
Abstract—Fabric defect detection is a crucial stage in fabric
production. In the past, defect detection relied heavily on
manual inspection, which was inefficient, time-consuming, and
expensive. This paper proposes an Improved-YOLOX network
for fabric defect detection based on computer vision. First, we
design an attention module by combining channel attention and
spatial attention to extract useful information for improving the
accuracy of the network. Second, Dynamic convolution is
introduced in the detection head to enhance the detection of
small targets. Third, the VariFocal loss function and the GIOU
loss function are used to improve the performance of the
network. The experiments show that our approach on three
fabric datasets can reach an average of over 96.47% mAP, and
the speed exceeds 30 FPS, which can meet the requirements of
industrial production.

Index Terms—Improved-YOLOX, attention module,
defect detection.

I. INTRODUCTION
abrics are utilized in many different fields, including the
clothing, medical and aerospace [1-4]. During production,

broken yarn, overlapping yarn, and machine faults can result
in defects that impact the fabric's quality, cost, and sales. As
shown in Figure 1, common fabric defects are present. For a
long time, manual inspection was the primary method for
detecting fabric defects. However, this approach had many
disadvantages. First, manual detection was slow; Secondly, it
was extremely susceptible by subjective factors. This may
lead to false detection and missed detection. Thus, there is an
urgent need for automatic detection methods based on
computer vision.

Figure. 1. Three common defects. The red box is the location
of the defects.

Convolutional neural networks have become widespread
in image recognition, detection, classification, and
segmentation as a result of the advancement of computer
vision. And convolutional neural networks have achieved
significant success in defect detection [5]. Therefore, many
researchers have proposed various networks for industrial
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fabric defect detection [6]. Liu et al. proposed an improved
YOLOv4 algorithm and designed a new SPP structure that
provided more precise detection of fabric defects [7]. Fan et
al. proposed a method for fabric defect detection based on a
combination of convolutional neural networks (CNNs) and
variable autoencoders (VAEs) [8]. K. Gopalakrishnan et al.
applied a deep learning technique to detect structural defects
using convolutional neural networks and multiple optimizers
[9]. However, in complex industrial environments, many
factors can cause a variety of defect types and sizes, resulting
in a poor detection result. However, none of the above studies
discuss the detection of small defects or the generalizability
of the networks. To address the above issue, we propose the
Improved-YOLOX network, which can achieve a better
balance between detection accuracy and speed, and improve
detection accuracy for small defects. The experiments
demonstrated the network's performance on three datasets.
The contributions of this paper can therefore be summarized
as follows:
i．We propose Improved-YOLOX for fabric defect

detection to face complex industrial environments.
ii．To enhance detection accuracy, we design an attention

module that combines channel attention and spatial attention.
iii．We introduce Dynamic convolution in the detection

head to improve the detection of small defects. The VariFocal
loss function are used to balance positive and negative
samples. And the GIOU loss function solves the problem of
prediction frames and actual frames overlapping.
The rest of the paper is organized as follows. Section 2

presents related work, including traditional methods and deep
learning methods. Section 3 provides a detailed description of
the proposed method. Section 4 shows the experimental and
discussion of the results. Finally, the whole paper is
summarized, and the focus of future work is presented.

II. RELATED WORK

This section reviews defect detection methods based on
computer vision, including traditional methods and deep
learning methods.

A. Traditional method
Traditional defect detection methods are divided into three

methods based on statistic, structure, and filter method. The
statistical method employs the difference between the gray
value distribution characteristics of defects and the
background to identify defects. Li et al. extracted and
selected salient histogram feature to obtain feature vectors
that could effectively distinguish defective and defect-free
fabric images [10]. For the model method, Liu et al. proposed
a low-rank decomposition for fabric defect detection in their
method [11]. A new low-rank decomposition model was
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developed in order to extract the sparse regions containing
defective pixels and to perform thresholding. For the filtering
method, the image is converted into the frequency domain,
and the defect location is determined by analyzing the
spectral characteristics. Qin et al. proposed a novel algorithm
for fabric defect detection that combines residual energy
distribution and Gabor features [12]. However, the above
traditional methods necessitate painstakingly designed
templates to extract features, as well as classifier and
threshold segmentation to identify defects. Meanwhile, this
method is time-consuming and are not suitable for defect
detection in industry.

B. Deep learning method
Traditional detection methods have many disadvantages

when applied to actual industrial production. So deep
learning based on convolutional neural networks is widely
used for defects detection due to its high accuracy and
adaptability to the scene [13]. At present, defect detection
based on neural networks is divided into the following two
categories: one-stage networks, such as the YOLO series and
SSD series. And two-stage networks, such as the R-CNN
series. The one-stage network focuses on improving the
speed of the network [14]. Zhou et al. could effectively detect
fabric defect by improving YOLOv5s [15]. In addition,
through a series of optimization measures, the accuracy and
speed of the detection was enhanced, which had a certain
industrial value. Jing et al. proposed a fabric defect detection
method based on the improved YOLOv3 model and used a
k-means algorithm for the dimensional clustering of the
target frame to achieve better locate target box position [16].
Meanwhile, the combination of low-level features and
high-level information could be used in fabric detection to
improve the accuracy of the network. Xie et al. proposed an
improved structural defect detection network based on SSD
and added full convolution extrusion excitation (FCSE)
module to increase the model's detection accuracy [17]. The
two-stage network primarily improves the detection accuracy
of the network [18]. Li et al. proposed a Cascade R-CNN
fabric defect detection, which used a single input image to
scale into multiple images with different resolutions for
training, carried out dimensional clustering on the size of
defects in datasets and adopted soft non-maximum
suppression instead of traditional non-maximum suppression
[19]. You et al. proposed a feature pyramid network based on
Faster R-CNN [20]. This network combined features from
multiple layers and directions to enhance the detection and
localization of targets. When faced with complex industrial
scenarios, despite the fact that the deep learning approach
yielded superior results, there are still numerous aspects that
must be enhanced. Simultaneously, the balance between
detection accuracy and speed is an important challenge.

III. METHOD

YOLOX, as a new generation of the YOLO network,
achieves an excellent speed-to-performance balance [21].
The YOLOX structure is comprised of three components: the
backbone network, the neck network, and the detection head.
In the backbone network, the CSPDarknet53 structure is used
to extract the feature of the input image. In the neck network,
different levels of information are fused to enhance feature

extraction to improve detection capability of the model. In
the detection head section, it enables the classification and
location of defects. In sophisticated industrial environments,
however, YOLOX's detection capabilities perform poorly.
Therefore, we propose Improved-YOLOX network based
YOLOX.
Our proposed Improved-YOLOX network is shown in

Figure 2. First, to enhance the model's robustness, the CASA
attention module is embedded within the YOLOX backbone
section. Secondly, to accomplish the detection of small
defects, we implement Dynamic convolution [22] in the
detection head section. Finally, the VariFocal Loss function
[23] and the GIOU Loss functions [24] are utilized to
enhance the effectiveness of the model.

Figure. 2. Improved-YOLOX structure. The network is
divided into three main sections: the backbone section, the

neck section, and the detection head section.

A. CASA Attention Module
Researchers have increased the depth and width of the

network continuously to enhance the network's detection
capabilities [25-26]. This method, however, increased model
size and computational effort and was susceptible to
information redundancy. In the current study, the attention
module improved the detection capability of the network
through adaptive feature refinement of the input features [27].
However, most of the studies employ channel attention or
spatial attention, which cannot extract features in a
comprehensive way [28-30]. In this paper, we propose an
attention module combining channel attention and spatial
attention (CASA) to improve the detection of industrial
defects in networks. Our proposed CASA module is shown in
Figure 3. CASA module uses channel attention and spatial
attention to emphasize meaningful features, which can
effectively help information flow in the network and advise it
to concentrate on "where" and "what".

Figure. 3. CASA Attention Module.
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The CASA module first performs channel attention, which
can be viewed as a computational unit that enhances the
network’s ability to express features and concentrate on the
"what" is the most essential information part of the input. The
channel attention module is shown in Figure 4. First, the
global average pooling is performed to extract the precise
location information as follows: for the input feature map
C×H×W, pooling is performed according to the X and Y
directions to generate feature maps of size C×H×1 and
C×1×W respectively. Then, the C×1×W feature map is
transformed to generate a C×W×1 feature layer, followed by
a concatenation operation, and a dimensionality reduction
and activation operation using 1×1 convolution. Finally, the
generated feature map is split along the spatial dimension,
and the 1×1 convolution is used to perform upgrading and
activation operations, and the output is obtained by
multiplying with the input.

Figure. 4. Channel Attention Module.

Next, the CASA module conducts spatial attention,
focusing on the "where" of crucial input information. The
spatial attention module is shown in Figure 5. First, the
average pooling features and maximum pooling features
across channels are generated, which aggregates all channel
information. This information is then concatenated and
convolved through a standard convolutional layer to generate
a spatial attention feature layer. Finally, the weights are
obtained by the sigmoid function and are multiplied with the
input to obtain the final output.

Figure. 5. Spatial Attention Module.

We embed the proposed attention module into the
backbone network, which can better extract the channel and
spatial information in the network to improve the detection
capability of the network.

B. Optimize Detection Head
Small defects are frequently generated in fabric production

for a variety of factors, resulting in poor detection of the
network. Therefore, the detection head must be optimized to
improve the detection of small targets. Dynamic convolution
is introduced in the detection head. The Dynamic convolution
is shown in Figure 6. It does not increase the depth and width
of the network. At the same time, it has stronger
representation capability, which can achieve more accurate
prediction of targets and improve network performance.
Dynamic convolution employs different convolution kernels,
and each convolution kernel also has different weight
coefficients. The weight coefficients are generated through

using the attention module. The softmax layer can generate
unique weights for each convolution kernel. After getting the
weight coefficients, they are multiplied by the corresponding
convolution and added together to produce the final
convolution weights. Then, it performs matrix multiplication
with the input to get the output and finally complete the
Dynamic convolution operation.

Figure. 6. Dynamic convolution.

C. Loss function
The loss function in YOLOX is composed of three parts:

classification loss, confidence loss, and localization loss. In
classification loss, the BCE loss function is used to calculate
the loss based on the true frame and the prediction frame. In
the confidence loss, the Varifocal loss function is utilized to
address the sample imbalance issue more effectively. In the
localization loss, the IOU loss is substituted with the GIOU
loss function, which optimizes the situation in which the true
frame does not intersect with the predicted frame. Our
approach is explained in detail below.

1) Classification loss
In the classification task, the BCE loss function is

calculated based on the predicted results of the real frame and
the true frame. The BCE loss function is defined as follows:

Cls [ log (1 ) loˆ g 1 ˆ( )]L y y y y     (1)
where LCls represents the BCE loss function, y is the value

of the true frame, and ŷ is the output of the prediction head.

2) Confidence loss
In the real industry, datasets frequently contain unbalanced

positive and negative samples, which can have an effect on
accuracy. Therefore, we introduce the Varifocal loss function
to solve this problem. In order to address the positive and
negative sample imbalance problem, an α factor is introduced
in the negative loss term to achieve balance while
simultaneously weighting the positive sample q. If a positive
sample has a higher IOU, its contribution to the loss will be
larger. This focuses the training on those high-quality
positive examples that get higher APs than those of lower
quality. The Varifocal loss function is defined as follows:

Obj

( log( ) (1 ) log(1 )) 0
log(1 ) 0

q q p q p q
L

p p q
    

    
(2)

where q is the true sample and p is the prediction score
(q=0 is the detected negative sample and q>0 represents the
detected positive sample).

3) Localization loss
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After the feature points have been determined, the real
frame and the predicted frame are used to calculate the
localization loss. The overlap between the two frames,
however, makes it impossible to identify the defects.
Therefore, we use the GIOU loss function, as it considers
both overlapping and non-overlapping regions. In the
meantime, it can more accurately reflect the overlap between
the real frame and the predicted frame. And the greater the
overlap, the higher the robustness of the model. GIOU loss
function is defined as follows:

| |
| |
A BIoU
A B





(3)

Re
|

g
CL IoU 

( ) |
| |
A B
C
 (4)

where A is the area of the real frame, B is the area of the
predicted frame and C is the area of the minimum external
frame.
Therefore, the overall loss function of YOLOX in this

paper is as follows.

ReTatal Cls Obj gL L L L   (5)

IV. EXPERIMENT

In this section, we will evaluate our model using a variety
of experiments. The trained data and the detected data are
presented on a local workstation. The configuration is
GeForce RTX3090, 24GB memory, and the software runs on
Windows 10.0, Python 3.7, and the PyTorch 1.7 deep
learning framework. In the experiments, the batch size was
set to 16, SGD was the optimizer, the learning rate was set to
1e-2, and a cosine learning rate schedule was used in training
model.

A. Datasets
In our experiments, we will use three fabric defects

datasets from actual industrial scenarios, namely Grid Fabric,
Red Dotted Fabric, and Camouflage Fabric. Each dataset
contains various types of defects, including line breaks,
overlaps, etc. The number of datasets is shown in Table 1.
Each dataset is split into a training set and a test set, with 90%
of the dataset being used for network training and 10% of the
dataset for network testing.

TABLE I: Data set

B. Evaluation indicators
Mean Average Precision (mAP), an evaluation metric for

measuring the performance of a target detection algorithm is
obtained by taking a combined weighted average of the
average precision (AP) for all classes. The formula for
calculating mAP is as follows:

1 Ni

N

N
AP

mAP (6)

where N represents all classes, AP represents average
precision for all class.
FPS, an evaluation metric for the speed of a target

detection algorithm, refers to frames per second transmission.
The more frames per second, the smoother the action
displayed. The formula for calculating FPS is as follows:

Total FrameFPS
Total Time

 (7)

where Total Frame represents the number of transferred
frames and Total Time represents the time it takes to transmit
the number of frames.
GFLOPs, G floating point operations, is used to evaluate

the amount of model computation. The formula for
calculating GFLOPs is as follows:

 22 1 FLOPs HW CiK Co (8)
910GFLOPs FLOPs (9)

where Ci is the number of channels input, Co is the number
of channels output and K is the size of the convolutional
kernel.

C. Experiments
1) CASA attention module comparative experiments
We embedded the CASA attention module into the

YOLOX backbone network and evaluated and validated the
performance on the Grid Fabric dataset. We compared it with
four attentional modules: ECA, CA, SE, and CBAM. Five
attention modules were embedded in the backbone network
in the same way to demonstrate the effectiveness of our
proposed module. The experimental results are shown in
Table 2.

TABLE Ⅱ: mAP of different attention modules on Grid
Fabric Set.

Network YOLOX +ECA +SE-Net +CBAM +CA +CASA

mAP(%) 88.78% 89.38% 92.05% 90.82% 92.64% 92.98%

According to the results, the accuracy of our attention
module on the Grid Fabric dataset was improved by 4.2%. In
comparison with the other four attention modules, our
module had the highest accuracy. We discover that CASA
can effectively improve the robustness of the network.
Although the information obtained at the backbone network
is simple, it still contains rich texture profile information.
Consequently, the attention module is embedded behind the
backbone network to improve the channel and spatial
features.

2) Loss function fixed reference experiment
The Varifocal loss function was introduced as confidence

loss. Since a variable factor α was incorporated into the
equation, we experimented with its various value using the
Grid Fabric dataset in order to ensure higher accuracy on our
fabric defect dataset and to guarantee the validity of the
detection. In the experiments, we took 0.1 to 0.4 for α and 2
for γ. Four experiments were conducted with varying values
(0.1, 0.2, 0.3, 0.4) to verify the contribution of different
values for the positive and negative samples. The
experimental results are shown in Table 3. mAP was the

Dataset Train Set
(number)

Test Set
(number)

Total Set
(number

)

Image Size

Grid Fabric 334 37 371 256×256
Red Dotted Fabric 378 42 420 256×256
Camouflage Fabric 312 35 347 256×256
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highest when ɑ = 0.4. and compared with the original
YOLOXmodel, which accuracy can reach 94.11%. In dataset,
the negative sample ratio tends to be higher, and ɑ factor is
used to weigh the positive and negative samples. Thus, the
positive and negative samples are balanced, and there is no
longer a high AP value and a low value for the negative
samples.

TABLE Ⅲ: mAP(%) for different values of the loss
function variable factor.

MODLE LOSS mAP(%)

YOLOX

ɑ=0.1 94.01%
ɑ=0.2 93.80%
ɑ=0.3 93.40%
ɑ=0.4 94.11%

3) Ablation experiment
We conducted ablation experiments on two fabric defect

datasets to further investigate the impact of each
improvement on the network. The modules were added in the
following order: CASA attention module, prediction head
improvement, and loss function improvement. The results of
the ablation experiments are shown in Table 4 and 5. The
detection capability of the model is enhanced by the attention
module, which enables the network to increase the weight of
usable features from both spatial and channel dimensions. An
average improvement of 2.58% was calculated on two
datasets. Utilizing dynamic convolution kernels and
assigning various weights to different feature layers,
Dynamic convolution is used in the prediction head
improvement. It can improve the expressiveness of the model
and increase the detection of small targets by increasing an
average of 1.42% on two datasets. Using the Varifocal loss
solves the sample imbalance problem and the GIOU loss
solves the problem of overlap between predicted and real
frames, allowing for a more precise location and
identification of the defect. With the improvement of the loss
function, the accuracy was increased by an average of 0.40%
on the datasets. The experimental results demonstrate the
effectiveness of our proposed method and guarantee the
accuracy of the model while reducing its size.

TABLE Ⅳ: Qualitative experiments for the proposed
modules on Grid Fabric.

YOLOX +CASA +Prediction
head

+Loss
function

mAP(%)

√ 88.78%
√ √ 92.98%
√ √ √ 93.90%
√ √ √ √ 94.11%

TABLE Ⅴ: Qualitative experiments for the proposed
modules on Camouflage Fabric.

YOLO
X

+CASA +Prediction
head

+ Loss
functio

n

mAP(%)

√ 92.81%
√ √ 93.78%
√ √ √ 95.70%
√ √ √ √ 96.30%

4) Comparative experiments

To validate the accuracy of the models in this paper, it was
compared with five models, namely SSD, Efficient, YOLOv5,
YOLOX, and YOLOv4-tiny. All models were trained using
three fabric datasets in order to evaluate their performance.
The results are shown in Table 6 and 7, and the visualization
results are shown in Figure 7.
Comparing the data results reveals that our method obtains

superior detection speed and detection accuracy. The
YOLOv5 had an advantage in detection speed, which reached
38 FPS and met the production requirements of the industry.
However, the average detection accuracy was 92.32%, which
was lower than our network. The original YOLOX could
reach 35 FPS in speed, but its accuracy was 4.27% lower in
accuracy than our model. YOLOv4-tiny is a lightweight
network and improvements in detection speed has an impact
on the network accuracy. Despite achieving 50 FPS in speed,
YOLOv4-tiny's detection accuracy did not meet industrial
requirements. Compared to the SSD network, the accuracy of
detection in Red Dotted Fabric reached 96.10%, but the size
of the model and number of parameters were larger than our
model. Compared to the Efficient network, the detection
speed of Efficient was only 17 FPS, which was insufficient
for real-time detection. In summary, our model outperforms
other networks in terms of detection speed and accuracy.
According to the results of the visualization, we find that

YOLOv5, YOLOX, and YOLOv4-tiny had missed detection.
Although the SSD and Efficient detection results meet the
industrial requirements, they were slower than our method.
Through comprehensive consideration, our model was able
to enhance detection speed while maintaining accuracy.

TABLE Ⅵ: mAP(%) comparison experiments with
different networks on three datasets.

Networ
ks

YOL
OX

YOL
Ov5

YOLOv
4-tiny SSD Efficie

nt
Improved-Y
OLOX

Grid
Fabric

88.7
8%

91.02
% 77.38% 91.37

%
89.49
% 94.11%

Red
Dotted
Fabric

95.0
1%

94.38
% 69.14% 96.10

%
77.43
% 99.00%

Camouf
lage
Fabric

92.8
1%

91.57
% 85.07% 91.21

%
92.36
% 96.30%

TABLEⅦ: Comparison of the four evaluation indicators
for different networks.

Netw
orks

YOLO
X

YLO
Lv5

YOLO
v4-tiny SSD Effici

ent
Improved-YO

LOX

Para
mete
r(M)

8.938 7.066 6.057 26.151 3.874 7.257

GFL
OPs(
G)

4.281 2.638 2.635 62.648 5.234 2.699

FPS 35 38 50 30 17 39

V. CONCLUSION
In this paper, a fabric defect detection model based on

Improved-YOLOX is proposed in fabric production. The
attention module is designed, which employs channel
attention and spatial attention. We introduce Dynamic
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convolution in the detection head section to improve the
detection of smaller targets. The Varifocal Loss function and
GIOU Loss function are utilized to enhance the detection
performance of the network. The experimental results
indicate that the accuracy can reach an average of 96.47% in
three fabric datasets, and the detection speed can achieve 39
FPS. In conclusion, our network achieves better performance
in detection speed and detection accuracy and satisfies the
requirements of industrial production. Compared to manual
methods, our approach has clear advantages. Future research
will focus on the following two directions: Firstly, the few
samples or samples that are difficult to collect is a significant
challenge for model. Secondly, the ability to generalize
model is also an essential research topic.
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