New Generalized Fuzzy Subalgebras of Hilbert Algebras

A. Iampan and N. Rajesh

Abstract

In this article, we present and investigate some of the features of novel generalized fuzzy subalgebras (FSAs) of Hilbert algebras called $\left(\epsilon, \in \vee q_{m}\right)$-fuzzy subalgebras $((\in, \in$ $\left.\vee q_{m}\right)$-FSAs) and also provide examples to support and oppose this idea. The level subsets of $\left(\epsilon, \in \vee q_{m}\right)$-FSAs are used to describe them. There are also certain characterizations of $(\in$,$\left.\in \vee q_{m}\right)$-FSAs developed. Moreover, we find that the Cartesian product of $\left(\epsilon, \in \vee q_{m}\right)$-FSAs is still an $\left(\epsilon, \in \vee q_{m}\right)$-FSA.

Index Terms-Hilbert algebra, fuzzy subalgebra, $\left(\in, \in \vee q_{m}\right)$ fuzzy subalgebra, level subset, Cartesian product.

I. Introduction and preliminaries

ZADEH [20] first suggested the notion of fuzzy sets (FSs). Fuzzy set theory has various applications in real-world settings, and many researchers have studied it. Several research works on the generalizations of FSs were done after the idea of FSs was introduced. [1], [3], [7] explore integrating FSs with some uncertainty techniques, such as soft and rough sets. The integration of FSs with other uncertainty strategies, such as soft sets and rough sets, has been researched in [6], [8], [9], [18], [22], [23], [24]. One of the expansions of FSs with more application is the notion of intuitionistic fuzzy sets (IFSs) proposed by Atanassov [2]. Applications of IFSs may be found in many different areas, such as multi-criteria decision-making, optimization problems, and medical diagnostics [10], [11], [12], [14], [17], [19].
Henkin [13] proposed the idea of Hilbert algebras in the early 1950s for various examinations of implication in intuitionistic and other non-classical logic. Diego [8] investigated these algebras specifically in the 1960s from an algebraic perspective. Busneag [5], [6] and Jun [14] both addressed Hilbert algebras, and it was realized that certain of their filters formed deductive systems. In Hilbert algebras, Dudek [9] studied the fuzzification of subalgebras, ideals, and deductive systems. Murali presented a definition of a fuzzy point that is a member of an FS under a natural equivalence on an FS in [15]. The concept of the quasi-coincidence of a fuzzy point with an FS, introduced in [16], was extremely important in creating many kinds of fuzzy subgroups.
Bhakat and Das [4] used the combined ideas of belonging and quasi-coincidence of a fuzzy point and an FS to establish

[^0]a new type of fuzzy subgroups, $\left(\in, \in \vee q_{m}\right)$-fuzzy subgroups, in an earlier study. Rosenfeld's fuzzy subgroup's generalization, $\left(\epsilon, \in \vee q_{m}\right)$-fuzzy subgroup, is significant and helpful.

The novel generalized FSAs of Hilbert algebras, which we refer to as $\left(\in, \in \vee q_{m}\right)$-FSAs, are introduced, and some of its key characteristics are studied in this research. We describe their level subsets $\left(\epsilon, \in \vee q_{m}\right)$-FSAs. It is also demonstrated how certain $\left(\epsilon, \in \vee q_{m}\right)$-FSAs may be characterized.

Let's study the idea of Hilbert algebras as it was initially introduced by Diego [8] in 1966 before we get started.
Definition I.1. [8] A Hilbert algebra is defined as a triplet denoted by $\mathcal{H}=(\mathcal{H}, *, 1)$, where $\mathcal{H} \neq \emptyset, *$ denotes a binary operation, and 1 is a fixed element of \mathcal{H} that satisfies the axioms outlined below:
(i) $(\forall \varsigma, \dot{\varsigma} \in \mathcal{H})(\varsigma *(\dot{\varsigma} * \varsigma)=1)$
(ii) $(\forall \varsigma, \dot{\varsigma}, \ddot{\varsigma} \in \mathcal{H})((\varsigma *(\dot{\varsigma} * \ddot{\zeta})) *((\varsigma * \dot{\varsigma}) *(\varsigma * \ddot{\zeta}))=1)$
(iii) $(\forall \varsigma, \dot{\varsigma} \in \mathcal{H})(\varsigma * \dot{\varsigma}=1, \dot{\varsigma} * \varsigma=1 \Rightarrow \varsigma=\dot{\varsigma})$.

We will replace a Hilbert algebra $\mathcal{H}=(\mathcal{H}, *, 1)$ with \mathcal{H}. It was established in [9] that the following was true.
(i) $(\forall \varsigma \in \mathcal{H})(\varsigma * \varsigma=1)$
(ii) $(\forall \varsigma \in \mathcal{H})(1 * \varsigma=\varsigma)$
(iii) $(\forall \varsigma \in \mathcal{H})(\varsigma * 1=1)$
(iv) $(\forall \varsigma, \dot{\varsigma}, \ddot{\varsigma} \in \mathcal{H})(\varsigma *(\dot{\varsigma} * \ddot{\zeta})=\dot{\varsigma} *(\varsigma * \ddot{\zeta}))$.

The binary relation \leq in \mathcal{H} is defined as

$$
(\forall \varsigma, \dot{\varsigma} \in \mathcal{H})(\varsigma \leq y \Leftrightarrow \varsigma * \dot{\varsigma}=1)
$$

which is a partial order on \mathcal{H} with 1 as the largest element.
Definition I.2. [21] Let $\emptyset \neq \Omega \subseteq \mathcal{H}$. Then Ω is called a subalgebra of \mathcal{H}, denoted with $\Omega \sqsubseteq \mathcal{H}$, if $\varsigma * \dot{\varsigma} \in \Omega, \forall \varsigma, \dot{\varsigma} \in \Omega$.

II. New fuzzy subalgebras of Hilbert algebras

Let $\mathcal{H} \neq \emptyset$. A fuzzy set (FS) [20] in \mathcal{H} is defined to be a function $\hbar: \mathcal{H} \rightarrow[0,1]$. An FS \hbar in \mathcal{H} of the form

$$
\hbar(\dot{\zeta})=\left\{\begin{array}{ccc}
t \in(0,1] & \text { if } & \dot{\zeta}=\varsigma, \\
0 & \text { otherwise }, &
\end{array}\right.
$$

is said to be a fuzzy point with support ς and value t and is denoted by ς_{t}.

Let $\mathcal{H} \neq \emptyset$. For a fuzzy point ς_{t} and an FS \hbar in \mathcal{H}, Pu and Liu [16] introduced the symbol $\varsigma_{t} \alpha \hbar$, where $\alpha \in\{\in$, $q, \in \vee q, \in \wedge q\}$. To say that $\varsigma_{t} \in \hbar$ (resp., $\varsigma_{t} q \hbar$), we mean $\hbar(\varsigma) \geq t$ (resp., $\hbar(\varsigma)+t>1$), and in this case, ς_{t} is said to belong to (resp., be quasi-coincident with) an FS \hbar. To say that $\varsigma_{t} \in \vee q \hbar$ (resp., $\varsigma_{t} \in \wedge q \hbar$), we mean $\varsigma_{t} \in \hbar$ or $\varsigma_{t} q \hbar$ (resp., $\varsigma_{t} \in \hbar$ and $\varsigma_{t} q \hbar$). We assign the symbol $\varsigma_{t} \bar{\alpha} \hbar$ to the negation of $\varsigma_{t} \alpha \hbar$.
Definition II.1. An FS \hbar in \mathcal{H} is called an $(\epsilon, \in \vee q)$-fuzzy subalgebra $((\in, \in \vee q)$-FSA) of \mathcal{H} if

$$
\begin{array}{r}
\left(\forall \varsigma, \dot{\varsigma} \in \mathcal{H}, t_{1}, t_{2} \in(0,1]\right)\left(\varsigma_{t_{1}}, \dot{\varsigma}_{t_{2}} \in \hbar \Rightarrow\right. \\
\left.(\varsigma * \dot{\varsigma})_{\min \left\{t_{1}, t_{2}\right\}} \in \vee q \hbar\right) . \tag{1}
\end{array}
$$

Remark II.2. Let $m \in[0,1)$ unless otherwise specified. By $\varsigma_{t} q_{m} \hbar$, we mean $\hbar(\varsigma)+t+m>1, t \in\left(0, \frac{1-m}{2}\right]$. The notation $\varsigma_{t} \in \vee q_{m} \hbar$ means that $\varsigma_{t} \in \hbar$ or $\varsigma_{t} q_{m} \hbar$.
Definition II.3. An FS \hbar in \mathcal{H} is called an $\left(\in, \in \vee q_{m}\right)$-fuzzy subalgebra $\left(\left(\in, \in \vee q_{m}\right)\right.$-FSA $)$ of \mathcal{H} if

$$
\begin{align*}
\left(\forall \varsigma, \dot{\varsigma} \in \mathcal{H}, t_{1}, t_{2} \in(0,1]\right)\left(\varsigma_{t_{1}}, \dot{\varsigma}_{t_{2}} \in \hbar \Rightarrow\right. \\
\left.(\varsigma * \dot{\zeta})_{\min \left\{t_{1}, t_{2}\right\}} \in \vee q_{m} \hbar\right) . \tag{2}
\end{align*}
$$

We note that different types of FSAs can be constructed for different values of $m \in[0,1)$. Hence, an $\left(\in, \in \vee q_{m}\right)$ FSA with $m=0$ is called an $(\epsilon, \in \vee q)$-FSA.

Example II.4. Let $\mathcal{H}=\{1, \varepsilon, \dot{\varepsilon}, \ddot{\varepsilon}, \grave{\varepsilon}\}$ with the following table:

$$
\begin{array}{c|ccccc}
* & \varepsilon & \dot{\varepsilon} & \ddot{\varepsilon} & \dot{\varepsilon} & 1 \\
\hline \varepsilon & 1 & 1 & 1 & 1 & 1 \\
\dot{\varepsilon} & \varepsilon & 1 & \ddot{\varepsilon} & 1 & 1 \\
\ddot{\varepsilon} & \varepsilon & \dot{\varepsilon} & 1 & 1 & 1 \\
\grave{\varepsilon} & \varepsilon & \dot{\varepsilon} & \ddot{\varepsilon} & 1 & 1 \\
1 & \varepsilon & \dot{\varepsilon} & \ddot{\varepsilon} & \grave{\varepsilon} & 1
\end{array}
$$

Then $\mathcal{H}=(\mathcal{H}, *, 1)$ is a Hilbert algebra. We define an FS \hbar in \mathcal{H} as follows:

$$
\hbar(\varsigma)=\left\{\begin{array}{lll}
0.7 & \text { if } & \varsigma=1 \\
0.8 & \text { if } & \varsigma=\varepsilon \\
0.6 & \text { if } & \varsigma=\dot{\varepsilon} \\
0.4 & \text { if } & \varsigma=\ddot{\varepsilon} \\
0.4 & \text { if } & \varsigma=\grave{\varepsilon}
\end{array}\right.
$$

If $m=0.2$, then $U(\hbar, t)=\{\varsigma \in \mathcal{H} \mid \hbar(\varsigma) \geq t\}=\mathcal{H}, \forall t \in$ $(0,0.4]$. Hence, \hbar is an $\left(\in, \in \vee q_{0.2}\right)$-FSA of \mathcal{H}.
Example II.5. Let $\mathcal{H}=\{1, \varepsilon, \dot{\varepsilon}, \ddot{\varepsilon}, \dot{\varepsilon}\}$ with the following table:

$*$	ε	$\dot{\varepsilon}$	$\ddot{\varepsilon}$	$\grave{\varepsilon}$	1
ε	1	$\dot{\varepsilon}$	$\dot{\varepsilon}$	$\grave{\varepsilon}$	1
$\dot{\varepsilon}$	ε	1	ε	$\grave{\varepsilon}$	1
$\ddot{\varepsilon}$	1	1	1	$\grave{\varepsilon}$	1
$\grave{\varepsilon}$	1	$\dot{\varepsilon}$	$\dot{\varepsilon}$	1	1
1	ε	$\dot{\varepsilon}$	$\ddot{\varepsilon}$	$\grave{\varepsilon}$	1

Then $\mathcal{H}=(\mathcal{H}, *, 1)$ is a Hilbert algebra. We define an FS \hbar in \mathcal{H} as follows:

$$
\hbar(\varsigma)=\left\{\begin{array}{lll}
0.45 & \text { if } & \varsigma=1 \\
0.41 & \text { if } & \varsigma=\varepsilon \\
0.49 & \text { if } & \varsigma=\dot{\varepsilon} \\
0.41 & \text { if } & \varsigma=\ddot{\varepsilon} \\
0.41 & \text { if } & \varsigma=\grave{\varepsilon}
\end{array}\right.
$$

If $m=0.2$, we have

$$
U(\hbar, t)=\left\{\begin{array}{ccc}
\mathcal{H} & \text { if } & t \in(0,0.4] \\
\{1, \varepsilon, \ddot{\varepsilon}, \dot{\varepsilon}\} & \text { if } & t \in(0.4,0.45] \\
\{\dot{\varepsilon}\} & \text { if } & t \in(045,0.49]
\end{array}\right.
$$

Since $\{\dot{\varepsilon}\} \nsubseteq \mathcal{H}$, so $U(\hbar, t) \nsubseteq \mathcal{H}$ for $t \in(0.45,0.49]$. Hence, \hbar is not an $\left(\epsilon, \in \vee q_{0.4}\right)$-FSA of \mathcal{H}.

Proposition II.6. Every $(\in, \in)-F S A$ is an $\left(\in, \in \vee q_{m}\right)$-FSA.
Proof: Straightforward.
Remark II.7. The converse statement may not be true. Consider the $\left(\in, \in \vee q_{0.2}\right)$-FSA of \mathcal{H} defined in Example II.5. Then \hbar is not an (\in, \in)-FSA of \mathcal{H} since $\varepsilon_{0.71} \in \hbar$ and $\varepsilon_{0.75} \in \hbar$, but $(\varepsilon * \varepsilon)_{\min \{0.71,0.75\}}=0_{0.71} \bar{\epsilon} \hbar$.

Theorem II.8. An FS \hbar in \mathcal{H} is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H} if and only if $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$.

Proof: Let \hbar be an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}. Assume $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ is not true. Then $\exists \varsigma^{\prime}, \dot{\varsigma}^{\prime} \in \mathcal{H}$ such that $\hbar\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)<\min \left\{\hbar\left(\varsigma^{\prime}\right), \hbar\left(\dot{\varsigma}^{\prime}\right), \frac{1-m}{2}\right\}$. If $\min \left\{\hbar\left(\varsigma^{\prime}\right), \hbar\left(\dot{\varsigma}^{\prime}\right)\right\}<\frac{1-m}{2}$, then $\hbar\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)<$ $\min \left\{\hbar\left(\varsigma^{\prime}\right), \hbar\left(\dot{\varsigma}^{\prime}\right)\right\}$. Thus $\hbar\left(\varsigma^{\prime} * \dot{\varsigma}^{\prime}\right)<t \leq \min \left\{\hbar\left(\varsigma^{\prime}\right), \hbar\left(\dot{\varsigma}^{\prime}\right)\right\}$ for some $t \in(0,1]$. It follows that $\varsigma_{t}^{\prime} \in \hbar$ and $\dot{\varsigma}_{t}^{\prime} \in \hbar$, but $\left(\varsigma_{t}^{\prime} * \dot{\varsigma}_{t}^{\prime}\right) \bar{\epsilon} \hbar$, which is contradictory. Moreover, $\hbar\left(\varsigma_{t}^{\prime} *\right.$ $\left.\dot{\zeta}^{\prime}\right)+t<2 t<1-m$, and so $\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)_{t} \overline{q_{m}} \hbar$. Hence, $\left(\varsigma^{\prime} * \dot{\varsigma}^{\prime}\right)_{t} \overline{\in \vee q_{m}} \hbar$, which is contradictory. On the other hand, if $\min \left\{\hbar\left(\varsigma^{\prime}\right), \hbar\left(\dot{\varsigma}^{\prime}\right)\right\} \geq \frac{1-m}{2}$, then $\hbar\left(\varsigma^{\prime}\right) \geq \frac{1-m}{2}, \hbar\left(\dot{\varsigma}^{\prime}\right) \geq \frac{1-m}{2}$ and $\hbar\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)<\frac{1-m}{2}$. Thus $\varsigma_{\underline{1-m}}^{\prime} \in \hbar$ and $\dot{\zeta}_{\underline{1-m}}^{\prime} \in \hbar$, but $\left(\varsigma^{\prime} * \dot{\varsigma}^{\prime}\right)_{\frac{1-m}{2}} \bar{\epsilon} \hbar$. Also $\hbar\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)+\frac{\overline{1-m}}{2}<\frac{1-m}{2}+\frac{\frac{1-2}{2}}{2}=1-m$, that is, $\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)_{\frac{1-m}{2}} \overline{q_{m}} \hbar$. Hence, $\left(\varsigma^{\prime} * \dot{\zeta}^{\prime}\right)_{\frac{1-m}{2}} \overline{\in \vee q_{m} \hbar}$, which is contradictory. Hence, $\hbar(\varsigma * \dot{\zeta}) \geq \min ^{2}\left\{\hbar(\varsigma), \hbar(\dot{\zeta}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$.

Conversely, assume $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$. Let $\varsigma, \dot{\varsigma} \in \mathcal{H}$ and $t_{1}, t_{2} \in(0,1]$ be such that $\varsigma_{t_{1}} \in \hbar$ and $\dot{\varsigma}_{t_{2}} \in \hbar$. Then $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq$ $\min \left\{t_{1}, t_{2}, \frac{1-m}{2}\right\}$. Assume $t_{1} \leq \frac{1-m}{2}$ or $t_{2} \leq \frac{1-m}{2}$. Then $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{t_{1}, t_{2}\right\}$, which implies that $(\varsigma * \dot{\zeta})_{\min \left\{t_{1}, t_{2}\right\}} \in$ \hbar. Now suppose $t_{1}>\frac{1-m}{2}$ and $t_{2}>\frac{1-m}{2}$. Then $\hbar(\varsigma * \dot{\varsigma}) \geq$ $\frac{1-m}{2}$, and thus $\hbar(\varsigma * \dot{\varsigma})+\min \left\{t_{1}, t_{2}\right\}>\frac{1^{2}-m}{2}+\frac{1-m}{2}=1-m$, that is, $(\varsigma * \dot{\zeta})_{\min \left\{t_{1}, t_{2}\right\}} q_{m} \hbar$. Hence, $(\varsigma * \dot{\zeta})_{\min \left\{t_{1}, t_{2}\right\}} \in \vee q_{m} \hbar$, and consequently, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Theorem II.9. An FS \hbar in \mathcal{H} is an $\left(\in, \in \vee q_{m}\right)-F S A$ of \mathcal{H} if and only if each level set $\emptyset \neq U(\hbar, t) \sqsubseteq \mathcal{H}, \forall t \in\left(0, \frac{1-m}{2}\right]$.

Proof: Assume an FS \hbar is an $(\epsilon, \in \vee q)$-FSA of \mathcal{H}. Let $t \in\left(0, \frac{1-m}{2}\right]$ and $\varsigma, \dot{\varsigma} \in U(\hbar, t)$. Then $\hbar(\varsigma) \geq t$ and $\hbar(\dot{\zeta}) \geq t$. It follows from $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\zeta}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$ that $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq$ $\min \left\{t, \frac{1-m}{2}\right\}=t$, so that $\varsigma * \dot{\varsigma} \in U(\hbar, t)$. Hence, $U(\hbar, t) \sqsubseteq$ \mathcal{H}.

Conversely, suppose $\emptyset \neq U(\hbar, t) \sqsubseteq \mathcal{H}, \forall t \in\left(0, \frac{1-m}{2}\right]$. If the condition $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$ is not true, then $\exists \varepsilon, \dot{\varepsilon} \in \mathcal{H}$ such that $\hbar(\varepsilon *$ $\dot{\varepsilon})<\min \left\{\hbar(\varepsilon), \hbar(\dot{\varepsilon}), \frac{1-m}{2}\right\}$. Hence, we can take $t \in(0,1]$ such that $\hbar(\varepsilon * \dot{\varepsilon})<t<\min \left\{\hbar(\varepsilon), \hbar(\dot{\varepsilon}), \frac{1-m}{2}\right\}$. Then $t \in\left(0, \frac{1-m}{2}\right]$ and $\varepsilon, \dot{\varepsilon} \in U(\hbar, t)$. Since $U(\hbar, t) \sqsubseteq \mathcal{H}$, $\varepsilon * \dot{\varepsilon} \in U(\hbar, t)$, so $\hbar(\varepsilon * \dot{\varepsilon}) \geq t$. This is contradictory. Therefore, $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ holds, $\forall \varsigma, \dot{\varsigma} \in \mathcal{H}$ is valid, and so \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Theorem II.10. Let \hbar be an FS in \mathcal{H}. Then $\emptyset \neq U(\hbar, t) \sqsubseteq$ $\mathcal{H}, \forall t \in\left(\frac{1-m}{2}, 1\right]$ if and only if $\max \left\{\hbar(\varsigma * \dot{\varsigma}), \frac{1-m}{2}\right\} \geq$ $\min \{\hbar(\varsigma), \hbar(\dot{\varsigma})\}, \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$.

Proof: Suppose $\emptyset \neq U(\hbar, t) \sqsubseteq \mathcal{H}$. Assume $\max \{\hbar(\varsigma *$ $\left.\dot{\varsigma}), \frac{1-m}{2}\right\}<\min \{\hbar(\varsigma), \hbar(\dot{\varsigma})\}=t$ for some $\varsigma, \dot{\varsigma} \in \mathcal{H}$, then $t \in\left(\frac{1-m}{2}, 1\right], \hbar(\varsigma * \dot{\varsigma})<t, \varsigma \in U(\hbar, t)$ and $\dot{\varsigma} \in U(\hbar, t)$. Since $\varsigma, \dot{\varsigma} \in U(\hbar, t)$ and $U(\hbar, t) \sqsubseteq \mathcal{H}, \varsigma * \dot{\varsigma} \in U(\hbar, t)$, which is contradictory.

The converse is straightforward.
Theorem II.11. Let \hbar be an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}. If it satisfies $\hbar(\varsigma)<\frac{1-m}{2}, \forall \varsigma \in \mathcal{H}$, then it is an FSA of \mathcal{H}.

Proof: Let $\varsigma, \dot{\varsigma} \in \mathcal{H}$ and $t_{1}, t_{2} \in(0,1]$ be such that $\varsigma_{t_{1}} \in \hbar$ and $\dot{\varsigma}_{t_{2}} \in \hbar$. Then $\hbar(\varsigma) \geq t_{1}$ and $\hbar(\dot{\varsigma}) \geq t_{2}$. It follows
from Theorem II. 8 that $\hbar(\varsigma * \dot{\varsigma})>\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}=$ $\min \{\hbar(\varsigma), \hbar(\dot{\varsigma})\}=\min \left\{t_{1}, t_{2}\right\}$, so $(\varsigma * \dot{\zeta})_{\min \left\{t_{1}, t_{2}\right\}} \in \hbar$. Hence, \hbar is an FSA of \mathcal{H}.

Theorem II.12. If $0 \leq m<n<1$, then each $\left(\in, \in \vee q_{m}\right)$ FSA of \mathcal{H} is an $\left(\in, \in \vee q_{n}\right)-F S A$ of \mathcal{H}.

Proof: Let \hbar be an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H} and let $\varsigma, \dot{\varsigma} \in \mathcal{H}$. Then $\hbar(\varsigma * \dot{\varsigma})>\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-n}{2}\right\}$. Thus from Theorem II.8, \hbar is an $\left(\in, \in \vee q_{n}\right)$-FSA of \mathcal{H}.

Note that an $\left(\in, \in \vee q_{n}\right)$-FSA may not be an $\left(\in, \in \vee q_{m}\right)$ FSA for $0 \leq m<n<1$.
Theorem II.13. $\emptyset \neq \dot{\Omega} \sqsubseteq \mathcal{H}$ if and only if $\hbar_{\dot{\Omega}}$ is an $(\in, \in$ $\left.\vee q_{m}\right)-F S A$ of \mathcal{H}.

Proof: Let $\dot{\Omega} \sqsubseteq \mathcal{H}$. Then $\chi_{\dot{\Omega}}(\varsigma)=1$ for $\varsigma \in \dot{\Omega}$ and $\chi_{\dot{\Omega}}(\varsigma)=0$ for $\varsigma \notin \dot{\Omega}$. Thus $U\left(\hbar_{\dot{\Omega}}, t\right)=\dot{\Omega}, \forall t \in\left(0, \frac{1-m}{2}\right]$. Hence, by Theorem II. $9, \chi_{\dot{\Omega}}$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.

Conversely, suppose $\hbar_{\dot{\Omega}}$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}. Then $\hbar(\varsigma * \dot{\varsigma})>\min \left\{\chi_{\dot{\Omega}}(\varsigma), \chi_{\dot{\Omega}}(\dot{\varsigma}), \frac{1-m}{2}\right\}=\min \left\{1, \frac{1-m}{2}\right\}=$ $\frac{1-m}{2}, \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$. Since $m \in[0,1)$, it follows that $\chi_{\dot{\Omega}}(\varsigma * \dot{\varsigma})=$ 1 , so $\varsigma * \dot{\varsigma} \in \dot{\Omega}$. Hence, $\dot{\Omega} \sqsubseteq \mathcal{H}$.
Theorem II.14. For every $\dot{\Omega} \sqsubseteq \mathcal{H}$ and every $t \in\left(0, \frac{1-m}{2}\right]$, $\exists\left(\in, \in \vee q_{m}\right)-F S A \hbar$ of \mathcal{H} such that $U(\hbar, t)=\dot{\Omega}$.

Proof: Let \hbar be an FS in \mathcal{H} defined by

$$
\hbar(\varsigma)=\left\{\begin{array}{cc}
t & \text { if } \\
0 & \text { otherwise },
\end{array} \quad \varsigma \in \dot{\Omega}\right.
$$

where $t \in\left(0, \frac{1-m}{2}\right]$. Obviously, $U(\hbar, t)=\dot{\Omega}$. Assume $\hbar(\varsigma * \dot{\varsigma})<\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ for some $\varsigma, \dot{\varsigma} \in \mathcal{H}$. Since $\hbar(\mathcal{H})=\{0, t\}$, it follows that $\hbar(\varsigma * \dot{\varsigma})=0$ and $\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}=t$. Hence, $\hbar(\varsigma)=\hbar(\dot{\varsigma})=t$, and so $\varsigma, \dot{\varsigma} \in \dot{\Omega}$. Since $\dot{\Omega} \sqsubseteq \mathcal{H}, \varsigma * \dot{\varsigma} \in \dot{\Omega}$. Thus $\hbar(\varsigma * \dot{\varsigma})=t$, which is contradictory. Therefore, $\hbar(\varsigma * \dot{\varsigma}) \geq$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}, \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$. By Theorem II.8, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.

Theorem II.15. The intersection of any family of $(\in, \in$ $\left.\vee q_{m}\right)$-FSAs of \mathcal{H} is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.

Proof: Let $\left\{\hbar_{i} \mid i \in \mathcal{I}\right\}$ be a family of $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H} and let $\hbar=\bigcap_{i \in \mathcal{I}} \hbar_{i}$. Then

$$
\begin{aligned}
\hbar(\varsigma * \dot{\varsigma}) & =\sup _{i \in \mathcal{I}} \hbar_{i}(\varsigma * \dot{\zeta}) \\
& \geq \sup _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\} \\
& =\min \left\{\sup _{i \in \mathcal{I}} \hbar_{i}(\varsigma), \sup _{i \in \mathcal{I}} \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \\
& =\min \left\{\bigcap_{i \in \mathcal{I}} \hbar_{i}(\varsigma), \bigcap_{i \in \mathcal{I}} \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\} \\
& =\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} .
\end{aligned}
$$

Hence, by Theorem II.8, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
The union of two $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H} is not an $(\in, \in$ $\left.\vee q_{m}\right)$-FSA, in general.

Theorem II.16. The union of ordered family of $\left(\in, \in \vee q_{m}\right)$ FSAs of \mathcal{H} is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.

Proof: Let $\left\{\hbar_{i} \mid i \in \mathcal{I}\right\}$ be an ordered family of $(\in, \in$ $\left.\vee q_{m}\right)$-FSAs of \mathcal{H}, that is, $\hbar_{i} \subseteq \hbar_{j}$ or $\hbar_{j} \subseteq \hbar_{i}, \forall i, j \in \mathcal{I}$. Then for $\hbar=\bigcup_{i \in \mathcal{I}} \hbar_{i}$, we have

$$
\begin{aligned}
\hbar(\varsigma * \dot{\varsigma}) & =\inf _{i \in \mathcal{I}} \hbar_{i}(\varsigma * \dot{\zeta}) \\
& \geq \inf _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \\
& =\min \left\{\inf _{i \in \mathcal{I}} \hbar_{i}(\varsigma), \inf _{i \in \mathcal{I}} \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \\
& =\min \left\{\bigcup_{i \in \mathcal{I}} \hbar_{i}(\varsigma), \bigcup_{i \in \mathcal{I}} \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \\
& =\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} .
\end{aligned}
$$

Thus $\inf _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \leq \sup _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma)\right.$, $\left.\hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\}$. Suppose $\inf _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\mathcal{S}}), \frac{1-m}{2}\right\} \quad \neq$ $\bigcup_{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\}$. Then $\exists s \in[0,1]$ such that

$$
\begin{aligned}
& \inf _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\}<s \\
& <\sup _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\}
\end{aligned}
$$

Since $\hbar_{i} \subseteq \hbar_{j}$ or $\hbar_{j} \subseteq \hbar_{i}, \forall i, j \in \mathcal{I}, \exists k \in \mathcal{I}$ such that $s<\min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\}$. On the other hand, $\min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\}>s, \forall i \in \mathcal{I}$, which is contradictory. Hence,

$$
\begin{aligned}
& \inf _{i \in \mathcal{I}} \min \left\{\hbar_{i}(\varsigma), \hbar_{i}(\dot{\zeta}), \frac{1-m}{2}\right\} \\
& =\min \left\{\bigcup_{i \in \mathcal{I}} \hbar_{i}(\varsigma), \bigcup_{i \in \mathcal{I}} \hbar_{i}(\dot{\varsigma}), \frac{1-m}{2}\right\} \\
& =\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}
\end{aligned}
$$

Therefore, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Theorem II.17. For any finite strictly increasing chain of a subalgebra of $\mathcal{H}, \exists\left(\in, \in \vee q_{m}\right)$-FSA \hbar of \mathcal{H} whose level subalgebras are precisely the members of the chain with $\hbar_{\frac{1-m}{2}}=\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \ldots \subset \mathcal{H}_{n}=\mathcal{H}$.

Proof: Let $\left\{\left.t_{i} \in\left(0, \frac{1-m}{2}\right] \right\rvert\, i=1,2, \ldots, n\right\}$ be such that $\frac{1-m}{2}>t_{1}>t_{2}>t_{3}>\ldots>t_{n}$. Consider the FS \hbar defined by

$$
\hbar(\varsigma)=\left\{\begin{array}{ccc}
\frac{1-m}{2} & \text { if } & \varsigma \in \mathcal{H}_{0} \\
t_{k} & \text { if } & \varsigma \in \mathcal{H}_{k} \backslash \mathcal{H}_{k-1}, k=1,2, \ldots, n
\end{array}\right.
$$

Let $\varsigma, \dot{\varsigma} \in \mathcal{H}$ be such that $\varsigma \in \mathcal{H}_{i} \backslash \mathcal{H}_{i-1}$ and $\dot{\varsigma} \in \mathcal{H}_{j} \backslash \mathcal{H}_{j-1}$, where $1 \leq i, j \leq n$. If $i \geq j$, then $\varsigma \in \mathcal{H}_{i}$ and $\dot{\varsigma} \in \mathcal{H}_{i}$, so $\varsigma * \dot{\varsigma} \in \mathcal{H}_{i}$. Thus $\hbar(\varsigma * \dot{\varsigma}) \geq t_{i}=\min \left\{t_{i}, t_{j}\right\}=$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$. If $i<j$, then $\varsigma \in \mathcal{H}_{j}$ and $\dot{\varsigma} \in \mathcal{H}_{j}$, so $\varsigma * \dot{\varsigma} \in \mathcal{H}_{j}$. Thus $\hbar(\varsigma * \dot{\varsigma}) \leq t_{j}=\min \left\{t_{i}, t_{j}\right\}=$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\zeta}), \frac{1-m}{2}\right\}$. Hence, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Definition II.18. Let $\mathcal{H} \neq \emptyset$. For any FS \hbar in \mathcal{H} and $t \in$ $(0,1]$, we define two sets $[\hbar]_{t}=\left\{\varsigma \in \mathcal{H} \mid \varsigma_{t} \in \vee q_{m} \hbar\right\}$ and $Q(\hbar, t)=\left\{\varsigma \in \mathcal{H} \mid \varsigma_{t} q_{m} \hbar\right\}$. Then $[\hbar]_{t}=U(\hbar, t) \cup Q(\hbar, t)$.

Theorem II.19. An FS \hbar in \mathcal{H} is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H} if and only if $[\hbar]_{t} \sqsubseteq \mathcal{H}, \forall t \in(0,1]$.

Proof: Assume \hbar is an $\left(\epsilon, \in \vee q_{m}\right)$-FSA of \mathcal{H} and let $\varsigma, \dot{\varsigma} \in[\hbar]_{t}$ for $t \in(0,1]$. Then $(\varsigma, t) \in \vee q_{m} \hbar$ and $(\dot{\varsigma}, t) \in$ $\vee q_{m} \hbar$, that is, $\hbar(\varsigma)>1$ or $\hbar(\varsigma)+t>1-m$, and $\hbar(\dot{\varsigma})>1$ or $\hbar(\dot{\varsigma})+t>1-m$. By Theorem II.8, we have $\hbar(\varsigma * \dot{\varsigma}) \geq$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$.

Case 1: If $\hbar(\varsigma) \geq t$ and $\hbar(\dot{\varsigma}) \geq t$, then $\hbar(\varsigma * \dot{\varsigma}) \geq$ $\min \left\{\hbar(\varsigma), \hbar(\dot{\zeta}), \frac{1-m}{2}\right\}=\frac{1-m}{2}$. Hence, $\hbar(\varsigma * \dot{\zeta})+t>$ $\frac{1-m}{2}+\frac{1-m}{2}=1-m$, and so $(\varsigma * \dot{\varsigma}, t) q_{m} \hbar$. If $t \leq \frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}=\frac{1-m}{2} \geq t$, and thus $(\varsigma * \dot{\varsigma}, t) \in \hbar$. Hence, $(\varsigma * \dot{\varsigma}, t) \in \vee q_{m} \hbar$. Therefore, $\varsigma * \dot{\varsigma} \in[\hbar]_{t}$.

Case 2: If $\hbar(\varsigma) \geq t$ and $\hbar(\dot{\varsigma})+t>1-m$. If $t>\frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\zeta}), \frac{1-m}{2}\right\}=\hbar(\dot{\varsigma}) \wedge \frac{1-m}{2}>(1-$ $m-t) \wedge \frac{1-m}{2}=1-m-t$, and so $(\varsigma * \dot{\varsigma}, t) q_{m} \hbar$. If $t \leq \frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq \min \{t, 1-m-$ $\left.t, \frac{1-m}{2}\right\}=t$. Hence, $(\varsigma * \dot{\varsigma}, t) \in \hbar$, and hence $(\varsigma * \dot{\varsigma}, t) \in$ $\vee q_{m} \hbar$. Therefore, $\varsigma * \dot{\varsigma} \in[\hbar]_{t}$.

Case 3: If $\hbar(\varsigma)+t>1-m$ and $\hbar(\dot{\varsigma}) \geq t$. If $t>\frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}=\hbar(\varsigma) \wedge \frac{1-m}{2}>$ $(1-m-t) \wedge \frac{1-m}{2}=1-m-t$, and so $(\varsigma * \dot{\varsigma}, t) q_{m} \hbar$. If $t \leq \frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq \min \{1-$ $\left.m-t, t, \frac{1-m}{2}\right\}=t$. Hence, $(\varsigma * \dot{\varsigma}, t) \in \hbar$, and hence $(\varsigma * \dot{\varsigma}, t) \in$ $\vee q_{m} \hbar$. Therefore, $\varsigma * \dot{\varsigma} \in[\hbar]_{t}$.

Case 4: If $\hbar(\varsigma)+t>1-m$ and $\hbar(\dot{\varsigma})+t>1-m$. If $t>\frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}>(1-$ $m-t) \wedge \frac{1-m}{2}=1-m-t$, and so $(\varsigma * \dot{\varsigma}, t) q_{m} \hbar$. If $t \leq$ $\frac{1-m}{2}$, then $\hbar(\varsigma * \dot{\zeta}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\} \geq \min \{1-$ $\left.m-t, t, \frac{1-m}{2}\right\} \geq(1-m-t) \wedge \frac{1-m}{2}=\frac{1-m}{2} \geq t$. Hence, $(\varsigma * \dot{\varsigma}, t) \in \hbar$, and hence $(\varsigma * \dot{\varsigma}, t) \in \vee q_{m} \hbar$. Therefore, $\varsigma * \dot{\varsigma} \in$ $[\hbar]_{t}$.

Consequently, $[\hbar]_{t} \sqsubseteq \mathcal{H}$.
Conversely, let \hbar be an FS in \mathcal{H} and $t \in(0,1]$ be such that $[\hbar]_{t} \sqsubseteq \mathcal{H}$. If it is possible, let $\hbar(\varsigma * \dot{\varsigma})<$ $t \leq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}$ for some $t \in(0,1)$. Then $\varsigma, \dot{\varsigma} \in U(\hbar, t) \subseteq[\hbar]_{t}$, which implies that $\varsigma * \dot{\varsigma} \in[\hbar]_{t}$. Hence, $\hbar(\varsigma * \dot{\varsigma}) \in[\hbar]_{t}$ or $\hbar(\varsigma * \dot{\varsigma})+t+m>1$, a contradiction. Therefore, $\hbar(\varsigma * \dot{\varsigma}) \geq \min \left\{\hbar(\varsigma), \hbar(\dot{\varsigma}), \frac{1-m}{2}\right\}, \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$. By Theorem II.8, \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Theorem II.20. Let \hbar be a proper $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H} having at least two values $t_{1}, t_{2}<\frac{1-m}{2}$. If all $[\hbar]_{t}, t \in$ $\left(0, \frac{1-m}{2}\right]$, are subalgebras, then \hbar can be decomposed into the union of two proper non-equivalent $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H}.

Proof: Let \hbar be a proper $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H} with values $\frac{1-m}{2}>t_{1}>t_{2}>\ldots>t_{n}$, where $n>2$. Let $\mathcal{H}_{0}=[\hbar]_{\frac{1-m}{2}}$ and $\mathcal{H}_{k}=[\hbar]_{t_{k}}$ for $k=1,2, \ldots, n$. Then $[\hbar]_{\frac{1-m}{2}}=\overline{\mathcal{H}_{0}^{2}} \subset \mathcal{H}_{1} \subset \ldots \subset \mathcal{H}_{n}=\mathcal{H}$ is the chain of $(\in, \in$ $\left.\vee q_{m}\right)^{2}$-subalgebras. Consider two FSs $\lambda_{1}, \lambda_{2} \leq \hbar$ defined by

$$
\begin{gathered}
\lambda_{1}(\varsigma)=\left\{\begin{array}{llc}
t_{1} & \text { if } & \varsigma \in \mathcal{H}_{1} \\
t_{k} & \text { if } & \varsigma \in \mathcal{H}_{k} \backslash \mathcal{H}_{k-1}, k=2, \ldots, n
\end{array}\right. \\
\lambda_{2}(\varsigma)=\left\{\begin{array}{llc}
\hbar(\varsigma) & \text { if } & \varsigma \in \mathcal{H}_{0} \\
t_{2} & \text { if } & \varsigma \in \mathcal{H}_{2} \backslash \mathcal{H}_{0} \\
t_{k} & \text { if } & \varsigma \in \mathcal{H}_{k} \backslash \mathcal{H}_{k-1}, k=3, \ldots, n .
\end{array}\right.
\end{gathered}
$$

Then λ_{1} and λ_{2} are $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H} with $\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset$ $\ldots \subset \mathcal{H}_{n}$ and $\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \ldots \subset \mathcal{H}_{n}$ being respectively chains of $\left(\epsilon, \in \vee q_{m}\right)$-FSAs. Obviously, $\hbar=\lambda_{1} \cup \lambda_{2}$. Moreover, λ_{1} and λ_{2} are non-equivalent since $\mathcal{H}_{0} \neq \mathcal{H}_{1}$.

A mapping $\mathfrak{F}:\left(\mathcal{H}, *, 1_{\mathcal{H}}\right) \rightarrow\left(\hat{\mathcal{H}}, \star, 1_{\hat{\mathcal{H}}}\right)$ of Hilbert algebras is called a homomorphism if $\mathfrak{F}(\varsigma * \dot{\varsigma})=\mathfrak{F}(\varsigma) \star$
$\mathfrak{F}(\dot{\varsigma}), \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$. Note that if $\mathfrak{F}: \mathcal{H} \rightarrow \hat{\mathcal{H}}$ is a homomorphism of Hilbert algebras, then $\mathfrak{F}\left(1_{\mathcal{H}}\right)=1_{\hat{\mathcal{H}}}$.
Theorem II.21. Let $\mathfrak{F}: \mathcal{H} \rightarrow \hat{\mathcal{H}}$ be a homomorphism of Hilbert algebras. If \hbar is an $\left(\in, \in \vee q_{m}\right)$-FSA of $\hat{\mathcal{H}}$, where $m \in(0,1)$, then $\mathfrak{F}^{-1}(\hbar)$ is an $\left(\epsilon, \in \vee q_{m}\right)$-FSA of \mathcal{H}, where $\mathfrak{F}^{-1}(\hbar)=\hbar \circ f$.

Proof: Let \hbar be an $\left(\in, \in \vee q_{m}\right)$-FSA of $\hat{\mathcal{H}}$, where $m \in$ $(0,1)$ and $\varsigma, \dot{\varsigma} \in \mathcal{H}$. Then

$$
\begin{aligned}
\mathfrak{F}^{-1}(\hbar)(\varsigma * \dot{\varsigma}) & =\hbar(\mathfrak{F}(\varsigma * \dot{\zeta})) \\
& =\hbar(\mathfrak{F}(\varsigma) * \mathfrak{F}(\dot{\varsigma}) \\
& \geq \min \left\{\hbar(\mathfrak{F}(\varsigma)), \hbar(\mathfrak{F}(\dot{\varsigma})), \frac{1-m}{2}\right\} \\
& =\min \left\{\mathfrak{F}^{-1}(\hbar(\varsigma)), \mathfrak{F}^{-1}(\hbar(\dot{\varsigma})), \frac{1-m}{2}\right\} .
\end{aligned}
$$

Hence, $\mathfrak{F}^{-1}(\hbar)$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}.
Definition II.22. Let $\mathfrak{F}: \mathcal{H} \rightarrow \hat{\mathcal{H}}$ be a function of Hilbert algebras. An $\left(\in, \in \vee q_{m}\right)$-FSA \hbar of \mathcal{H} is said to be \mathfrak{F} invariant if $\mathfrak{F}(\varsigma)=\mathfrak{F}(\dot{\varsigma})$ implies that $\hbar(\varsigma)=\hbar(\dot{\varsigma}), \forall \varsigma, \dot{\varsigma} \in \mathcal{H}$.
Theorem II.23. Let $\mathfrak{F}: \mathcal{H} \rightarrow \hat{\mathcal{H}}$ be a homomorphism of Hilbert algebras and \hbar an $\left(\in, \in \vee q_{m}\right)$-FSA of \mathcal{H}. If \hbar is \mathfrak{F}-invariant, then $\mathfrak{F}(\hbar)$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of $\hat{\mathcal{H}}$, where

$$
\mathfrak{F}(\hbar)(\varsigma)=\left\{\begin{array}{ccc}
\sup _{\varsigma \in \mathfrak{F}^{-1}(\dot{\zeta})} & \text { if } & \mathfrak{F}^{-1}(\dot{\zeta}) \neq \emptyset \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof: Let $\dot{\varsigma}_{1}, \dot{\varsigma}_{2} \in \hat{\mathcal{H}}$. If $\mathfrak{F}^{-1}\left(\dot{\varsigma}_{1}\right)=\emptyset$ or $\mathfrak{F}^{-1}\left(\dot{\varsigma}_{2}\right)=\emptyset$, then the proof is obvious. Otherwise, let $\mathfrak{F}^{-1}\left(\dot{\varsigma}_{1}\right) \neq \emptyset$ and $\mathfrak{F}^{-1}\left(\dot{\varsigma}_{2}\right) \neq \emptyset$. Then $\exists \varsigma_{1}, \varsigma_{2} \in \mathcal{H}$ such that $\mathfrak{F}\left(\varsigma_{1}\right)=\dot{\varsigma}_{1}$ and $\mathfrak{F}\left(\varsigma_{2}\right)=\dot{\varsigma}_{2}$. Thus

$$
\begin{aligned}
& \mathfrak{F}(\hbar)\left(\dot{\varsigma}_{1} * \dot{\varsigma}_{2}\right) \\
& =\sup _{\varsigma \in \mathfrak{F}^{-1}\left(\dot{\varsigma}_{1} * \dot{\varsigma}_{2}\right)} \hbar(\varsigma) \\
& =\sup _{\varsigma \in \mathfrak{F}^{-1}\left(\mathfrak{F}\left(\varsigma_{1}\right) * \mathfrak{F}\left(\varsigma_{2}\right)\right)} \hbar(\varsigma) \\
& =\sup _{\varsigma \in \mathfrak{F}^{-1}\left(\tilde{\mathfrak{F}}\left(\varsigma_{1} * \varsigma_{2}\right)\right)} \hbar(\varsigma) \\
& =\hbar\left(\varsigma_{1} * \varsigma_{2}\right) \\
& \geq \min \left\{\hbar\left(\varsigma_{1}\right), \hbar\left(\varsigma_{2}\right), \frac{1-m}{2}\right\} \\
& =\min \left\{\sup _{\varsigma \in \mathfrak{F}^{-1}\left(\mathfrak{F}\left(\varsigma_{1}\right)\right)} \hbar(\varsigma), \sup _{\varsigma \in \mathfrak{F}^{-1}\left(\mathfrak{F}\left(\varsigma_{2}\right)\right)} \hbar(\varsigma), \frac{1-m}{2}\right\} \\
& =\min \left\{\sup _{\varsigma \in \mathfrak{F}^{-1}\left(\dot{\varsigma}_{1}\right)} \hbar(\varsigma), \sup _{\varsigma \in \mathfrak{F}^{-1}\left(\dot{\varsigma}_{2}\right)} \hbar(\varsigma), \frac{1-m}{2}\right\} \\
& =\min \left\{\mathfrak{F}(\hbar)\left(\dot{\varsigma}_{1}\right), \mathfrak{F}(\hbar)\left(\dot{\varsigma}_{2}\right), \frac{1-m}{2}\right\} .
\end{aligned}
$$

Hence, $\mathfrak{F}(\hbar)$ is an $\left(\epsilon, \in \vee q_{m}\right)$-FSA of $\hat{\mathcal{H}}$.
Let $\left(\mathcal{H}, *, 1_{\mathcal{H}}\right)$ and $\left(\hat{\mathcal{H}}, \star, 1_{\hat{\mathcal{H}}}\right)$ be Hilbert algebras. Then $\left(\mathcal{H} \times \hat{\mathcal{H}}, \diamond,\left(1_{\mathcal{H}}, 1_{\hat{\mathcal{H}}}\right)\right)$ is defined by $(\varsigma, \dot{\varsigma}) \diamond(\varepsilon, \dot{\varepsilon})=(\varsigma * \varepsilon, \dot{\varsigma} \star$ $\dot{\varepsilon}), \forall \varsigma, \varepsilon \in \mathcal{H}$ and $\dot{\varsigma}, \dot{\varepsilon} \in \hat{\mathcal{H}}$.
Let \hbar_{1} and \hbar_{2} be $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H}, where $m \in$ $(0,1)$. The Cartesian product of \hbar_{1} and \hbar_{2} is defined by $\hbar_{1} \times \hbar_{2}$, where $\left(\hbar_{1} \times \hbar_{2}\right)(\varsigma, \dot{\varsigma})=\min \left\{\hbar_{1}(\varsigma), \hbar_{2}(\dot{\varsigma})\right\}, \forall \varsigma, \dot{\varsigma} \in$ \mathcal{H}.

Theorem II.24. Let \hbar_{1} and \hbar_{2} be $\left(\in, \in \vee q_{m}\right)$-FSAs of \mathcal{H}, where $m \in(0,1)$. Then $\hbar_{1} \times \hbar_{2}$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of $\mathcal{H} \times \mathcal{H}$.

Proof: Let $\left(\varsigma_{1}, \dot{\varsigma}_{1}\right),\left(\varsigma_{2}, \dot{\varsigma}_{2}\right) \in \mathcal{H} \times \mathcal{H}$. Then

$$
\begin{aligned}
&\left(\hbar_{1} \times \hbar_{2}\right)\left(\left(\varsigma_{1}, \dot{\varsigma}_{1}\right) \diamond\left(\varsigma_{2}, \dot{\varsigma}_{2}\right)\right) \\
&=\left(\hbar_{1} \times \hbar_{2}\right)\left(\varsigma_{1} * \varsigma_{2}, \dot{\varsigma}_{1} * \dot{\varsigma}_{2}\right) \\
&= \min \left\{\hbar_{1}\left(\varsigma_{1} * \varsigma_{2}\right), \hbar_{2}\left(\dot{\varsigma}_{1} * \dot{\varsigma}_{2}\right)\right\} \\
& \geq \min \left\{\min \left\{\hbar_{1}\left(\varsigma_{1}\right), \hbar_{1}\left(\varsigma_{2}\right), \frac{1-m}{2}\right\}\right. \\
&\left.\min \left\{\hbar_{1}\left(\dot{\varsigma}_{1}\right), \hbar_{1}\left(\dot{\varsigma}_{2}\right), \frac{1-m}{2}\right\}\right\} \\
&= \min \left\{\min \left\{\hbar_{1}\left(\varsigma_{1}\right), \hbar_{2}\left(\dot{\varsigma}_{1}\right), \frac{1-m}{2}\right\}\right. \\
&\left.\min \left\{\hbar_{1}\left(\varsigma_{2}\right), \hbar_{1}\left(\dot{\varsigma}_{2}\right), \frac{1-m}{2}\right\}\right\} \\
&= \min \left\{\left(\hbar_{1} \times \hbar_{2}\right)\left(\varsigma_{1}, \dot{\varsigma}_{1}\right),\left(\hbar_{1} \times \hbar_{2}\right)\left(\varsigma_{2}, \dot{\varsigma}_{2}\right), \frac{1-m}{2}\right\} .
\end{aligned}
$$

Hence, $\hbar_{1} \times \hbar_{2}$ is an $\left(\in, \in \vee q_{m}\right)$-FSA of $\mathcal{H} \times \mathcal{H}$.

III. Conclusion

In this article, we introduced $\left(\epsilon, \in \vee q_{m}\right)$-FSAs of Hilbert algebras and looked at some of their key characteristics. The level subsets of $\left(\in, \in \vee q_{m}\right)$-FSAs were used to describe them. Additionally, several descriptions of $\left(\in, \in \vee q_{m}\right)$-FSAs are developed. Moreover, we have found that the Cartesian product of $\left(\in, \in \vee q_{m}\right)$-FSAs is still an $\left(\in, \in \vee q_{m}\right)$-FSA.

In the near future, we will extend the study from this article to the ideal and compare the results with this article.

REFERENCES

[1] B. Ahmad and A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), Article ID 586507, 6 pages.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1) (1986), 87-96.
[3] M. Atef, M. I. Ali, and T. Al-Shami, Fuzzy soft covering based multigranulation fuzzy rough sets and their applications, Comput. Appl. Math., 40 (4) (2021), 115.
[4] S. K. Bhakat and P. Das, $(\in, \in \vee q)$-Fuzzy subgroup, Fuzzy Sets Syst., 80 (1996), 359-368.
[5] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2 (1985), 29-35.
[6] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math., 5 (1988), 161-172.
[7] N. Cağman, S. Enginoğlu, and F. Citak, Fuzzy soft set theory and its application, Iran. J. Fuzzy Syst., 8 (3) (2011), 137-147.
[8] A. Diego, Sur les algébres de Hilbert, Collection de Logique Math. Ser. A (Ed. Hermann, Paris), 21 (1966), 1-52.
[9] W. A. Dudek, On fuzzification in Hilbert algebras, Contrib. Gen. Algebra, 11 (1999), 77-83.
[10] H. Garg and K. Kumar, An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making, Soft Comput., 22 (15) (2018), 4959-4970.
[11] H. Garg and K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision-making process, Appl. Intell., 48 (10) (2018), 3346-3359.
[12] H. Garg and S. Singh, A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation operators, Iran. J. Fuzzy Syst., 15 (5) (2018), 69-93.
[13] L. Henkin, An algebraic characterization of quantifiers, Fund. Math., 37 (1950), 63-74.
[14] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon., 43 (1996), 51-54.
[15] V. Murali, Fuzzy points of equivalent fuzzy subsets, Inf. Sci., 158 (2004), 277-288.
[16] P.-M. Pu and Y.-M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (2) (1980), 571-599.
[17] C. Rotjanasom, C. Inbunleu and P. Suebsan, Applications of fuzzy parameterized relative soft sets in decision-making problems, IAENG, Int. J. Appl. Math., 51 (3) (2021), 607-612.
[18] P. Suebsan and M. Siripitukdet, Applications of fuzzy soft sets over some semigroups based on extended averages, IAENG, Int. J. Comput. Sci., 47 (4) (2020), 816-822.
[19] W. Ye, J. Geng, X. Cui and D. Xu, A new method for multi-attribute decision-making based on single-valued neutrosophic sets, Eng. Lett., 28 (4) (2020), 1302-1309.
[20] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (3) (1965), 338-353.
[21] J. Zhan and Z. Tan, Intuitionistic fuzzy deductive systems in Hibert algebra, Southeast Asian Bull. Math., 29 (4) (2005), 813-826.
[22] K. Zhu, J. Wang and Y. Yang, A new approach to rough lattices and rough fuzzy lattices based on fuzzy ideals, IAENG, Int. J. Appl. Math., 49 (4) (2019), 408-414.
[23] K. Zhu, J. Wang and Y. Yang, A study on Z-soft fuzzy rough sets in BCI-algebras, IAENG, Int. J. Appl. Math., 50 (3) (2020), 577-583.
[24] K. Zhu, J. Wang and Y. Yang, Lattices of (generalized) fuzzy ideals in residuated lattices, IAENG, Int. J. Appl. Math., 50 (3) (2020), 505511.

[^0]: Manuscript received July 14, 2023; revised November 9, 2023.
 This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF67-UoE-Aiyared-Iampan).
 A. Iampan is an Associate Professor at Fuzzy Algebras and DecisionMaking Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand (corresponding author to provide phone: +6654466666 ext. 1792; fax: +6654466664; e-mail: aiyared.ia@up.ac.th).
 N. Rajesh is an Assistant Professor at Department of Mathematics, Rajah Serfoji Government College, Thanjavur-613005, Tamilnadu, India (e-mail: nrajesh_topology@yahoo.co.in).

