

0 Qm2
· · · 0 0

...
...

. . .
...

...
0 0 · · · Qmt1−1 0
0 0 · · · 0 Qmt1




B1

B2

...
Bt1−1
Bt1



=


Qm1B1

Qm2B2

...
Qmt1−1

Bt1−1
Qmt1

Bt1


= B̃

and

QA(S2)C

=


Qp1 0 · · · 0 0

0 Qp2
· · · 0 0

...
...

. . .
...

...
0 0 · · · Qpt2−1

0
0 0 · · · 0 Qpt2




C1

C2

...
Ct2−1
Ct2



=


Qp1C1

Qp2C2

...
Qpt2−1

Ct2−1
Qpt2

Ct2


= C̃.

In the remainder of this section, we proviede some
constructions of cospectral non-isomorphic signed bipartite
graphs using the notion of partitioned tensor product for
signed bipartite graphs and GM-switching.

It is worth pointing out that

TS1×S2 = {SA(S1)⊗A(S2), SA(S1)⊗A(S2)#},

TSGM
1 ×S2

= {SA(S1)∗⊗A(S2), SA(S1)∗⊗A(S2)#},

TS1×SGM
2

= {SA(S1)⊗A(S2)∗ , SA(S1)⊗(A(S2)∗)#}

and

TSGM
1 ×SGM

2
= {SA(S1)∗⊗A(S2)∗ , SA(S1)∗⊗(A(S2)∗)#}.

Next, we give the result in the following.
Theorem 3.1: Assume that S1 and S2 are two signed

bipartite graphs. Then each of the following holds:
(i) if S1 ∈ S, then two signed bipartite graphs S1 × S2 and
SGM
1 × S2 are cospectral;

(ii) if S2 ∈ S, then two signed bipartite graphs S1×S2 and
S1 × SGM

2 are cospectral;
(iii) if S1, S2 ∈ S, then four signed bipartite graphs S1×S2,
SGM
1 × S2, S1 × SGM

2 and SGM
1 × SGM

2 are mutually
cospectral.

Theorem 2.2 implies the following theorem.
Theorem 3.2: Assume that S1 and S2 are two signed

bipartite graphs. Then each of the following holds:
(i) if S1 ∈ S, then two signed bipartite graphs of TSGM

1 ×S2

are cospectral if and only if S1 or S2 is balanced;
(ii) if S2 ∈ S, then two signed bipartite graphs of TS1×SGM

2

are cospectral if and only if S1 or S2 is balanced;
(iii) if S1, S2 ∈ S, then two signed bipartite graphs of
TSGM

1 ×SGM
2

are cospectral if and only if S1 or S2 is balanced.
The following two lemmas are essential for our further

discussion.
Lemma 3.1: Assume that S1 and S2 are two signed bipar-

tite graphs, where S1 ∈ S . Then the signed bipartite graphs
SA(S1)⊗A(S2) and SA(S1)∗⊗A(S2) are cospectral.

Proof: We only need to demonstrate that the matrices
A(S1)⊗A(S2) and A(S1)

∗⊗A(S2) are orthogonally similar,
and hence SA(S1)⊗A(S2) and SA(S1)∗⊗A(S2) are cospectral.
Assume that SGM

1 is constructed by GM-switching for
signed bipartite graph S1.
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Let R =

[
QA(S1) 0

0 In

]
, where QA(S1) =

diag(Qm1
, Qm2

, . . . , Qmt1
), by Proposition 3.1 (i), R is an

orthogonal matrix and symmetric matrix. Then

RTA(S1)R

=

[
QA(S1) 0

0 In

] [
0 B
BT 0

] [
QA(S1) 0

0 In

]
=

[
0 QA(S1)B

BTQA(S1) 0

]
= A(S1)

∗.

Obviously, it is possible to find two identity matrices Ip
and Iq , which can lead to IpCIq = C. Define F =[
Ip 0
0 Iq

]
. Clearly, F is an orthogonal matrix. Now, we

have FTA(S2)F = A(S2).

Let P = R⊗F =

[
QA(S1) ⊗ Ip 0

0 In ⊗ Iq

]
. By Propo-

sition 2.2 (ii-2), P is an orthogonal matrix. Now,

PT (A(S1)⊗A(S2))P = (R⊗F )T (A(S1)⊗A(S2))(R⊗F )
= (RTA(S1)R)⊗(FTA(S2)F )

= A(S1)
∗⊗A(S2).

Note that the second step utilizes Proposition 2.2 (i) and (ii-
1). Thus SA(S1)⊗A(S2) and SA(S1)∗⊗A(S2) are cospectral.

Lemma 3.2: Assume that S1 and S2 are two signed bi-
partite graphs, where S1 and S2 ∈ S. Then the signed bi-
partite graphs SA(S1)⊗A(S2), SA(S1)⊗A(S2)∗ , SA(S1)∗⊗A(S2)

and SA(S1)∗⊗A(S2)∗ are mutually cospectral.
Proof: Let

R =

[
Im 0
0 In

]
and

F =

[
QA(S2) 0

0 Iq

]
,

where QA(S2) = diag(Qp1
, Qp2

, . . . , Qpt2
) and P = R⊗F .

By a similar proof to that of Lemma 3.1, we can obtain
PT (A(S1)⊗A(S2))P = A(S1)⊗A(S2)

∗, which implies that
SA(S1)⊗A(S2) and SA(S1)⊗A(S2)∗ are cospectral. It follows by
Lemma 3.1 that the signed bipartite graphs SA(S1)⊗A(S2),
SA(S1)∗⊗A(S2) and SA(S1)⊗A(S2)∗ are mutually cospectral.
SA(S1)⊗A(S2)∗ and SA(S1)∗⊗A(S2)∗ are cospectral by Lem-
ma 3.1. Hence, the signed bipartite graphs SA(S1)⊗A(S2),
SA(S1)⊗A(S2)∗ , SA(S1)∗⊗A(S2) and SA(S1)∗⊗A(S2)∗ are mu-
tually cospectral.

We are now able to formulate our main results.
Theorem 3.3: Assume that S1 and S2 are two signed

bipartite graphs, where S1 and S2 ∈ S. Then any two
signed bipartite graphs in TS1×S2

∪ TSGM
1 ×S2

∪ TS1×SGM
2
∪

TSGM
1 ×SGM

2
are cospectral if and only if S1 or S2 is balanced.

Proof: Note that

(TS1×S2
) ∪ (TSGM

1 ×S2
) ∪ (TS1×SGM

2
) ∪ (TSGM

1 ×SGM
2

)

= {SA(S1)⊗A(S2), SA(S1)⊗A(S2)# , SA(S1)∗⊗A(S2),

SA(S1)∗⊗A(S2)# , SA(S1)⊗A(S2)∗ , SA(S1)⊗(A(S2)∗)# ,

SA(S1)∗⊗A(S2)∗ , SA(S1)∗⊗(A(S2)∗)#}.

First, suppose that S1 or S2 is balanced. SA(S1)⊗A(S2),
SA(S1)⊗A(S2)∗ , SA(S1)∗⊗A(S2) and SA(S1)∗⊗A(S2)∗ are mu-
tually cospectral by Lemma 3.2. It follows by Theorem 2.2

and Theorem 3.2 that any two signed bipartite graphs in
(TS1×S2) ∪ (TSGM

1 ×S2
) ∪ (TS1×SGM

2
) ∪ (TSGM

1 ×SGM
2

) are
cospectral.

Conversely, assume that any two signed bipartite graphs
in TS1×S2 ∪TSGM

1 ×S2
∪TS1×SGM

2
∪TSGM

1 ×SGM
2

are cospec-
tral, we conclude that SA(S1)⊗A(S2) and SA(S1)⊗A(S2)# are
cospectral. Hence S1 or S2 is balanced by Theorem 2.2.

Theorem 3.4: Assume that S1 and S2 are two connected
signed bipartite graphs, where S1 ∈ S. Then the signed
bipartite graphs SA(S1)⊗A(S2) and SA(S1)∗⊗A(S2) are iso-
morphic if and only if it is possible to find two permutation
matrices R1 and R2, which can lead to RT

1 (B ⊗ C)R2 =
(QA(S1)B)⊗ C or RT

1 (B ⊗ C)R2 = (QA(S1)B)T ⊗ CT .
Proof: First, assume that it is possible to find a permu-

tation matrix R, which can lead to either R =

[
R1 0
0 R2

]
or R =

[
0 R1

R2 0

]
, where Ri is the permutation matrix

with i ∈ {1, 2}, such that

RT

[
0 B ⊗ C

BT ⊗ CT 0

]
R

=

[
0 (QA(S1)B)⊗ C

(QA(S1)B)T ⊗ CT 0

]
.

If R =

[
R1 0
0 R2

]
, then RT

1 (B⊗C)R2 = (QA(S1)B)⊗C.

If R =

[
0 R1

R2 0

]
, then RT

1 (B⊗C)R2 = (QA(S1)B)T ⊗

CT .
Suppose it is possible to find two permutation matrices R1

and R2, which can lead to RT
1 (B⊗C)R2 = (QA(S1)B)⊗C.

Let R =

[
R1 0
0 R2

]
. Clearly, R is a permutation matrix.

Now,

RT (A(S1)⊗A(S2))R

=

[
RT

1 0
0 RT

2

] [
0 B ⊗ C

BT ⊗ CT 0

] [
R1 0
0 R2

]
=

[
0 RT

1 (B ⊗ C)R2

RT
2 (B

T ⊗ CT )R1 0

]
=

[
0 (QA(S1)B)⊗ C

(QA(S1)B)T ⊗ CT 0

]
= A(S1)

∗⊗A(S2).

Now we suppose that it is possible to find two permutation
matrices R1 and R2, which can lead to RT

1 (B ⊗ C)R2 =

(QA(S1)B)T ⊗ CT , let R =

[
0 R1

R2 0

]
. Clearly, R is a

permutation matrix. Now,

RT (A(S1)⊗A(S2))R

=

[
0 RT

2

RT
1 0

] [
0 B ⊗ C

BT ⊗ CT 0

] [
0 R1

R2 0

]
=

[
0 RT

2 (B
T ⊗ CT )R1

RT
1 (B ⊗ C)R2 0

]
=

[
0 (QA(S1)B)⊗ C

(QA(S1)B)T ⊗ CT 0

]
= A(S1)

∗⊗A(S2).

Thus the graphs SA(S1)⊗A(S2) and SA(S1)∗⊗A(S2) are
isomorphic.
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By utilizing Theorem 3.4, we can derive the following
corollary.

Corollary 3.1: Assume that S1 and S2 are two connected
signed bipartite graphs with S1 ∈ S and SGM

1 being also
connected. Then the signed bipartite graphs SA(S1)⊗A(S2)

and SA(S1)∗⊗A(S2) are cospectral and non-isomorphic if and
only if it is impossible to find permutation matrices R1 and
R2, which can lead to RT

1 (B⊗C)R2 = (QA(S1)B)⊗C and
RT

1 (B ⊗ C)R2 = (QA(S1)B)T ⊗ CT .
By a similarly argument, any two signed bipartite graphs

in TS1×S2
∪ TSGM

1 ×S2
∪ TS1×SGM

2
∪ TSGM

1 ×SGM
2

also have
similar results, we omit these results and proofs.
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