# Constructing Cospectral Non-isomorphic Signed Bipartite Graphs 

Shupeng Li, Juan Liu, Hong Yang and Hong-Jian Lai


#### Abstract

Let $S=(G, \sigma)$ be a signed graph, where $\sigma$ is the sign function on the edges of the underlying graph $G$. It is widely recognized that the adjacency spectrum alone cannot uniquely determine a signed graph. Therefore, it is of great interest to identify whether there exist any cospectral, non-isomorphic signed graphs within a specific class of signed graphs. In a significant contribution, Godsil et al. demonstrated that two components of $G_{1} \times G_{2}$, where both $G_{1}$ and $G_{2}$ are connected bipartite graphs, are cospectral if and only if at the minimum one of $G_{1}$ and $G_{2}$ is balanced. In this paper, we first generalize Godsil's result for two connected signed bipartite graphs $S_{1}$ and $S_{2}$. Furthermore, we will define partitioned tensor product of two signed bipartite graphs, which will enable us to generate multiple pairs of cospectral non-isomorphic signed bipartite graphs.


Index Terms-Signed bipartite graph, adjacency matrix, GMswitching, partitioned tensor product.

## I. Introduction

Asigned graph is an ordered pair $S=(G, \sigma)$ consisting of the underlying graph $G$ with vertex set $V(S)$, edge set $E(S)$ and a mapping $\sigma: E(S) \rightarrow\{1,-1\}$, called the signature. Each edge in the graph is associated with a value that can be either positive or negative. For simplicity, we assume that the graph $G$ is simple, without multiple edges or self-loops. The adjacency matrix $A(S)=\left(a_{i j}\right)$ for a signed graph $S$ is a symmetric matrix with elements limited to 0,1 , and -1 , where $a_{i j}=\sigma\left(x_{i} x_{j}\right)$ when $x_{i}$ and $x_{j}$ are neighboring vertices, and $a_{i j}=0$ otherwise. The adjacency spectrum of a signed graph $S$ is the set of all eigenvalues of $A(S)$ including multiplicities. Two signed graphs are cospectral for the adjacency matrices if they have the same adjacency spectrum.

Assume that $S=(G, \sigma)$ is a signed graph with vertex set $V(S)$ and edge set $E(S)$. For a given vertex $v \in V(S)$, we define $d_{S}^{+}(v)$ as the count of positive edges that are incident to vertex $v$ in $S$, and $d_{S}^{-}(v)$ as the count of negative edges that are incident to vertex $v$ in $S$. Additionally, we introduce $d_{S}^{ \pm}(v)=d_{S}^{+}(v)-d_{S}^{-}(v)$.
If $V(S)$ can be partitioned into two parts $X$ and $Y$ such that every edge of $S$ has one end in $X$ and the other end in $Y$, then $S$ is called the signed bipartite graph. We say that $X$ and $Y$ as the partite sets of $S$. If $|X|=|Y|$, then

[^0]$S$ is balanced. Furthermore, if $S$ is a signed bipartite graph and its adjacency matrix can be expressed as $\left[\begin{array}{cc}\mathbf{0} & B \\ B^{T} & \mathbf{0}\end{array}\right]$, where $\mathbf{0}$ denotes the zero matrix, then the matrix $B$ is the biadjacency matrix of $S$.

Let $A$ be a square symmetric matrix with elements limited to 0,1 , and -1 such that diagonal entries are zero. Suppose $S_{A}$ denotes the signed graph whose adjacency matrix is given by $A$. The Kronecker product of matrices $A$ of size $m \times n$ and $B$ of size $p \times q$, denoted by $A \otimes B$, is defined as the block matrix of size $m p \times n q$ constructed by replacing each entry $a_{i j}$ of $A$ with the matrix product $a_{i j} B$. On the other hand, the partitioned tensor product of two partitioned matrices $M=\left[\begin{array}{cc}P & Q \\ R & S\end{array}\right]$ and $H=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, denoted as $M \otimes H$, is defined as the block matrix $\left[\begin{array}{ll}P \otimes A & Q \otimes B \\ R \otimes C & S \otimes D\end{array}\right]$, where each block is obtained by taking the Kronecker product of the corresponding submatrices. These notions were introduced by Godsil et al. in [6].
Let $S_{1}=\left(G_{1}, \sigma_{1}\right)$ and $S_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed graphs. Their direct product is the signed graph $S_{1} \times S_{2}$, whose vertex set is $V\left(S_{1}\right) \times V\left(S_{2}\right)$, whose edges are all pairs $\left(x_{i}, y_{k}\right)\left(x_{j}, y_{\ell}\right)$ with $x_{i} x_{j} \in E\left(S_{1}\right)$ and $y_{k} y_{\ell} \in E\left(S_{2}\right)$. The signature of the edge $\left(x_{i}, y_{k}\right)\left(x_{j}, y_{\ell}\right)$ in $S_{1} \times S_{2}$ is defined as $\sigma\left(\left(x_{i}, y_{k}\right)\left(x_{j}, y_{\ell}\right)\right)=\sigma_{1}\left(x_{i} x_{j}\right) \sigma_{2}\left(y_{k} y_{\ell}\right)$, where $x_{i} x_{j} \in$ $E\left(S_{1}\right)$ and $y_{k} y_{\ell} \in E\left(S_{2}\right)$. The direct product construction can also be applied to signed bipartite graphs.
If every signed graph that has the same spectrum as $S$ is also isomorphic to $S$, then we say $S$ is determined by its spectrum $(D S)$. Otherwise, if there exist cospectral signed graphs that are not isomorphic to $S$, then we say that $S$ has a cospectral mate or $S$ is not determined by its spectrum $(N D S)$. Godsil et al. [6] utilized the concept of partitioned tensor product to construct graphs that have same adjacency spectrum. Ji et al. [9] introduced a method of constructing cospectral bipartite graphs, which relies on adjacency and normalized Laplacian matrices and employs the unfolding technique. The notion of unfolding a bipartite graph initially introduced in [5] is further expanded upon by this construction method. This approach provided a more flexible and generalized framework for generating cospectral graphs. In recent research by Kannan et al. [10], bipartite graphs with the same eigenvalues for both adjacency and normalized Laplacian matrices were constructed using partitioned tensor product. For signed graphs, non-isomorphic Laplacian cospectral signed graphs were obtained by Ji et al. in [13] and used the operation of partial transpose. For more details, we refer to [2], [3], [4], [8], [9], [11], [12], [16].

The rest of the paper is organized as follows. In Section 2 , we define the partitioned tensor product of two signed
bipartite graphs and discuss the existence of cospectral nonisomorphic signed bipartite graphs. In Section 3, we use the GM-switching method to partitioned tensor product defined as Section 2, this enables us to construct additional examples of cospectral non-isomorphic signed bipartite graphs.

## II. COSPECTRAL SIGNED BIPARTITE GRAPHS FOR PARTITIONED TENSOR PRODUCT

Next, we first discuss the presence of cospectral direct product for two signed graphs. Secondly, we define partitioned tensor product and give a sufficient and necessary condition of cospectral partitioned tensor product for two signed bipartite graphs. The following notations will be used in the rest of this paper.

Let $S_{1}=\left(G_{1}, \sigma_{1}\right)$ and $S_{2}=\left(G_{2}, \sigma_{2}\right)$ be two signed bipartite graphs with $V\left(S_{1}\right)=X \cup Y$ and $V\left(S_{2}\right)=U \cup$ $W$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$. Let $B=$ $\left(b_{i j}\right)_{m \times n}$ and $C=\left(c_{k \ell}\right)_{p \times q}$ be the biadjacency matrices of $S_{1}$ and $S_{2}$, respectively, with

$$
b_{i j}= \begin{cases}\sigma_{1}\left(x_{i} y_{j}\right), & \text { if } x_{i} y_{j} \in E\left(S_{1}\right) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
c_{k \ell}= \begin{cases}\sigma_{2}\left(u_{k} w_{\ell}\right), & \text { if } u_{k} w_{\ell} \in E\left(S_{2}\right), \\ 0, & \text { otherwise }\end{cases}
$$

Then, $S_{1}$ and $S_{2}$ have adjacency matrices $A\left(S_{1}\right)=$ $\left[\begin{array}{cc}\mathbf{0} & B \\ B^{T} & \mathbf{0}\end{array}\right]$ and $A\left(S_{2}\right)=\left[\begin{array}{cc}\mathbf{0} & C \\ C^{T} & \mathbf{0}\end{array}\right]$, respectively, relative to vertex orderings $x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ and $u_{1}, u_{2}, \ldots, u_{p}, w_{1}, w_{2}, \ldots, w_{q}$, respectively. Define

$$
A\left(S_{1}\right)^{\#}=\left[\begin{array}{cc}
\mathbf{0} & B^{T} \\
B & \mathbf{0}
\end{array}\right]
$$

and

$$
A\left(S_{2}\right)^{\#}=\left[\begin{array}{cc}
\mathbf{0} & C^{T} \\
C & \mathbf{0}
\end{array}\right]
$$

It is simple to verify that $S_{1} \times S_{2}$ has adjacency matrix $A\left(S_{1}\right) \otimes A\left(S_{2}\right)$ relative to the ordering $\left(x_{1}, u_{1}\right), \ldots,\left(x_{1}, u_{p}\right)$, $\left(x_{1}, w_{1}\right), \ldots,\left(x_{1}, w_{q}\right), \ldots,\left(x_{m}, u_{1}\right), \ldots,\left(x_{m}, u_{p}\right),\left(x_{m}, w_{1}\right)$, $\ldots,\left(x_{m}, w_{q}\right),\left(y_{1}, u_{1}\right), \ldots,\left(y_{1}, u_{p}\right),\left(y_{1}, w_{1}\right), \ldots,\left(y_{1}, w_{q}\right), \ldots$ $,\left(y_{n}, u_{1}\right), \ldots,\left(y_{n}, u_{p}\right),\left(y_{n}, w_{1}\right), \ldots,\left(y_{n}, w_{q}\right)$ of its vertices. In [14], Zhang gave the next lemma.
Lemma 2.1: [14] Assume that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are $A_{m \times m}$ 's eigenvalues and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are $B_{n \times n}$ 's eigenvalues. Then the eigenvalues of the Kronecker product $A \otimes B$ are $\lambda_{i} \mu_{j}$ for any $i$ and $j$ with $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.

This lemma yields the following theorem.
Theorem 2.1: Assume that $S_{1}, S_{2}, S_{3}$ and $S_{4}$ are four signed graphs. If $S_{1}$ and $S_{3}$ are cospectral, $S_{2}$ and $S_{4}$ are cospectral, then signed graphs $S_{1} \times S_{2}$ and $S_{3} \times S_{4}$ are cospectral.

In order to construct cospectral non-isomorphic signed bipartite graphs, we will define a pair of signed bipartite graphs $\mathcal{T}_{S_{1} \times S_{2}}$ as follows.
(i) The first signed bipartite graph of $\mathcal{T}_{S_{1} \times S_{2}}$ has a vertex set $(X \times U) \cup(Y \times W)$, an edge set $\left\{\left(x_{i}, u_{k}\right)\left(y_{j}, w_{\ell}\right) \mid x_{i} y_{j} \in E\left(S_{1}\right), u_{k} w_{\ell} \in E\left(S_{2}\right)\right\}$ and a signature $\sigma\left(\left(x_{i}, u_{k}\right)\left(y_{j}, w_{\ell}\right)\right)=\sigma_{1}\left(x_{i} y_{j}\right) \sigma_{2}\left(u_{k} w_{\ell}\right)$, where
$x_{i} y_{j} \in E\left(S_{1}\right)$ and $u_{k} w_{\ell} \in E\left(S_{2}\right)$;
(ii) the second signed bipartite graph of $\mathcal{T}_{S_{1} \times S_{2}}$ has a vertex set $(X \times W) \cup(Y \times U)$, an edge set $\left\{\left(x_{i}, w_{\ell}\right)\left(y_{j}, u_{k}\right) \mid x_{i} y_{j} \in E\left(S_{1}\right), u_{k} w_{\ell} \in E\left(S_{2}\right)\right\}$ and a signature $\sigma\left(\left(x_{i}, w_{\ell}\right)\left(y_{j}, u_{k}\right)\right)=\sigma_{1}\left(x_{i} y_{j}\right) \sigma_{2}\left(u_{k} w_{\ell}\right)$, where $x_{i} y_{j} \in E\left(S_{1}\right)$ and $u_{k} w_{\ell} \in E\left(S_{2}\right)$.

By the definition of $\mathcal{T}_{S_{1} \times S_{2}}$, the adjacency matrices of two signed bipartite graphs are $A\left(S_{1}\right) \otimes A\left(S_{2}\right)$ relative to the ordering $\left(x_{1}, u_{1}\right), \ldots,\left(x_{1}, u_{p}\right),\left(x_{2}, u_{1}\right), \ldots,\left(x_{2}, u_{p}\right) \ldots$, $\left(x_{m}, u_{1}\right), \ldots,\left(x_{m}, u_{p}\right),\left(y_{1}, w_{1}\right), \ldots,\left(y_{1}, w_{q}\right) \ldots,\left(y_{n}, w_{1}\right)$, $\ldots,\left(y_{n}, w_{q}\right)$ of its vertices and $A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{\#}$ relative to the ordering $\left(x_{1}, w_{1}\right), \ldots,\left(x_{1}, w_{q}\right),\left(x_{2}, w_{1}\right), \ldots,\left(x_{2}, w_{q}\right)$, $\ldots,\left(x_{m}, w_{1}\right), \ldots,\left(x_{m}, w_{q}\right),\left(y_{1}, u_{1}\right), \ldots,\left(y_{1}, u_{p}\right),\left(y_{2}, u_{1}\right)$, $\ldots,\left(y_{2}, u_{p}\right), \ldots,\left(y_{n}, u_{1}\right), \ldots,\left(y_{n} u_{p}\right)$ of its vertices, respectively. Therefore

$$
\mathcal{T}_{S_{1} \underline{S_{2}}}=\left\{S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)}, S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right) \#}\right\} .
$$

Moreover, if $S_{1}$ and $S_{2}$ are connected, then $S_{1} \times S_{2}$ will consist of exactly two components: $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$.
We call $\mathcal{T}_{S_{1} \times S_{2}}$ the partitioned tensor product of two signed bipartite graphs $S_{1}$ and $S_{2}$.

We start by recalling some properties of Kronecker product of matrices in the following.
Proposition 2.1: [15] Let $M_{1}=\left(m_{i j}^{(1)}\right)_{p_{1} \times q_{1}}, M_{2}=$ $\left(m_{i j}^{(2)}\right)_{p_{2} \times q_{2}}, H_{1}=\left(h_{i j}^{(1)}\right)_{s_{1} \times t_{1}}$ and $H_{2}=\left(h_{i j}^{(2)}\right)_{s_{2} \times t_{2}}$. Then each of the following holds:
(i) if both $M_{1}$ and $H_{1}$ are orthogonal matrices, then $M_{1} \otimes H_{1}$ is also orthogonal matrix;
(ii) $\left(M_{1} \otimes H_{1}\right)^{T}=M_{1}^{T} \otimes H_{1}^{T}$;
(iii) if $q_{1}=p_{2}$ and $t_{1}=s_{2}$, then $\left(M_{1} \otimes H_{1}\right)\left(M_{2} \otimes H_{2}\right)=$ $\left(M_{1} M_{2}\right) \otimes\left(H_{1} H_{2}\right)$;
(iv) if $p_{1}=p_{2}$ and $q_{1}=q_{2}$, then $\left(M_{1}+M_{2}\right) \otimes H=$ $M_{1} \otimes H+M_{2} \otimes H$.
Next, we shall also develop a number of similar properties of partitioned tensor product for two partitioned matrices. All these will be applied in our arguments.
Proposition 2.2: Let $M_{1}=\left(m_{i j}^{(1)}\right)_{p_{1} \times q_{1}}, M_{2}=$ $\left(m_{i j}^{(2)}\right)_{p_{2} \times q_{2}}, H_{1}=\left(h_{i j}^{(1)}\right)_{s_{1} \times t_{1}}$ and $H_{2}=\left(h_{i j}^{(2)}\right)_{s_{2} \times t_{2}}$. Then each of the following holds:
(i) $\left(M_{1} \otimes H_{1}\right)^{T}=M_{1}^{T} \otimes H_{1}^{T}$;
(ii) let $M_{1}=\left[\begin{array}{cc}P_{1} & \mathbf{0} \\ \mathbf{0} & S_{1}\end{array}\right]$ and $H_{1}=\left[\begin{array}{cc}A_{1} & \mathbf{0} \\ \mathbf{0} & D_{1}\end{array}\right]$, or $M_{1}=\left[\begin{array}{cc}\mathbf{0} & Q_{1} \\ R_{1} & \mathbf{0}\end{array}\right]$ and $H_{1}=\left[\begin{array}{cc}\mathbf{0} & B_{1} \\ C_{1} & \mathbf{0}\end{array}\right]$ :
$(i i-1)$ if $q_{1}=p_{2}$ and $t_{1}=s_{2}$, then $\left(M_{1} \otimes H_{1}\right)\left(M_{2} \otimes H_{2}\right)=$ $\left(M_{1} M_{2}\right) \otimes\left(H_{1} H_{2}\right)$;
(ii-2) if both $M_{1}$ and $H_{1}$ are orthogonal matrices, then $M_{1} \otimes H_{1}$ is also orthogonal matrix.

Proof: For $(i)$, let $M_{1}=\left[\begin{array}{rr}P_{1} & Q_{1} \\ R_{1} & S_{1}\end{array}\right]$ and $H_{1}=$ $\left[\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right]$. Then by Proposition 2.1 (ii),

$$
\begin{aligned}
\left(M_{1} \otimes H_{1}\right)^{T} & =\left[\begin{array}{cc}
P_{1}^{T} \otimes A_{1}^{T} & R_{1}^{T} \otimes C_{1}^{T} \\
Q_{1}^{T} \otimes B_{1}^{T} & S_{1}^{T} \otimes D_{1}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
P_{1}^{T} & R_{1}^{T} \\
Q_{1}^{T} & S_{1}^{T}
\end{array}\right] \otimes\left[\begin{array}{cc}
A_{1}^{T} & C_{1}^{T} \\
B_{1}^{T} & D_{1}^{T}
\end{array}\right] \\
& =M_{1}^{T} \otimes H_{1}^{T} .
\end{aligned}
$$

For (ii), we assume that $M_{1}=\left[\begin{array}{cc}P_{1} & \mathbf{0} \\ \mathbf{0} & S_{1}\end{array}\right]$ and $H_{1}=$ $\left[\begin{array}{cc}A_{1} & \mathbf{0} \\ \mathbf{0} & D_{1}\end{array}\right]$. If $q_{1}=p_{2}$ and $t_{1}=s_{2}$, we can define $M_{2}=$ $\left.\begin{array}{ll}P_{2} & Q_{2} \\ R_{2} & S_{2}\end{array}\right]$ and $H_{2}=\left[\begin{array}{ll}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$ such that the number of columns of $P_{1}$ is equal to the number of rows of $P_{2}$, the number of columns of $S_{1}$ is equal to the number of rows of $S_{2}$, the number of columns of $A_{1}$ is equal to the number of rows of $A_{2}$ and the number of columns of $D_{1}$ is equal to the number of rows of $D_{2}$. Then, by Proposition 2.1 (iii),

$$
\begin{aligned}
& \left(M_{1} \otimes H_{1}\right)\left(M_{2} \otimes H_{2}\right) \\
= & {\left[\begin{array}{cc}
P_{1} \otimes A_{1} & \mathbf{0} \\
\mathbf{0} & S_{1} \otimes D_{1}
\end{array}\right]\left[\begin{array}{cc}
P_{2} \otimes A_{2} & Q_{2} \otimes B_{2} \\
R_{2} \otimes C_{2} & S_{2} \otimes D_{2}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\left(P_{1} \otimes A_{1}\right)\left(P_{2} \otimes A_{2}\right) & \left(P_{1} \otimes A_{1}\right)\left(Q_{2} \otimes B_{2}\right) \\
\left(S_{1} \otimes D_{1}\right)\left(R_{2} \otimes C_{2}\right) & \left(S_{1} \otimes D_{1}\right)\left(S_{2} \otimes D_{2}\right)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\left(P_{1} P_{2}\right) \otimes\left(A_{1} A_{2}\right) & \left(P_{1} Q_{2}\right) \otimes\left(A_{1} B_{2}\right) \\
\left(S_{1} R_{2}\right) \otimes\left(D_{1} C_{2}\right) & \left(S_{1} S_{2}\right) \otimes\left(D_{1} D_{2}\right)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\left(P_{1} P_{2}\right) & \left(P_{1} Q_{2}\right) \\
\left(S_{1} R_{2}\right) & \left(S_{1} S_{2}\right)
\end{array}\right] \otimes\left[\begin{array}{ll}
\left(A_{1} A_{2}\right) & \left(A_{1} B_{2}\right) \\
\left(D_{1} C_{2}\right) & \left(D_{1} D_{2}\right)
\end{array}\right] } \\
= & \left(M_{1} M_{2}\right) \otimes\left(H_{1} H_{2}\right) .
\end{aligned}
$$

Thus (ii-1) holds.
If both $M_{1}$ and $H_{1}$ are orthogonal matrices, then by Proposition 2.2 (i) and (ii-1),

$$
\begin{aligned}
\left(M_{1} \underline{\otimes} H_{1}\right)\left(M_{1} \underline{\otimes} H_{1}\right)^{T} & =\left(M_{1} \otimes H_{1}\right)\left(M_{1}^{T} \otimes H_{1}^{T}\right) \\
& =\left(M_{1} M_{1}^{T}\right) \underline{\otimes}\left(H_{1} H_{1}^{T}\right) \\
& =I_{p_{1}} I_{s_{1}} \\
& =I_{p_{1} s_{1}} .
\end{aligned}
$$

So $M_{1} \otimes H_{1}$ is also an orthogonal matrix.
The same holds true when $M_{1}=\left[\begin{array}{cc}\mathbf{0} & Q_{1} \\ R_{1} & \mathbf{0}\end{array}\right]$ and $H_{1}=$ $\left[\begin{array}{cc}\mathbf{0} & B_{1} \\ C_{1} & \mathbf{0}\end{array}\right]$, respectively.
Next, we will discuss the existence of cospectral nonisomorphic signed bipartite graphs in $\mathcal{T}_{S_{1} \underline{S_{2}}}$. It is evident that $S_{1}$ and $S_{2}$ are cospectral if and only if the corresponding adjacency matrices exhibit orthogonal similarity.

Theorem 2.2: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs. Then two signed bipartite graphs of $\mathcal{T}_{S_{1} \times S_{2}}$ are cospectral if and only if $S_{1}$ or $S_{2}$ is balanced.

Proof: Assume first that $S_{1}$ or $S_{2}$ is balanced. We just need to show that the matrices $A\left(S_{1}\right) \otimes A\left(S_{2}\right)$ and $A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{\#}$ are orthogonally similar, which implies that $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are cospectral. Therefore, two signed bipartite graphs in $\mathcal{T}_{S_{1} 凶 S_{2}}$ are cospectral.
If $m=n$, then it is possible to find two orthogonal matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} B R_{2}=B^{T}$. We can define $R=\left[\begin{array}{cc}\mathbf{0} & R_{1} \\ R_{2} & \mathbf{0}\end{array}\right]$. Now, we have $R^{T} A\left(S_{1}\right) R=$ $A\left(S_{1}\right)$. Let $F=\left[\begin{array}{cc}\mathbf{0} & I_{p} \\ I_{q} & \mathbf{0}\end{array}\right]$. It follows that $F^{T} A\left(S_{2}\right) F=$ $A\left(S_{2}\right)^{\#}$. Clearly, both $R$ and $F$ are orthogonal matrices.
Let $P=R \underline{\otimes} F=\left[\begin{array}{cc}\mathbf{0} & R_{1} \otimes I_{p} \\ R_{2} \otimes I_{q} & \mathbf{0}\end{array}\right]$. By Proposi-
tion $2.2(i i-2), P$ is an orthogonal matrix. Now,

$$
\begin{aligned}
P^{T}\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right) P & =(R \underline{\otimes} F)^{T}\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right)(R \underline{\otimes} F) \\
& =\left(R^{T} A\left(S_{1}\right) R\right) \underline{\otimes}\left(F^{T} A\left(S_{2}\right) F\right) \\
& =A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{\#} .
\end{aligned}
$$

Be aware that the second step uses Proposition 2.2 (i) and (ii-1). Therefore, we can conclude that $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are cospectral.
If $p=q$, then it is possible to find two orthogonal matrices $F_{1}$ and $F_{2}$, which can lead to $F_{1}^{T} C F_{2}=C^{T}$. Clearly, it is also possible to find a permutation matrix $R=\left[\begin{array}{cc}I_{m} & \mathbf{0} \\ \mathbf{0} & I_{n}\end{array}\right]$, which can lead to $R^{T} A\left(S_{1}\right) R=A\left(S_{1}\right)$. Let $F=\left[\begin{array}{cc}F_{1} & \mathbf{0} \\ \mathbf{0} & F_{2}\end{array}\right]$. We have, $F^{T} A\left(S_{2}\right) F=A\left(S_{2}\right)^{\#}$. It is evident that both $R$ and $F$ are orthogonal matrices.
Let $P=R \underline{\otimes} F=\left[\begin{array}{cc}I_{m} \otimes F_{1} & \mathbf{0} \\ \mathbf{0} & I_{n} \otimes F_{2}\end{array}\right]$. By Proposition 2.2 (ii-2), $P$ is an orthogonal matrix. Now,

$$
\begin{aligned}
P^{T}\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right) P & =\left(R^{T} \underline{\otimes} F^{T}\right)\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right)(R \otimes \underline{\otimes}) \\
& =\left(R^{T} A\left(S_{1}\right) R\right) \otimes\left(F^{T} A\left(S_{2}\right) F\right) \\
& =A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)^{\#} .
\end{aligned}
$$

It should be noted that in the second step, Proposition 2.2 (i) and (ii-1) are utilized. As a result, we can conclude that $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are cospectral.
In contrast, suppose $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are cospectral. This implies that $\bar{m} p+n q=m q \overline{+} n p$, which further simplifies to $(m-n)(p-q)=0$. From this, we can conclude that $m=n$ or $p=q$. Therefore, we have proved the theorem.

Hammack et al. in [7] established a cancellation law for $(0,1)$-matrices. This result can be further specialized to $(0,1,-1)$-matrices and the following lemma may be proven using a similar approach as Lemma 3 in [7].

Lemma 2.2: Assume that $A_{1}, A_{2}$ and $C$ are $(0,1,-1)$ matrices for which $C \neq 0$, and $A_{1}$ is square and has at least one nonzero entry in each row. Suppose it is possible to find two permutation matrices $Q_{1}$ and $R_{1}$, which can lead to $Q_{1}\left(C \otimes A_{1}\right) R_{1}=C \otimes A_{2}$. Then it is possible to find two permutation matrices $Q_{2}$ and $R_{2}$, which can lead to $Q_{2} A_{1} R_{2}=A_{2}$. Also, if $Q_{1}\left(A_{1} \otimes C\right) R_{1}=A_{2} \otimes C$, then it is also possible to find two permutation matrices $Q_{2}$ and $R_{2}$, which can lead to $Q_{2} A_{1} R_{2}=A_{2}$.
Then we get the following theorem.
Theorem 2.3: Assume that $S_{1}$ and $S_{2}$ are connected signed bipartite graphs whose biadjacency matrices are $B$ and $C$, respectively. Then two signed bipartite graphs of $\mathcal{T}_{S_{1} \times S_{2}}$ are isomorphic if and only if it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} B R_{2}=B^{T}$ or $R_{1}^{T} C R_{2}=C^{T}$.

Proof: Assuming the given condition, it is possible to find a permutation matrix $R$ that can be expressed in one of $R=\left[\begin{array}{cc}R_{1}^{\prime} & \mathbf{0} \\ \mathbf{0} & R_{2}^{\prime}\end{array}\right]$ or $\mathrm{R}=\left[\begin{array}{cc}\mathbf{0} & R_{1}^{\prime} \\ R_{2}^{\prime} & \mathbf{0}\end{array}\right]$, where $R_{i}^{\prime}$ is a permutation matrix for $i \in\{1,2\}$, which can lead to
$R^{T}\left[\begin{array}{cc}\mathbf{0} & B \otimes C \\ B^{T} \otimes C^{T} & \mathbf{0}\end{array}\right] R=\left[\begin{array}{cc}\mathbf{0} & B \otimes C^{T} \\ B^{T} \otimes C & \mathbf{0}\end{array}\right]$.

If $R=\left[\begin{array}{cc}R_{1}^{\prime} & \mathbf{0} \\ \mathbf{0} & R_{2}^{\prime}\end{array}\right]$, then we have $R_{1}^{\prime T}(B \otimes C) R_{2}^{\prime}=B \otimes$ $C^{T}$, which implies that $C$ is a square matrix. According to Lemma 2.2, it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} C R_{2}=C^{T}$. Similarly, if $R=\left[\begin{array}{cc}\mathbf{0} & R_{1}^{\prime} \\ R_{2}^{\prime} & \mathbf{0}\end{array}\right]$, then we have $R_{1}^{\prime T}(B \otimes C) R_{2}^{\prime}=B^{T} \otimes C$, which implies that $B$ is a square matrix. By applying Lemma 2.2 , we can find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} B R_{2}=B^{T}$.

Suppose that it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} B R_{2}=B^{T}$. Let $R=\left[\begin{array}{cc}\mathbf{0} & R_{1} \\ R_{2} & \mathbf{0}\end{array}\right]$. Now $R^{T} A\left(S_{1}\right) R=A\left(S_{1}\right)$. Clearly, $R$ is a permutation matrix. Set $F=\left[\begin{array}{cc}\mathbf{0} & I_{p} \\ I_{q} & \mathbf{0}\end{array}\right]$, then $F^{T} A\left(S_{2}\right) F=A\left(S_{2}\right)^{\#}$. Let $P=R \otimes F$. Clearly, $P$ is a permutation matrix. Now,

$$
\begin{aligned}
P^{T}\left(A\left(S_{1}\right) \otimes A\left(S_{2}\right)\right) P & =\left(R^{T} \underline{\otimes} F^{T}\right)\left(A\left(S_{1}\right) \otimes A\left(S_{2}\right)\right)(R \underline{\otimes} F) \\
& =\left(R^{T} A\left(S_{1}\right) R\right) \underline{\otimes}\left(F^{T} A\left(S_{2}\right) F\right) \\
& =A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)^{\#}
\end{aligned}
$$

It should be noted that in the second step, Proposition 2.2 ( $i$ ) and ( $i i-1$ ) are utilized. Therefore, the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are isomorphic.

Similarly, if it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} C R_{2}=C^{T}$, then the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are isomorphic. This completes the proof of the theorem.

The following corollary follows from Theorem 2.2 and Theorem 2.3.

Corollary 2.1: Assume that $S_{1}$ and $S_{2}$ are two connected signed bipartite graphs, and assume that $S_{1}$ or $S_{2}$ are balanced. Then two signed bipartite graphs in $\mathcal{T}_{S_{1} \times S_{2}}$ are cospectral and non-isomorphic if and only if it is impossible to find permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T} B R_{2}=B^{T}$ and $R_{1}^{T} C R_{2}=C^{T}$.

## III. Cospectral signed bipartite graphs with GM-switching

Next, we provide some constructions of cospectral signed bipartite graphs using the notion of partitioned tensor product of two signed bipartite graphs and GM-switching.

In 2019, Belardo, et al. [1] constructed signed graphs by GM-switching as follows.
Definition 3.1: [1] Suppose that $S=(G, \sigma)$ is a signed graph and $\pi$ is a partition of its vertex set $V(S)$ into sets $\left\{U_{1}, U_{2}, \ldots, U_{t}, W\right\}$, where $\left|U_{i}\right|=n_{i}$ with $i=1,2, \ldots, t$ and $|W|=d$. The $i$-th net-degree of a vertex $v_{i}$ is defined as the difference between the number of positive edges and the number of negative edges that connect vertex $v_{i}$ to the vertices in $U_{i}$. Suppose that each of the following holds for any integers $i$ and $j$ with $1 \leq i, j \leq t$ :
(i) any two vertices in $U_{i}$ have the same $j$-th net-degree;
(ii) for any vertex $v \in W$ :
(ii-1) either vertex $v$ has an equal number of positive and negative edges connecting it to $U_{i}$;
(ii-2) or vertex $v$ is connected by positive edges to half of the vertices in $U_{i}$ and no edges are connected to other vertices;
(ii-3) or vertex $v$ is connected by negative edges to half of the vertices in $U_{i}$ and and no edges are connected to other vertices;
(ii-4) or vertex $v$ is connected to all vertices in $U_{i}$ by positive edges;
(ii-5) or vertex $v$ is connected to all vertices in $U_{i}$ by negative edges.
Next, the signed graph $S^{G M}$ obtained from $S$ utilizing local switching with respect to the partition $\pi$ can be described as follows. For each vertex $v \in W$ and $1 \leq i \leq t$, the following operations are performed:
(i) if the $i$-th net-degree of a vertex $v_{i}$ is equal to 0 , then the sign of any edge between $v$ and a vertex in $U_{i}$ is reversed; (ii) if vertex $v$ is connected by positive edges to half of the vertices in $U_{i}$ and no edges are connected to other vertices, then existing positive edges connecting $v$ to $U_{i}$ are deleted. Instead, $v$ is connected to the other $\frac{n_{i}}{2}$ vertices of $U_{i}$ using new positive edges;
(iii) if vertex $v$ is connected by negative edges to half of the vertices in $U_{i}$ and no edges are connected to other vertices, then existing negative edges connecting $v$ to $U_{i}$ are deleted. Instead, $v$ is connected to the other $\frac{n_{i}}{2}$ vertices of $U_{i}$ using new negative edges.

We say that $S^{G M}$ is constructed utilizing $G M$-switching of signed graph $S$.
Next, we introduce a special family of signed bipartite graph as follows. Let $\mathcal{S}$ be a signed bipartite graph family such that each signed bipartite graph $S \in \mathcal{S}$ with partite sets $X$ and $Y$ if and only if $V(S)$ can be partitioned into $t+1$ vertex subsets $X_{1}, X_{2}, \ldots, X_{t}$ and $Y$ with $X=X_{1} \cup X_{2} \cup$ $\cdots \cup X_{t}$ and $\left|X_{i}\right|=n_{i}$ satisfying Definition 3.1 (ii). Since $S$ is the signed bipartite graph with partite subsets $X$ and $Y$, and $X=X_{1} \cup X_{2} \cup \cdots \cup X_{t}$, we have that for each $1 \leq i$, $j \leq t, j$-th net-degree of any vertex in $X_{i}$ is 0 . Hence $S$ satisfies Definition $3.1(i)$. Therefore, $S$ satisfies Definition 3.1.

Let the signed bipartite graph $S^{G M}$ be constructed from $S$ utilizing GM-switching with respect to the partition $\left\{X_{1}, X_{2}, \ldots, X_{t}, Y\right\}$ is obtained as above. Belardo, et al. [1] proved that $S$ and $S^{G M}$ are cospectral.

Suppose $S_{1}^{G M}$ and $S_{2}^{G M}$ are constructed by GM-switching for signed $\underset{\sim}{\sim}$ bipartite graphs $S_{1}$ and $S_{2}$, respectively. Let $\widetilde{B}$ and $\widetilde{C}$ be the biadjacency matrices of $S_{\underset{1}{G M}}^{\sim}$ and $S_{2}^{G M}$, respectively. Then $A\left(S_{1}^{G M}\right)=\left[\begin{array}{cc}\mathbf{0} & \widetilde{B} \\ \widetilde{B}^{T} & \mathbf{0}\end{array}\right]$ and $A\left(S_{2}^{G M}\right)=\left[\begin{array}{cc}\mathbf{0} & \widetilde{C} \\ \widetilde{C}^{T} & \mathbf{0}\end{array}\right]$, hence $S_{1}^{G M}$ and $S_{2}^{G M}$ have adjacency matrices $A\left(S_{1}^{G M}\right)$ and $A\left(S_{2}^{G M}\right)$, respectively, relative to vertex orderings $x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ and $u_{1}, u_{2}, \ldots, u_{p}, w_{1}, w_{2}, \ldots, w_{q}$, respectively. Define $A\left(S_{1}\right)^{*}=A\left(S_{1}^{G M}\right)$ and $A\left(S_{2}\right)^{*}=A\left(S_{2}^{G M}\right)$.

For any positive integer $\ell$, let

$$
Q_{\ell}=\frac{2}{\ell} J_{\ell}-I_{\ell},
$$

where $J_{\ell}$ represents the $\ell \times \ell$ matrix whose entries are all equal to 1 and $I_{\ell}$ represents the identity matrix of order $\ell$.

Recently, Belardo et al. presented several properties of the matrix $Q_{\ell}$ in [1].
Proposition 3.1: [1] Let $Q_{\ell}=\frac{2}{\ell} J_{\ell}-I_{\ell}$, and $\mathbf{x}=$ $\left(x_{i}\right)_{i=1,2, \ldots, \ell}$ be a vector with entries in $\{0,1,-1\}$. Then
each of the following holds:
(i) $Q_{\ell}$ is orthogonal and symmetric;
(ii) if a vector $\mathbf{x}$ with a sum of entries equal to 0 , then we have $Q_{\ell} \mathbf{x}=-\mathbf{x}$;
(iii) if $\ell$ is an even integer and $\mathbf{x}$ is a vector with half of its elements being 0 and the other half being 1 , then we have $Q_{\ell} \mathbf{x}=\mathbf{1}_{\ell}-\mathbf{x}$;
(iv) if $\ell$ is an even integer and $\mathbf{x}$ is a vector with half of its elements being 0 and the other half being -1 , then we have $Q_{\ell} \mathbf{x}=-\mathbf{1}_{\ell}-\mathbf{x}$;
$(v)$ if $\mathbf{x}$ is the vector $\mathbf{1}_{\ell}$, then we have $Q_{\ell} \mathbf{x}=\mathbf{x}$;
(vi) if $\mathbf{x}$ is the vector $-\mathbf{1}_{\ell}$, then we have $Q_{\ell} \mathbf{x}=\mathbf{x}$.

Let $S_{1}, S_{2} \in \mathcal{S}$. Then $V\left(S_{1}\right)$ can be partitioned into $t_{1}+1$ vertex subsets $X_{1}, X_{2}, \ldots, X_{t_{1}}$ and $Y$ with $X=X_{1} \cup X_{2} \cup$ $\cdots \cup X_{t_{1}},|Y|=n,\left|X_{j}\right|=m_{j}$ for $j \in\left\{1,2, \ldots, t_{1}\right\}$ and $\sum_{j=1}^{t_{1}} m_{j}=m$. And $V\left(S_{2}\right)$ can be partitioned into $t_{2}+1$ vertex subsets $U_{1}, U_{2}, \ldots, U_{t_{2}}$ and $W$ with $U=U_{1} \cup U_{2} \cup$ $\cdots \cup U_{t_{2}},|W|=q,\left|U_{k}\right|=p_{k}$ for $k \in\left\{1,2, \ldots, t_{2}\right\}$ and $\sum_{k=1}^{t_{2}} p_{k}=p$. Let

$$
B=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{t_{1}}
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{c}
C_{1} \\
C_{2} \\
\vdots \\
C_{t_{2}}
\end{array}\right]
$$

where $B_{j}$ are $m_{j} \times n$ for $j \in\left\{1,2, \ldots, t_{1}\right\}$ and $C_{k}$ are $p_{k} \times q$ for $k \in\left\{1,2, \ldots, t_{2}\right\}$. We get that the adjacency matrices of $S_{1}$ and $S_{2}$ are
$A\left(S_{1}\right)=\left[\begin{array}{cc}\mathbf{0} & B \\ B^{T} & \mathbf{0}\end{array}\right]=\left[\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & B_{1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & B_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & B_{t_{1}} \\ B_{1}^{T} & B_{2}^{T} & \cdots & B_{t_{1}}^{T} & \mathbf{0}\end{array}\right]$
and
$A\left(S_{2}\right)=\left[\begin{array}{cc}\mathbf{0} & C \\ C^{T} & \mathbf{0}\end{array}\right]=\left[\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & C_{1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & C_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & C_{t_{2}} \\ C_{1}^{T} & C_{2}^{T} & \cdots & C_{t_{2}}^{T} & \mathbf{0}\end{array}\right]$,
respectively.
Let $Q_{A\left(S_{1}\right)}=\operatorname{diag}\left(Q_{m_{1}}, Q_{m_{2}}, \ldots, Q_{m_{t_{1}}}\right)$ and $Q_{A\left(S_{2}\right)}=$ $\operatorname{diag}\left(Q_{p_{1}}, Q_{p_{2}}, \ldots, Q_{p_{t_{2}}}\right)$. According to Proposition 3.1, we can obtain

$$
\begin{aligned}
& Q_{A\left(S_{1}\right)} B \\
&= {\left[\begin{array}{ccccc}
Q_{m_{1}} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & Q_{m_{2}} & \cdots & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & Q_{m_{t_{1}-1}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & Q_{m_{t_{1}}}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{t_{1}-1} \\
B_{t_{1}}
\end{array}\right] } \\
&=\left[\begin{array}{c}
Q_{m_{1}} B_{1} \\
Q_{m_{2}} B_{2} \\
\vdots \\
Q_{m_{t_{1}-1}} B_{t_{1}-1} \\
Q_{m_{t_{1}}} B_{t_{1}}
\end{array}\right] \\
&= \widetilde{B}
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{A\left(S_{2}\right)} C \\
= & {\left[\begin{array}{ccccc}
Q_{p_{1}} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & Q_{p_{2}} & \cdots & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & Q_{p_{t_{2}-1}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & Q_{p_{t_{2}}}
\end{array}\right]\left[\begin{array}{c} 
\\
C_{1} \\
C_{2} \\
\vdots \\
C_{t_{2}-1} \\
C_{t_{2}}
\end{array}\right] } \\
= & {\left[\begin{array}{c}
Q_{p_{1}} C_{1} \\
Q_{p_{2}} C_{2} \\
\vdots \\
Q_{p_{t_{2}-1}} C_{t_{2}-1} \\
Q_{p_{t_{2}}} C_{t_{2}}
\end{array}\right] } \\
= & \widetilde{C} .
\end{aligned}
$$

In the remainder of this section, we proviede some constructions of cospectral non-isomorphic signed bipartite graphs using the notion of partitioned tensor product for signed bipartite graphs and GM-switching.

It is worth pointing out that

$$
\begin{aligned}
\mathcal{T}_{S_{1} \times S_{2}} & =\left\{S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)}, S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right) \#}\right\}, \\
\mathcal{T}_{S_{1}^{G M} \times S_{2}} & =\left\{S_{A\left(S_{1}\right)^{*} \underline{\otimes} A\left(S_{2}\right)}, S_{A\left(S_{1}\right)^{*} \underline{A}\left(S_{2}\right) \#}\right\}, \\
\mathcal{T}_{S_{1} \underline{S_{2}}}= & =\left\{S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right) \underline{( }\left(A\left(S_{2}\right)^{*}\right) \#}\right\}
\end{aligned}
$$

and

$$
\mathcal{T}_{S_{1}^{G M} \underline{X} S_{2}^{G M}}=\left\{S_{A\left(S_{1}\right)^{*} \underline{\otimes} A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right)^{*} \underline{\otimes}\left(A\left(S_{2}\right)^{*}\right)^{\#}}\right\} .
$$

Next, we give the result in the following.
Theorem 3.1: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs. Then each of the following holds:
(i) if $S_{1} \in \mathcal{S}$, then two signed bipartite graphs $S_{1} \times S_{2}$ and $S_{1}^{G M} \times S_{2}$ are cospectral;
(ii) if $S_{2} \in \mathcal{S}$, then two signed bipartite graphs $S_{1} \times S_{2}$ and $S_{1} \times S_{2}^{G M}$ are cospectral;
(iii) if $S_{1}, S_{2} \in \mathcal{S}$, then four signed bipartite graphs $S_{1} \times S_{2}$, $S_{1}^{G M} \times S_{2}, S_{1} \times S_{2}^{G M}$ and $S_{1}^{G M} \times S_{2}^{G M}$ are mutually cospectral.

Theorem 2.2 implies the following theorem.
Theorem 3.2: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs. Then each of the following holds:
(i) if $S_{1} \in \mathcal{S}$, then two signed bipartite graphs of $\mathcal{T}_{S_{1}^{G M} \times S_{2}}$ are cospectral if and only if $S_{1}$ or $S_{2}$ is balanced;
(ii) if $S_{2} \in \mathcal{S}$, then two signed bipartite graphs of $\mathcal{T}_{S_{1} \times S_{2}^{G M}}$ are cospectral if and only if $S_{1}$ or $S_{2}$ is balanced;
(iii) if $S_{1}, S_{2} \in \mathcal{S}$, then two signed bipartite graphs of $\mathcal{T}_{S_{1}^{G M} \times S_{2}^{G M}}$ are cospectral if and only if $S_{1}$ or $S_{2}$ is balanced.

The following two lemmas are essential for our further discussion.
Lemma 3.1: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs, where $S_{1} \in \mathcal{S}$. Then the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ are cospectral.

Proof: We only need to demonstrate that the matrices $A\left(S_{1}\right) \otimes A\left(S_{2}\right)$ and $A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)$ are orthogonally similar, and hence $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) * \otimes A\left(S_{2}\right)}$ are cospectral. Assume that $S_{1}^{G M}$ is constructed by GM-switching for signed bipartite graph $S_{1}$.

Let $R=\left[\begin{array}{cc}Q_{A\left(S_{1}\right)} & \mathbf{0} \\ \mathbf{0} & I_{n}\end{array}\right]$, where $Q_{A\left(S_{1}\right)}=$ $\operatorname{diag}\left(Q_{m_{1}}, Q_{m_{2}}, \ldots, Q_{m_{t_{1}}}\right)$, by Proposition $3.1(i), R$ is an orthogonal matrix and symmetric matrix. Then

$$
\begin{aligned}
& R^{T} A\left(S_{1}\right) R \\
= & {\left[\begin{array}{cc}
Q_{A\left(S_{1}\right)} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & B \\
B^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
Q_{A\left(S_{1}\right)} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\mathbf{0} & Q_{A\left(S_{1}\right)} B \\
B^{T} Q_{A\left(S_{1}\right)} & \mathbf{0}
\end{array}\right] } \\
= & A\left(S_{1}\right)^{*} .
\end{aligned}
$$

Obviously, it is possible to find two identity matrices $I_{p}$ and $I_{q}$, which can lead to $I_{p} C I_{q}=C$. Define $F=$ $\left[\begin{array}{cc}I_{p} & \mathbf{0} \\ \mathbf{0} & I_{q}\end{array}\right]$. Clearly, $F$ is an orthogonal matrix. Now, we have $F^{T} A\left(S_{2}\right) F=A\left(S_{2}\right)$.
Let $P=R \otimes F=\left[\begin{array}{cc}Q_{A\left(S_{1}\right)} \otimes I_{p} & \mathbf{0} \\ \mathbf{0} & I_{n} \otimes I_{q}\end{array}\right]$. By Proposition 2.2 (ii-2), $P$ is an orthogonal matrix. Now,

$$
\begin{aligned}
P^{T}\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right) P & =(R \otimes \underline{\otimes})^{T}\left(A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)\right)(R \underline{\otimes} F) \\
& =\left(R^{T} A\left(S_{1}\right) R\right) \underline{\otimes}\left(F^{T} A\left(S_{2}\right) F\right) \\
& =A\left(S_{1}\right)^{*} \underline{\otimes} A\left(S_{2}\right) .
\end{aligned}
$$

Note that the second step utilizes Proposition 2.2 (i) and (ii1). Thus $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ are cospectral.

Lemma 3.2: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs, where $S_{1}$ and $S_{2} \in \mathcal{S}$. Then the signed bipartite graphs $S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)}, S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)^{*}}$ are mutually cospectral.

Proof: Let

$$
R=\left[\begin{array}{cc}
I_{m} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right]
$$

and

$$
F=\left[\begin{array}{cc}
Q_{A\left(S_{2}\right)} & \mathbf{0} \\
\mathbf{0} & I_{q}
\end{array}\right]
$$

where $Q_{A\left(S_{2}\right)}=\operatorname{diag}\left(Q_{p_{1}}, Q_{p_{2}}, \ldots, Q_{p_{t_{2}}}\right)$ and $P=R \otimes F$. By a similar proof to that of Lemma 3.1, we can obtain $P^{T}\left(A\left(S_{1}\right) \otimes A\left(S_{2}\right)\right) P=A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}$, which implies that $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}$ are cospectral. It follows by Lemma 3.1 that the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$, $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) \underline{\otimes} A\left(S_{2}\right)^{*}}$ are mutually cospectral. $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)^{*}}$ are cospectral by Lemma 3.1. Hence, the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$, $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right)^{*} \underline{\otimes} A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \underline{\otimes} A\left(S_{2}\right)^{*}}$ are mutually cospectral.

We are now able to formulate our main results.
Theorem 3.3: Assume that $S_{1}$ and $S_{2}$ are two signed bipartite graphs, where $S_{1}$ and $S_{2} \in \mathcal{S}$. Then any two signed bipartite graphs in $\mathcal{T}_{S_{1} \times S_{2}} \cup \mathcal{T}_{S_{S}^{G M} \times S_{2}} \cup \mathcal{T}_{S_{1} \times S_{2}^{G M}} \cup$ $\mathcal{T}_{S_{1}^{G M} \times S_{2}^{G M}}$ are cospectral if and only if $S_{1}$ or $S_{2}$ is balanced.

Proof: Note that

$$
\begin{aligned}
& \left(\mathcal{T}_{S_{1} \times S_{2}}\right) \cup\left(\mathcal{T}_{S_{1}^{G M} \times S_{2}}\right) \cup\left(\mathcal{T}_{S_{1} \times S_{2}^{G M}}\right) \cup\left(\mathcal{T}_{S_{1}^{G M} \times S_{2}^{G M}}\right) \\
= & \left\{S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}, S_{A\left(S_{1}\right) \underline{A}\left(S_{2}\right)^{\#},}, S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)},\right. \\
& S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)^{\#},}, S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right) \underline{\otimes}\left(A\left(S_{2}\right)^{*}\right)^{\#},}, \\
& \left.S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)^{*}}, S_{\left.A\left(S_{1}\right)^{*} \underline{\otimes}\left(A\left(S_{2}\right)^{*}\right)^{\#}\right\} .}\right\} .
\end{aligned}
$$

First, suppose that $S_{1}$ or $S_{2}$ is balanced. $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$, $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)^{*}}, S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)^{*}}$ are mutually cospectral by Lemma 3.2. It follows by Theorem 2.2
and Theorem 3.2 that any two signed bipartite graphs in $\left(\mathcal{T}_{S_{1} \underline{1} S_{2}}\right) \cup\left(\mathcal{T}_{S_{1}^{G M} \times S_{2}}\right) \cup\left(\mathcal{T}_{S_{1} \underline{1} S_{2}^{G M}}\right) \cup\left(\mathcal{T}_{S_{1}^{G M} \underline{S_{2}^{G M}}}\right)$ are cospectral.

Conversely, assume that any two signed bipartite graphs in $\mathcal{T}_{S_{1} \times S_{2}} \cup \mathcal{T}_{S_{1}^{G M} \times S_{2}} \cup \mathcal{T}_{S_{1} \times S_{2}^{G M}} \cup \mathcal{T}_{S_{1}^{G M} \times S_{2}^{G M}}$ are cospectral, we conclude that $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $\bar{S}_{A\left(S_{1}\right) \otimes A\left(S_{2}\right) \#}$ are cospectral. Hence $S_{1}$ or $S_{2}$ is balanced by Theorem 2.2.

Theorem 3.4: Assume that $S_{1}$ and $S_{2}$ are two connected signed bipartite graphs, where $S_{1} \in \mathcal{S}$. Then the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right) * \otimes A\left(S_{2}\right)}$ are isomorphic if and only if it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T}(B \otimes C) R_{2}=$ $\left(Q_{A\left(S_{1}\right)} B\right) \otimes C$ or $R_{1}^{T}(B \otimes C) R_{2}=\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T}$.

Proof: First, assume that it is possible to find a permutation matrix $R$, which can lead to either $R=\left[\begin{array}{cc}R_{1} & \mathbf{0} \\ \mathbf{0} & R_{2}\end{array}\right]$ or $R=\left[\begin{array}{cc}\mathbf{0} & R_{1} \\ R_{2} & \mathbf{0}\end{array}\right]$, where $R_{i}$ is the permutation matrix with $i \in\{1,2\}$, such that

$$
\begin{aligned}
& R^{T}\left[\begin{array}{cc}
\mathbf{0} & B \otimes C \\
B^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right] R \\
= & {\left[\begin{array}{cc}
\mathbf{0} & \left(Q_{A\left(S_{1}\right)} B\right) \otimes C \\
\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right] . }
\end{aligned}
$$

If $R=\left[\begin{array}{cc}R_{1} & \mathbf{0} \\ \mathbf{0} & R_{2} \\ \text { 0 } & R_{1} \\ R_{2} & \mathbf{0}\end{array}\right]$, then $R_{1}^{T}(B \otimes C) R_{2}=\left(Q_{A\left(S_{1}\right)} B\right) \otimes C$. $C^{T}$.

Suppose it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T}(B \otimes C) R_{2}=\left(Q_{A\left(S_{1}\right)} B\right) \otimes C$. Let $R=\left[\begin{array}{cc}R_{1} & \mathbf{0} \\ \mathbf{0} & R_{2}\end{array}\right]$. Clearly, $R$ is a permutation matrix. Now,

$$
\begin{aligned}
& R^{T}\left(A\left(S_{1}\right) \otimes A\left(S_{2}\right)\right) R \\
= & {\left[\begin{array}{cc}
R_{1}^{T} & \mathbf{0} \\
\mathbf{0} & R_{2}^{T}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & B \otimes C \\
B^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
R_{1} & \mathbf{0} \\
\mathbf{0} & R_{2}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
R_{2}^{T}\left(B^{T} \otimes C^{T}\right) R_{1} & R_{1}^{T}(B \otimes C) R_{2} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\mathbf{0} & \left(Q_{A\left(S_{1}\right)} B\right) \otimes C \\
\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right] } \\
= & A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right) .
\end{aligned}
$$

Now we suppose that it is possible to find two permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T}(B \otimes C) R_{2}=$ $\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T}$, let $R=\left[\begin{array}{cc}\mathbf{0} & R_{1} \\ R_{2} & \mathbf{0}\end{array}\right]$. Clearly, $R$ is a permutation matrix. Now,

$$
\begin{aligned}
& R^{T}\left(A\left(S_{1}\right) \otimes A\left(S_{2}\right)\right) R \\
= & {\left[\begin{array}{cc}
\mathbf{0} & R_{2}^{T} \\
R_{1}^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & B \otimes C \\
B^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{0} & R_{1} \\
R_{2} & \mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\mathbf{0} & R_{2}^{T}\left(B^{T} \otimes C^{T}\right) R_{1} \\
R_{1}^{T}(B \otimes C) R_{2} & \mathbf{0}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\mathbf{0} & \left(Q_{A\left(S_{1}\right)} B\right) \otimes C \\
\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T} & \mathbf{0}
\end{array}\right] } \\
= & A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right) .
\end{aligned}
$$

Thus the graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ are isomorphic.

By utilizing Theorem 3.4, we can derive the following corollary.

Corollary 3.1: Assume that $S_{1}$ and $S_{2}$ are two connected signed bipartite graphs with $S_{1} \in \mathcal{S}$ and $S_{1}^{G M}$ being also connected. Then the signed bipartite graphs $S_{A\left(S_{1}\right) \otimes A\left(S_{2}\right)}$ and $S_{A\left(S_{1}\right)^{*} \otimes A\left(S_{2}\right)}$ are cospectral and non-isomorphic if and only if it is impossible to find permutation matrices $R_{1}$ and $R_{2}$, which can lead to $R_{1}^{T}(B \otimes C) R_{2}=\left(Q_{A\left(S_{1}\right)} B\right) \otimes C$ and $R_{1}^{T}(B \otimes C) R_{2}=\left(Q_{A\left(S_{1}\right)} B\right)^{T} \otimes C^{T}$.

By a similarly argument, any two signed bipartite graphs in $\mathcal{T}_{S_{1} \times S_{2}} \cup \mathcal{T}_{S_{1}^{G M} \underline{1} S_{2}} \cup \mathcal{T}_{S_{1} \times S_{2}^{G M}} \cup \mathcal{T}_{S_{1}^{G M} \underline{ } S_{2}^{G M}}$ also have similar results, we omit these results and proofs.

## References

[1] F. Belardo, M. Brunetti, M. Cavaleri, A. Donno, "Constructing cospectral signed graphs," Linear and Multilinear Algebra, vol. 69, no. 14, pp. 2717-2732, 2019.
[2] F. Belardo, S. M. Cioabǎ, J. H. Koolen, J. Wang, "Open problems in the spectral theory of signed graphs," Art of Discrete and Applied Mathematics, vol. 1, pp. 2-10, 2018.
[3] F. Belardo, S. K. Simić, "On the Laplacian coefficients of signed graphs," Linear Algebra and its Applications, vol. 475, pp. 94-113, 2015.
[4] M. A. Bhat, S. Pirzada, "On equienergetic signed graphs," Discrete Applied Mathematics, vol. 189, pp. 1-7, 2015.
[5] S. Butler, "A note about cospectral graphs for the adjacency and normalized Laplacian matrices," Linear and Multilinear Algebra, vol. 58, pp. 387-390, 2010.
[6] C. Godsil, B. Mckay, "Products of graphs and their spectra," In: Casse, L.R.A., Wallis, W.D. (eds) Combinatorial Mathematics IV, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, vol. 560, pp. 6172, 1976.
[7] R. H. Hammack, "Proof of a conjecture concerning the direct product of bipartite graphs," European Journal of Combinatorics, vol. 30, pp. 1114-1118, 2009.
[8] Y. Hou, J. Li, Y. Pan, "On the Laplacian eigenvalues of signed graphs," Linear and Multilinear Algebra, vol. 51, pp. 21-30, 2003.
[9] Y. Ji, S. Gong, W. Wang, "Constructing cospectral bipartite graphs," Discrete Mathematics, vol. 343, no. 10, 112020, 2020.
[10] M. R. Kannan, S. Pragada, H. Wankhede, "On the construction of cospectral nonisomorphic bipartite graphs," Discrete Mathematics, vol. 345, 112916, 2022.
[11] D. Li, H. Lin, J. Meng, "Extremal spectral results related to spanning trees of signed complete graphs," Discrete Mathematics, vol. 346, no. 2, 113250, 2023.
[12] A. P. Ranjith, J. V. Kureethara, "Sum Signed Graphs, Parity Signed Graphs and Cordial Graphs," IAENG International Journal of Applied Mathematics, vol. 53, no. 2, pp. 491-496, 2023.
[13] T. Shamshera, S. Pirzadab, M. A. Bhat, "On adjacency and Laplacian cospectral non-isomorphic signed graphs," Ars Mathematica Contemporanea, vol. 23, no. 3, 2023.
[14] F. Zhang, "Matrix Theory: Basic Theory and Techniques," SpringerVerlag, 1999.
[15] K. Zhang, Z. Xu, "Matrix Theory," Peking, China, pp. 194-195, 2013.
[16] Z. Zhu, Q. Liu, "Generalized Adjacency, Laplacian Spectra and Signless Laplacian Spectra of the Weighted Neighbourhood Coronae Networks" IAENG International Journal of Applied Mathematics, vol. 52, no. 1, pp. 219-224, 2022.


[^0]:    Manuscript received May 18, 2023; revised September 24, 2023. This work was supported by NSFC (No. 12261016).
    Shupeng Li is a postgraduate student of School of College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou, 550025, P.R. China.(e-mail:434744309@qq.com).

    Juan Liu is a professor of School of College of Big Data Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou, 550025, P.R. China.(e-mail:liujuan1999@126.com).(Corresponding author)

    Hong Yang is a postgraduate student of School of College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P.R. China.(e-mail:1070556334@qq.com).
    Hong-Jian Lai is a professor of Department of Mathematics, West Virginia University, Morgantown, WV, USA.(e-mail:hjlai@ math.wvu.edu).

