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Abstract—Detecting surface defects in strip steel is an
essential step in the production process, and it has consistently
held a prominent position in both domestic and international
contexts. Stripping surface defects has a significant impact on
the product’s overall appearance. Moreover, it plays a crucial
role in maintaining the strip product’s wear resistance,
corrosion resistance and fatigue strength. Failing to address
these defects would inevitably result in a reduced service life
for the strip product. This paper introduces a classification and
diagnosis approach using the MultiLayer Perceptron,
optimized by the Biogeography-Based Optimization algorithm
(BBO), for the purpose of diagnosing strip surface defects. The
multi-layer perceptron is trained by using the BBO algorithm
to find the best connection weight and bias value, so that it can
identify the training set and test set, and make adjustments
according to different needs. This paper carried out simulation
experiments on strip surface defect data set in UCI data set. In
this research, we evaluated the effectiveness of the proposed
approach by benchmarking it against five alternative
optimization algorithms. These included particle swarm
optimization, ant colony optimization, distribution estimation
algorithm, genetic algorithm, and extreme value search
algorithm. It becomes evident that the accuracy and speed of
the proposed method have experienced substantial
enhancements. The application of the BBO algorithm in
optimizing the multi-layer perceptron has been demonstrated
to effectively address the challenge of diagnosing strip defects.

Index Terms—biogeography-based optimization algorithm,
strip surface defect detection, multi-layer perceptron,
migration model

[. INTRODUCTION

he iron and steel industry has maintained a dominant
position in the realm of economic development for a
significant period. Within this industry, the strip product
holds immense importance and finds extensive applications
across various sectors of society. In the process of strip steel
production, different tvpes of defects will appear on the
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surface of the products due to various objective factors, such
as, the raw materials used in the manufacturing process,
rolling equipment and production technique. The types of
strip surface defects can be broadly categorized as: pinholes,
scars, scratches, abrasion, bonding, roll marks, holes, pitting
and surface delamination [1]. These defects not only have a
detrimental impact on the product’s visual appeal, but also
have the potential to diminish its overall performance. For
example, they can result in a reduction in wear and
corrosion resistance while concurrently enhancing fatigue
strength. Consequently, the service life of the strip product
1s significantly compromised. Therefore, how to accurately
detect the defects on the strip surface has become a concern
of many colleges and universities at home and abroad and
strip-related production enterprises. Finally, with the
continuous efforts of researchers, a variety of detection
methods came into being. In Ref. 2, the surface defects of
steel strip are detected through the utilization of a classical
convolutional neural network. However, this method has
been enhanced by incorporating a transfer learning model
This alteration vields several benefits, such as shortened
training time, accelerated convergence speed, and enhanced
accuracy of weight parameters. In Ref 3, an enhanced
feature selection method is introduced, which combines a
filtering method with a hidden Bayes classifier. Its goal is to
enhance the efficiency of defect identification while
simultanecusly reducing computational complexity. This
approach efficiently chooses the optimal mixed model,
facilitating precise classification of surface defects in steel
strips. Reference 4 introduced a stripe defect classification
scheme that leverages ResNet50, along with the
incorporation of FcaNet and the Convolutional Block
Attention Module (CBAM). The integrated learning method
was used to optimize the scheme, which improved the
overall defect classification accuracy. In Reference 5, a
novel deep neural network named the Depth Attention
Residual Convolutional Neural Network 1s presented. This
network has been tailored for the automatic detection of
surface defects across six distinct categories of hot-rolled
steel strips.

The inception of the Biogeography-based Optimization
(BBO) algorithm dates back to 2008 when it was introduced
by Professor Dan Simon. [6] and is then inspired by the
principles of biogeography, which can be explained as a
state of equilibrium 1n nature through species migration and
drift between geographic regions. Here, the kind of
information 1s among the determining variables of the
optimization problem [7]. Much like other population-based
optimization algorithms, the BBO algorithm also
encompasses iterative  processes involving  species
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information, ncluding migration and mutation operations.
Within each generation, the individual exhibiting the highest
fitness value is chosen as the global optimum Ultimately, it
identifies the optimal individual by means of population
iteration and evaluation. In the BBO algorithm, the purpose
of migration operations and exchange operations is to
increase the diversity of species, thus contributing to global
search, so it widely used by research scholars. Selvin
proposed the chaotic BBO algorithm based on Selective
Level Mapping {SLM) to provides an effective solution that
exist in the orthogonal frequency division multiplexing
waveform peak average power ratio problem [8]. Chen
proposed a hybrid BBO algorithm to optimize the
three-dimensional container size design and knapsack
problems so as to maximize container volume utilization by
optimizing the container size [9]. Reihanian introduced a
pioneering evolutionary algorithm known as MOBCO-OCD,
which incorporates a multi-objective Biogeography-based
Optimization (BBO) approach. This algorithm is specifically
tailored for the automatic identification of overlapping
communities within social networks that incorporate node
attributes. It considers both the network’s connection
density and the similarity of node attributes as crucial
factors in the process [10]. Cao proposed the CCM-BBO
framework, which utilizes the Cumulative Covariance
Matrix (CCM) and has been proven to effectively obtain the
global optimal values [11]. The Multi-layer Perceptron
(MLP) proposed by Hinton was solved by the
back-propagation algorithm [12] and the Sigmoid function
was introduced in the propagation process between layers
[13]. Introducing non-linearity to neural networks can
improve the defect that single-layer perception cannot solve
the XOR problem. The Multi-Layer Perceptron, abbreviated
as MLP, 1s a feed-forward artificial neural network model
that can effectively map multiple input datasets to a single
output dataset [14], which has also been widely used in
many practical applications. Elangovan has presented a
feature selection based on classification algorithm for
automated sentiment analysis by integrating Firefly
algorithm and MLP technique [15]. Jamali provides a
unique hyperspectral image classification method, based on
complex MLP to solve the problems of high spatial
dimension, huge number of spectral bands and few labeled
data of hyperspectral images [16]. Wang introduced an
approach based on Multi-Layer Perceptron (MLP) to discern
commercial vehicle driving conditions. This method
effectively addresses the challenge of classifving various
commercial vehicle driving conditions, contributing to
enhanced road traffic efficiency and sustainability. [17]

This paper presents a diagnostic method for strip surface
defects based on the Biogeography-based Optimization
{BBO) algorithm and Multi-Layer Perceptron (MLP). The
paper 1is structured as follows: The second section outlines
the training of the Multi-Layer Perceptron using the BBO
algorithm. The third section covers experimental simulations
and results analysis: The BBO algorithm 1s compared with
five conventional intelligent algorithms, which include the
Particle Swarm Optimization (PSO) algorithm [18], Ant
Colony Optimization (ACO) algorithm [19], Genetic
Algorithm  (GA) [20], Population-Based Incremental
Learning (PBIL) [21] and Extreme-value Search (ES)

algorithm [22]. The steel plate defect data set 1s adopted in
the simulation experiments under these six algorithms, the
outcomes are then compared to validate the efficacy of
utilizing the BBO algorithm for MLP neural network
traiming, The final section presents the conclusion.

II. BIOGEOGRAPHY-BASED OPTIMIZATION ALGORITHM

A. Overview of BBO Algorithm

Like other intelligent algorithms, the BBO algorithm falls
under the category of population-based optimization
methods. Nevertheless, it distinguishes itself by regarding
each solution within the population as a habitat, with the
solution’s fitness level serving as the Habitat Suitability
Index (HSI). Additionally, each component of the solution is
considered a vector of Suitable Index Vector (SIV). The
population evolves continuously by simulating the migration
and mutation process in biogeography. When it comes to
tackling optimization problems, the BBO algorithm exhibits
distinctive characteristics that set it apart from other swarm
intelligence optimization algorithms, including genetic
algorithms, ant colony optimization algorithms, and particle
swarm optimization algorithms. Firstly, it deviates from the
conventional approach of reproduction or creation of the
next generation. Secondly, Each generation solution is
adjusted by migration probability. Finally, the biological
incentive mechanism is adopted to select different operation
intensity according to the population size of different
habitats.

B. Mathematical Model of Biogeography

The following will introduce the species migration model
of single HSI with migration rate # and migration rate 4 . A
single species migration model on the island as shown in Fig.
1 was established, The graph depicts the relationship
between the number of species on the X-axis and the
corresponding probability on the Y-axis. It 1s clear that
when the number of species is zero, the migration rate also
reaches zero. However, as the number of species
progressively increases, the space of the island becomes
smaller, the number of species it can accommodate
gradually reaches its peak, and the living conditions of the
island will no longer be suitable. This kind of population
then moves out to find a new habitat, resulting in a gradual
increase in the migration rate. Once the maximum species
capacity of the island reaches Sp,x , the migration rate also
reaches its maximum value E . Likewise, when the number
of species reaches zero, the migration rate of the island
reaches its peak value [ . In the Fig.1, the population of
species moving in and out reaches a balance at S, , # =
A, which means that the number of emigration is equal to
that of emigration at this time, the population on the island
enters a relatively stable state, and there will not be sudden
large area migration or emigration.

Under normal circumstances, the migration model of
species will be as complex as cosine curve and sine curve,
and will not show a simple migration curve as shown in Fig.
1. Therefore, the process of migration in and out of the
population will be described in details, and the migration
model will be adjusted. In BBO algorithm, suppose that
there are §  species on an island, and its probability is
P, , which changes in time [£.£+ Af] as follows:
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P.(t+At)= P.()(1— A, At— u At)+ 1
‘Ps—l/ls—l‘At<|>‘PS/MSJrI‘A'r ()

When the number of species on the island reaches the
number S, the move-in rate and migration rate of the island
are 4, and A . Suppose the Eq. (1) holds, at #+ At there
are § species. In this case, at least one of the following
rule must be met:

(1Y At ¢ moment, there are S species on the island,
and at the [t.2+At] , there are no species moving out and
moving in.

(2y At ¢t moment, there are S+1 species in the island,
and atthe [f.2+Af], one species migrates.

(3)At { moment, there are S—1 species on the island,
and atthe [f.1+Af], one species migrates.

When At — 0, that is, Eq. (1) takes the limit and gives
the variance show in Eq. (2). If define n=58,, and
P=[R,B., . P1T , B(S=01--.n) is arranged into a
single matrix.

P=AP (2)
where, Wl 1s given in Hq. (4).

—(/Lls +/?‘s)Ps +/'!5+1P5+1’S =0

p= 7(/[’!5 + /?'S‘)PS +/us-1P5-1+/u5+1Ps+1 18 <Smax -1
7(/“5 +ﬂs)PS +/“S-IPS-1>S = Smax
(3)
) H 0 0
o arA)
Aﬁ—l 7(/’!;1—1 +A‘n—1) My
0 0 At {4, +4,)
4

To facilitate the research, assume that £ =17, Fig. (1) can
be converted into Fig. 2.

= ©
n
j, = 1[1%] ©)

where, =25, and k isthe total number of species.
The probability of accommodating the number of species
in each island can be defined as:

Y v koo
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If the species migration curves are the identical for each
island (solution), then the result will be shown in Fig. 2, S,
represents the high ITSI solution and S; represents the low
HSI solution. Through the analysis of each solution mobility,
we share the information between the two islands. Six

mathematical models of migration in BBO algorithm can be
divided into linear and nonlinear, which are shown in Fig. 3.
C. Algorithm for Biogeography-Based Optimization

The BBO algorithm is composed of D -dimensional
S with # habitats, where H; represents the suitability
of the i -th habitat, and all species with Sy value belong
to H; are extracted as # through the comparison of
habitat #; . Then the population S; of the remaining
habitats can be reduced one by one according to the order of
H; thatis, S;=S8p—1 (i=L2,---,n), where i isthe
arrangement of H; according to their fitness. Through the
calculation of the previous expression, we can get the rate of
relocation # and migration rate 4 of i 1in the different
migration model #H; . Thus the species accommodation
probability P(X;) of H; can be calculated by Eq. (8)..

PS
2 ) (8)

max

MS :MmaX'(l_

Hence, the mutation rate M; for each H; 1s computed.
The global variable 1s comprised of the maximum relocation
rate £ , the migration rate [, the M, elite retention
number ZX;, ., X, and the global mobility Fuoq . The
flowchart of the BBO algorithm 1s shown in Fig. 4. It can be
seen from Fig. 4 that all the parameter variables of BBO
algorithm are initialized firstly, then the suitability H; of
different habitats 1s arranged from good to bad, generally
stipulating the habitat renewal rate i=1. By comparison,
determine whether the result is the desired optimal. If yes,
output the final optimum and end the optimization process.
Otherwise, continue to get the species value S; of habitat
i through 5 =Sp—7 i=L2,n, Sy =n 3, then
bring it into the migration model to get the values of 4
and ;. After a loop operation, it is determined whether it
has entered the migration mode, and if 7 carries out the
move-in operation, the 57 of 7 can be replaced by the
selected # component. Through the calculation of the M,
of the corresponding habitat, the algorithm assesses the
pertinent habitat variables to identify any abrupt changes
and then returns the comparison results for reuse.

D. BBO Algorithm to Optimize MLP Neural Network
(1) Multi-layer Perceptron (MLP)

Multi-layer perceptron (MLP) consists of an input layer,
an output layer and a hidden layer. Within the MLP neural
network, # represents the number of input nodes, #4
represents the number of hidden nodes, and # represents
the number of output nodes.

The specific steps for calculating the output of MLP are
as described as follows. Firstly, the weighted sum of the
mnput is calculated by:

i=1

In this context, ©; denotes the offset of the ./ -th hidden
node, while X, represents the i -th input node, with »
denoting the total number of input nodes. Consider #; as
the connection weight from the i -th node in the input layer
to the #-th node in the hidden layer.
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Fig. 3 Six models of BBO algorithm.
The computation for the output of each hidden node is
described below:
1

0, = sigmoid (0, )= —————
i = sigmoid (0y ) l+exp(-0, )

k=12,....m (10}

The output of the hidden node is calculated by:

A
Op =X (@4.8,) 0"k =1,2,....m 11
j=1
The final output is calculated by:
Sj:sigmoid(Sj):;,j:1,2,...,h (12)
1+exp(ij)

In this context, €'y represents the transpose of the & -th
output node, while ®; represents the connection weight
from the 7 -th hiddennode to the % -th output node.

{2) Multi-layer Perception Optimized by BBO Algorithm

From the above formula, it can be seen that the
connection weights and biases play a decisive role in the
MLP neural network. From the above equation, it 1s not
difficult to find that bias and weight affect the value of &, .
A MLP neural network is trained so that it can better
identify and capture traiming sets and test sets. In the whole
process, the selection of training sets is also important. Each
training sample should be applied to each habitat HS/
calculation. In conclusion, the Mean Square Error (MSE) for
all training samples is computed using Equation (13).

o)

i=1 (13)
1 q

Mq

F=

=
[

In this context, of denotes the actual output of the i -th
input unit among the % traiming samples. 4 represents
the total number of training samples, while 4° denotes the
expected output of the ¢ -th input unit within the £

traiming samples. # represents the number of outputs. The
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habitat suitability index (HSI) of the i -th habitat is

calculated by using Eq. (14).

HSI( Habitat, ) = E{ Habitat, ) (14)

The process of training MLP is shown in Fig. 5.

III. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. EXPERIMENTAL PARAMETER SETTING

The dataset for strip surface defects is sourced from the
UCI database. This dataset comprises 1941 samples, and
each sample contains 27 eigenvalues. Furthermore, the
dataset includes seven distinct categories of steel plate
defects, namely Pastry, Z Scratch, K_Scratch, Stains,
Dirtiness, Bumps, and Other Faults. Table 1 offers
representative examples of data from the strip surface
subsidence dataset.

To evaluate the effectiveness of the proposed algorithm,
this study undertakes a comparative analysis between the
BBO algorithm and five conventional swarm intelligence
algorithms, which include the Particle Swarm Optimization
algorithm (PSO), Ant Colony Optimization algorithm
(ACQO), Genetic Algorithm (GA), Population-Based
Incremental Learning (PBIL), and Extreme Search
Algorithm (ES). The mmitialization of the parameters for each
optimization algorithm is carried out. The habitat renewal
probability, imitial mutation probability, numerical
integration step, maximum migration rate and migration rate
of BBO algorithm are all 1. The pheromone update constant
of ACO algorithm is 20. The parameter values are as
follows: an exploration constant of 1, a global pheromone
decay rate of 0.9, a local pheromone decay rate of 0.5, a
pheromone sensitivity of 1, and a sensitivity of 5. The
Genetic Algorithm (GA) utilizes a crossover probability of
0.85 and an initial mutation probability of 0.01. In the
Population-Based Incremental Learning (PBIL) algorithm,
the leaming rate 1s set to 0.05, with both the probability
vector mutation rate and the probability vector mutation rate
set at 0. The Particle Swarm Optimization (PSO) algorithm
employs an nertia constant of 0.3. Lastly, in the Extreme
Search (ES) algorithm, each generation produces 10
offspring.

B. MULTI-LAYER PERCEPTRON DIAGNOSIS METHOD OF STRIP
SURFACE DEFECTS OPTIMIZED BY BBO ALGORITHM

To validate the effectiveness of the BBO algorithm
adopted for training the MLP neural network to solve the
strip surface defect identification problem, the ACO, PSO,
GA, ES and PBIL algorithms are used to train MLP for
carrying out the comparative experiments. 1240 data in the
simulation experiment are used as the training dataset and
701 data as the verification dataset. To mitigate the
influence of experiment randomness, 120 test samples are
selected for each algorithm, and the experimental outcomes
are illustrated in Figures 6 through 11. It can be seen that,
except for the diagnosis on the first type of defects, the
diagnosis effect of BBO-MLP algorithm for the other six
types of defects tends to be stable and stable, and has been
in the state closest to the expected effect compared with the
other five algorithms. This also proves that the BBO-MLP
algorithm is faster and more stable in the strip surface defect

type diagnosis, and proves the effectiveness of the proposed
algorithm.

As can be seen from Table II, the diagnosis accuracy of
BBO algorithm for various types of defects is excellent
among the six algorithms, and the overall accuracy is the
highest of 85%, followed by GA and EA algorithms with an
accuracy of 75%, ACO and PBIL algorithm with an
accuracy of 70%. Among the six algorithms, PSO algorithm
performs the worst, with an accuracy of 66.67%. The results
show that BBO algorithm is the most effective in strip
surface defect identification, GA and EA algorithms are the
second, ACO and PBIL algorithms are slightly worse, and
PSO algorithm is the least.

Start

Set the BBO agorithm parameters

l

Tnitialize the suitability vector for the
habitat

¥
Calculate habitat suitability
Degree index and sorted

—{ Save the optimal solution |

Are the end
onditions met?

QOutput the result

Caleulate the number of speecies, rates of
cmigration and rate of inflow in habitat

| Calculate the mutation rate of habitats

Migration operations

Fig. 4 Flow chart of BBO algorithm.

‘ Generate theinitial habitat ‘

Calcul ate the mean squared error (MSE)
for each multilayer perceptron (MLP)
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‘ Changing habitats ‘

{
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‘Are the termination
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Fig. 5 Flow chart of BBO algorithm for training multi-layer perception.
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TABLE I. DATASET OF STRIP SURFACE DEFECTS

Steel plate defects

Eigenvalue
Pastry 7 Scratch K scratch Stains Dirtiness Bumps Other Faults
X minima 42 1166 464 1002 1325 38 1108
X maximum 50 1185 4724 1027 1339 49 1120
Y minima 270900 2258648 28542 155255 30207 735612 2497122
Y maximum 270944 2258662 28553 155262 30238 735624 2497138
Pixel area 267 123 72 62 268 113 137
Perimeter of X 17 33 13 31 29 11 13
Perimeter of Y 44 17 12 9 3 12 16
Brightness combined 24220 15838 13094 7479 25809 12652 15672
Minimum brightness 76 116 168 114 79 93 85
Maximum brightness 108 143 198 132 124 130 133
Transport captain 1678 1708 1387 1360 1353 1707 1373
300 steel 1 1 0 1 0 1 0
400 steel ] ] 1 ] 1 0 1
Plate thickness 80 100 40 100 120 100 40
Edge index 0.0498 0.6124 0.6691 04897 0.0207 0.0445 0.3685
Empty index 0.2415 0.5376 0.3455 0.6457 0.3825 0.143% 0.2845
Square index 0.1818 0.7368 0.9091 028 04516 09167 0.75
External index 0.0047 0.0111 0.0072 0.0184 0.0104 0.0064 0.0087
X edge index 04706 0.5758 0.7692 0.8065 0.4828 1 0.9231
Y edge index 1 0.8235 09167 0.7778 1 1 1
Extemnal index 1 0 0 1 1 1
Logarithmic area 24265 2.0899 1.8573 1.7924 24281 2.0531 2.1367
Logarithmic index 0.9031 1.2787 1.3979 1.1461 1.0414 1.0792
Logarithmic index 1.6435 1.1461 1.0414 0.8451 1.4914 1.0792 1.2041
Directional index 0.8182 -0.2632 0.0909 -0.72 0.5484 0.0833 0.25
Photometric index -0.2913 0.0072 0.4208 -0.0576 -0.2476 -0.1253 -0.1063
B region 0.5822 0.4399 02173 0.2998 0.7065 0.2432 0.3241

This evidence further demonstrates that the BBO
algorithm outperforms other typical intelligent optimization
algorithms for the strip defects diagnosis, resulting in
enhanced speed and accuracy compared to altemnative
algorithms. In addition, in the simulation process, firstly, the
experimental verification results are based on the accuracy
of each algorithm, but the results may change accordingly
for different problems. Secondly, the parameters of the
optimization algorithm are not deliberately adjusted,
because the large changes in the performance of the
optimization algorithm may be related to different parameter
values, resulting in different conclusions. In summary, this
experiment is intended to show that BBO algorithm is more
advantageous in dealing with strip surface defect detection
problems, compared with the traditional algorithm. It
improves the speed and accuracy, and 1s very effective in
dealing with conventional problems. Furthermore, this
demonstrates that the Biogeography-Based Optimization
algorithm, as a population-based approach, 1s effective in
addressing engineering problems.

IV. CONCLUSIONS

This paper first analyzes the significance of strip surface
defects in practice, describes strip steel, and studies the

identification method of steel surface defects. In the second
chapter, we delve into the design principles of the BBO
algorithm, provide a detailed explanation of the algorithm
flow for BBO optimization, present the training
methodology for Multi-Layer Perceptron using the BBO
algorithm, and introduce the associated training model In
the chapter of defect detection algonthm simulation
experiment, six classical algorithms, namely BBO, GA, ES,
ACQO, PBIL and PSO, are introduced first, and their
parameters are described. Subsequently, these algorithms
are applied in conjunction with a strip defect dataset for
conducting simulation experiments. The experimental
outcomes demonstrate that the approach for strip surface
defect detection, utilizing the BBO algorithm, exhibits
substantial enhancements in terms of both accuracy and
processing speed. Furthermore, the comparison with other
optimization algorithms underscores the BBO algorithm's
effectiveness and efficiency in addressing the challenge of
strip defect diagnosis.

In this paper, the BBO algorithm is used to optimized the
multi-layer perceptron diagnose model on strip surface
defects. The adaptability of BBO algorithm exists in the
process of biological habitat migration. The equilibrium
price formation mechamsm 1 the market regulation
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mechanism is similar to the population migration
mechanism in BBO algorithm. At the same time, this
adaptive mechanism also plays an important role in many
fields in the real world. BBO algorithm has reliable
performance and obvious effect. The experimental results

also show that it adopts the law formed by the long-term
evolution of nature as the operating mechanism and is far
superior to the typical intelligent optimization algorithms in
dealing with strip surface identification problems.
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TABLE II. DIAGNOSE RESULTS BASED ON DIFFERENT ALGORITHMS ON STRIP SURFACE DEFECTS
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