
 

 

     Abstract— This study offers a concise overview of classifying 

hand movements based on their kinetic and myoelectric 

characteristics. In this work, we propose utilizing 

Electromyography (EMG) signals to distinguish these 

movements, especially for applications like wheelchair guidance 

and prosthetic control. Unlike prior research on forearm-

derived EMG signals, this study employs a multi-channel 

surface Electromyography (sEMG) signal to effectively 

categorize distinct movements, crucial for prosthetic control.  

   To extract informative signal features, a two-step process is 

deployed, beginning with the transformation of raw EMG data 

using Discrete Wavelet Transform (DWT) for feature 

extraction. The ensuing classification task employs an Artificial 

Neural Network (ANN), overseen by the generation of 

corresponding confusion matrices (CMs) based on input 

features. The efficacy of our approach is validated using a 

human hand EMG signal dataset sourced from the UCI 

Machine Learning Repository. This dataset encompasses 

recordings from 36 subjects across 8 channels (sensors), 

spanning multiple days. 

  The suggested algorithm utilizes unprocessed bipolar EMG 

data for both training and evaluating the performance of the 

neural network-based classifier. Significantly, when assessing 

the algorithm's performance offline, it becomes evident that the 

use of Frequency Domain (FD) features in sequential signal 

processing outperforms Standard Linear Discriminant Analysis 

(LDA) algorithms. The combination of the DWT and ANN 

results in significantly improved performance and sustained 

robustness of the classification algorithm. Empirical findings 

prove the effectiveness of this approach, achieving an accuracy 

of 89.9% in classifying seven distinct hand movement categories 

accurately. Additionally, the analysis shows an increasing 

classification accuracy as the dataset size increases. 
 

       Index terms— Electromyography (EMG), Pattern 

Recognition, Feature Extraction, Signal Classification, Artificial 

Neural Network (ANN) Classifier, Prosthetic Hand. 

I. INTRODUCTION 

 

ANY people across the global landscape have 

experienced the loss of body parts, particularly 

hands or fingers, due to various circumstances, including 

hostile conflicts, wars, or accidents (such as those involving 

warfare, automobiles, and industrial settings). For instance, 

Iraq has seen a rising population facing upper limb 

dysfunction, ranging from elbow impairments to complete 

upper digit amputations [1]. To address the challenges 

inherent in their daily lives, a critical need arises to furnish 

most of them with prosthetic devices. It’s unfortunate, that 

the existing array of prosthetic devices remains limited in its 

ability to fully mimic human hand movements since they 

have a small set of gestures. Among the most promising 

techniques nowadays for handicapped persons is EMG-based 

control, in which the EMG signals can be utilized for these 

applications.  By utilizing this technique, it is possible to 

control prostheses [1–3].  

   The EMG signal recognition process comprises two main 

phases: the extraction of specific signal features and the 

recognition of classes corresponding to specific hand 

movements. These processes are interrelated and rely on a 

preprocessing stage, as depicted in Fig. 1. 

 

 
 

   Fig. 1.  Movement intention recognition block diagram. 

However, grappling with hand movement presents 

intricate control challenges, attributed to several practical 

factors. Amongst such factors is that EMG signals are usually 

of small amplitude for finger and hand movements. The 

second considerable reason is linked with the muscles 

controlling the movements, which are located in the 

intermediate and the deep layers of the forearm. Furthermore, 

signals recorded behind the skin surface undergo different 

non-linear attenuations and filtering deformations by forearm 

tissues. As a consequence of these factors, more processing 

power might be needed to provide enough information to 

resolve ambiguity in the intended movement [4, 5]. In modern 

life, we can mention several tasks as being complicated and 

hence requiring skilled and dexterous control to achieve an 

efficient performance. Such tasks may include; driving a 

wheelchair, using a computer mouse, and operating 

contemporary devices like mobile phones, and other similar 

devices.  

In this study, we conducted a pilot study with 36 

participants who have upper limb deficiencies. These 

participants were instructed to perform significant 

movements for capturing wrist actions, including flexion, 

extension, and more[6]. Human hand motion control stems 

naturally from innate neural network impulses, which 

stimulate muscle contractions. To replicate and govern 

artificial hand movements using these impulses, a 

sophisticated bio-interfacing approach is needed.  The change 
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in the electric potential difference between the interior of each 

stimulated muscle cell and its immediate environment 

measured on the skin’s surface, accompanies the muscular 

engagement. Consequently, the information carried within 

EMG signals, indicative of muscle activity, is characterized 

by significant ambiguity, thereby sophisticating the precise 

analysis and discernment of the signals. 

So, the information on muscle activity carried by EMG 

signals has much ambiguity, which sophisticates the 

appropriate analysis and recognition of these signals. The 

muscles controlling the hand fingers and wrist are located in 

the forearm and they are usually persevering even subsequent 

to hand amputation.  [7–9].  

This paper focuses on the extraction of high-effect signal 

features and implements a powerful classification technique 

using the Matlab software package as a tool for data analysis.  

A sequence of EMG signals is prompted by various hand 

movements from a typical subject to construct the adopted 

gesture datasets. For the testing and classification processes, 

the datasets from the UCI machine learning repository are 

adopted. These datasets were collected by eight sensors, 

which are integrated into the structure of the MYO armband. 

The armband encompasses eight EMG sensors that measure 

muscle tension, and an inertial measurement unit equipped 

with a 3D gyroscope, 3D accelerometer, and magnetometer 

[10],[11]. The myographic signals are simultaneously sent 

through a Bluetooth interface to a computation unit.  

The armband’s performance is illustrated by a series of 

EMG signals captured for a hand at rest, as in Fig. 2. This set 

of EMG signals is quite possible for an analysis tool such as; 

Fourier Transform (FT) and Wavelet Transform (WT) to be 

used for the extraction of many important features.  The WT 

is particularly can deliver comprehensive information about 

signal features, so it is highly competitive in this context. 
 

 

 

By processing an EMG signal, it is possible to classify 

different hand motions assigned to that particular signal.  

These motions are essential for human-machine interface in 

extensive applications spanning from upper limb and 

prosthesis control to robotic manipulation. Since the EMG 

signals are quasi-stochastic, within the 0 to 6 mV range and a 

frequency of 10 to 500 Hz may be contaminated by 

measurement noise [12]. The first step of processing is 

removing or mitigating this noise. This termed preprocessing, 

primarily focuses on accentuating the prominent attributes of 

the EMG signals, often achieved through the application of 

Fast Fourier Transform (FFT) and Discrete Wavelet 

Transform (DWT) algorithms.  The classification process is 

the last step, which is preceded by extracting a set of selected 

features that are considered in recognizing the corresponding 

movement pattern. 

This paper is organized as follows; The current section 

provides a general preview of the fundamental properties of 

EMG signals, processing steps, and their role in driving 

artificial prosthetic devices.  The next section conducts a 

comprehensive literature review, presenting key researchers 

who have contributed significantly to this field. Furthermore, 

specific research papers supporting the advancement of EMG 

signal classification within this study are examined. 

Section III describes the adopted dataset in detail, along 

with an analysis of both the Time Domain (TD) and 

Frequency Domain (FD). This analysis helps select optimal 

preprocessor and filtering parameters. Section IV focuses on 

the proposed classification algorithm steps, providing a 

detailed description of the processes. Section V presents the 

experimental results obtained by testing the system's 

performance in the training, testing, and validation stages. 

Finally, Sections VI and VII offer the concluding remarks, 

discussion, conclusion, and future research directions. 
 

 

II. LITERATURE REVIEW 

 

In related literature, numerous researchers have made 

significant contributions to the classification of hand 

movements for the control of dexterous hand prosthetic 

devices using electromyography (EMG) signals. Jiang et al. 

[12]  undertook the classification of six finger movements 

using four EMG channels combined with WT for feature 

extraction and classification. In [13], Naik et al. used the 

fractal dimension features and Independent Component 

Analysis (ICA) to identify four combinations of finger 

movements. In another study, AL-Timemy et al.  [14], 

achieved the classification of 12 finger movements based on 

extracting the TD features of EMG signals provided by 16 

unipolar electrodes, enhanced by a genetic algorithm as an 

optimizer and a support vector machine for classification.  

Sebelius et al. [15], and Pons et al. [16], introduced control 

strategies for virtual hand prostheses that hinged on varying 

classification algorithms. These methodologies utilize data 

gloves on healthy hands as references to train systems, 

enabling the performance of natural movements with the aid 

of virtual (computer-animated) hands as target tools. A 

control scheme for virtual hand prostheses, using different 

classification algorithms, was presented. The data glove on 

the healthy hand is used as a reference to train the system for 

performing natural movements with the aid of a virtual 

(computer-animated) hand as the target tool.  Meanwhile, 

Herle et al. [17], presented a system to assist the patient in 

moving his upper limb by classification technique of surface 

electromyographical signals. Their architecture is based on 

feed-forward NN with 2 hidden layers, achieving a 

recognition rate of 96.67%.  In their publications, Keles A.D. 

and Yucesoy C.D. [18], Lamounier, and Lopes [19], and 

Fernando E. R. Mattioli et al. [20], directed their efforts 

toward the development of a controller for virtual arm 

prostheses. In which, the EMG signal feature extraction and 

classification were considered common challenges. An ANN 

approach is a candidate to handle the classification problem.  

    Fig. 2. EMG time-domain signals (class: hand at rest). 
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In their research entitled “EMG-Based Feature Extraction 

and Classification for Prosthetic Hand Control”, Azhiri et al. 

[21] addressed their work to improve the accuracy of the 

classification process. A new set of five feature extraction 

functions at each level of DWT was used in conjunction with 

a postprocessing approach using NNs.  Compared with 

conventional postprocessing methods such as; majority 

voting and Bayesian fusion methods, the proposed method 

achieves higher accuracy and better consistency.   

Lobov et al. [22] intensively studied the latent factors and 

systematically determined the performance of surface EMG 

signal interfaces. They developed a procedure to quantify 

gesture fidelity in dynamic gaming environments. The user 

experience was tested in scenarios close to real ones, while 

the interface performance is measured in a gaming 

environment.  

 
III. DATASETS DESCRIPTION AND PROCESSING 

 

  Data Description: The utilized dataset of surface 

electromyography (sEMG) was acquired and made publicly 

available online, hosted by the Physiobank repository at the 

UCI Institute [23]. This dataset comprises recordings from 36 

individuals, each equipped with eight sensors on their 

forearm, and these recordings were conducted on two 

separate occasions. The recorded signals originate from the 

forearm muscles and correspond to seven distinct motion 

classes, denoted as; M1- hand at rest, M2- hand clenched in a fist, 

M3- wrist flexion, M4- wrist extension, M5- radial deviations, M6- 

ulnar deviations, M7- extended palm as depicted in Table I 

 
TABLE I 

RECOGNITION SCORE LABELS OF OUTPUT LAYER 
 

Hand motion Image Outputs score 

 Hand at rest (M1) 
 

0 0 0 0 0 0 

Hand clenched in a fist (M2) 
 

1 0 0 0 0 0 

Wrist flexion (M3) 
 

0 1 0 0 0 0 

Wrist extension (M4) 
 

0 0 1 0 0 0 

Radial deviations (M5) 
 

0 0 0 1 0 0 

Ulnar deviations (M6) 
 

0 0 0 0 1 0 

Extended palm (M7) 
 

0 0 0 0 0 1 

 

Each gesture signal was recorded within a maximum 

timeframe of 3 seconds and repeated twice, subsequently 

digitized into a stream of guaranteed samples covering the 

entire range of motions. The raw data for each class is 

presented in a tabulated series of 8 columns for sensor 

readings and 1 column for the measuring timestamp. The 

context is the EMG signal amplitude ranged from (- 3 *10-5) 

to (3 *10-5) volts. Referring to the International Society of 

Electrophysiology and Kinesiology (ISEK), the filtering 

parameters are; low frequency (~5 Hz), and high frequency 

(~500 Hz) which ensures information saves[24]. The 

measured data is reorganized into a three-dimensional matrix 

of 2000 instants * 8 channels * 36 cases and the unmarked 

data was removed because they don’t reveal information.   

Data Processing: A practical analysis of FFT for the EMG 

revealed that a band-pass (BP) filter of (3-200Hz) frequency 

range saves the important features embedded in the signals. 

The basic filtering procedure is autoregressive in nature with 

generalized discrete-time domain transfer function H(z) by 

cascading low-pass and high-pass filters. The transfer 

function of the filter is derived from a difference equation, 

and expressed in the Z-domain as follows; [23, 25, 26]. 
 

𝐻(𝑧) =
𝑌(𝑍)

𝑋(𝑍)
=  

∑ 𝑏𝑛𝑍−𝑛𝑁
0

∑ 𝑎𝑚𝑍−𝑚𝑀
0

             

 

= 
𝑏0+𝑏1𝑧−1+𝑏2𝑧−2+⋯+𝑏𝑁𝑧−N

𝑎0+𝑎1𝑧−1+𝑎2𝑧−2+⋯+𝑎𝑀𝑧−M
                 (1) 

 

The symbols  𝑎𝑘, and 𝑏𝑘 stand for the autoregressive and 

the moving-average coefficients, respectively. The 

expression in equation (1) can be simply decomposed into 

what is called second-order sections. 

 

𝐻(𝑧) = ∏
𝑏0k + 𝑏1k𝑧−1 + 𝑏2k𝑧−2

1 + 𝑎1k𝑧−1 + 𝑎2k𝑧−2

𝐿

1

                                (2) 

  

Equation (2) can be readily integrated into digital 

computing systems. The filter transfer function H(z) is 

represented in a transition matrix (A) comprising 6 columns 

corresponding to the numerator (3bk) and denominator (3ak) 

coefficients, while L rows represent the Second-Order 

Sections of the Infinite Impulse Response (IIR) Filter; 

 

 𝐴 = [

𝑏01 𝑏11   𝑏21  

𝑏02 𝑏12 𝑏22
     

1 𝑎11 𝑎21

1 𝑎12 𝑎22

⋮        ⋮             ⋮          ⋮          ⋮         ⋮
𝑏0𝐿    𝑏1𝐿       𝑏2𝐿       1      𝑎1𝐿      𝑎2𝐿

]                        (3) 

 

The filter order denoted as L, specifies the response and 

behavior of the filter. Once the desired filter modules have 

been designed, the Second-Order Section Filters can be 

directly simulated by MATLAB for any chosen value of L.  

In Fig. 3, we present the frequency response of a specific 

filter, characterized by parameters (fs =1 kHz, and L=236) as 

a test illustrating the filter’s performance.   

Fig. 3. The BP (5-160 Hz) filter frequency spectrum. 
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  A comprehensive assessment of the hand's sEMG) signal 

data, employing Fast Fourier Transform (FFT) analysis and 

drawing upon findings from numerous published sources 

[29], has affirmed that an empirical band limit range of 3 to 

180 Hz stands as the optimal choice for a band-pass filter. 

A practical evaluation of the hand’s sEMG signal based on 

the FFT analysis and results in many published literature [27], 

proved that an empirical band limit value of (3-180 Hz) is 

optimal for a band-pass filter that saves the essential 

information needed for movement recognition. 

The filtered signals exhibit minimal high-frequency noise 

and unneeded data (unmarked data). The frequency band of 

the filter in equation (1) has been systematically explored 

across multiple values for the 8 channels. The selection of the 

filter parameters is based on the entropy within a moving 

window of the signal. A window of 10 Hz length is adopted 

and the stop band frequency is determined when the entropy 

of the window falls below 0.0001 of the maximum signal 

entropy value. For demonstration purposes, the time spectrum 

for a filtered signal is shown in Fig. 4. 

 

 
Fig. 4.  The time spectrum of the BP-filtered EMG signal 

(channel 1). 

Feature Extraction Using DWT: The DWT provides an 

effective method for analyzing nonstationary signals by 

decomposing them into different scales. This process entails 

breaking down the signal of interest into a set of multi-

resolution coefficients, allowing us to unveil various facets of 

the signal, such as trends, discontinuities, and recurring 

patterns. For these reasons, the DWT is injected into the 

proposed algorithm to categorize an unknown signal feature 

classification. The DWT extracts the characteristics of the 

signal in both time and frequency domains by a scaling 

function and a wavelet function. This decomposition process 

results in two distinct components: the approximation 

component and the detail component, both of which carry 

valuable information from the original time series data. 

For real-time applications, the DWT is recommended for 

non-stationary signals. By DWT, it is possible to analyze the 

signal at low frequencies and to observe the global 

information of the signal in high frequencies. The DWT 

enables multi-level decomposition of a signal by using filter 

banks h[n] and g[n], where the output of the low-pass filter is 

called as approximate coefficient and the output of the high-

pass filter is a detailed coefficient. To compute the DWT 

coefficients, for an input signal x[n], the filter banks consist 

of a high-pass h[n] and a low-pass filter g[n], followed by 

down sampling by a factor of two.  This is performed to 

compute both the detail and the approximation respectively 

as in Fig. 5. Specifically, the result from the low-pass filter 

corresponds to the approximate coefficient, while that from 

the high-pass filter corresponds to the detailed coefficient. 

Furthermore, for extensive decomposition, it is possible to 

cascade multiple stages  [28–30].  
 

 
 

Fig. 5. Multi-level decomposition in DWT 

The mathematical representation of the decomposition 

process of a discrete input signal x[n], is described by 

equation (4). 

𝑥[𝑛] =  ∑ 𝑎𝑖,𝑘𝜑𝑖,𝑘𝑘 [𝑛] + ∑ ∑ 𝑑𝑗,𝑘𝛹𝑗,𝑘[𝑛]𝑘
𝐽−1
𝑗=𝑖                (4) 

Where 𝑎, 𝑑 are the approximation and detail coefficient 

respectively,  𝑖 = 𝑗0,  Ψ[n] is the mother wavelet, and φ[n] is 

the scaling function defined by; 

𝛹𝑗,𝑘[𝑛] =  2
𝑗
2 𝛹(2𝑗𝑛 − 𝑘) 

φ𝑖,𝑘[𝑛] =  2
𝑖
2 φ(2𝑖𝑛 − 𝑘) 

The DWT algorithm is carried out by sequentially passing 

the EMG signal through high-pass and low-pass filters, to 

produce two coefficient subsets at each level (detailed and 

approximation coefficients). The frequency response of these 

filters is dependent on the type and the order of the mother 

wavelet Ψ[n], chosen for the DWT analysis. Better 

decomposition is possible by increasing the order of the filter. 

The filtering operation usually continues until the desired 

level is reached.  In this specific analysis, the Daubechies db3 

mother wavelet is employed. As an illustrative example, 

when the decomposition level is set to 8, the DWT generates 

the coefficient subsets at this level details (cd1, cd2, cd3... and 

cd8) and approximation coefficient. The DWT output signals 

samples: cd1-cd3) waveform for channel number one is as 

shown in Fig. 6. The wavelet coefficient for each subset can 

be used as a feature for the corresponding muscle EMG 

signal.  These individual wavelet components enable the 

straightforward extraction of the essential features that 

characterize the EMG signal. 
 

 
   Fig. 6.  DWT levels 1-3 for a single channel (channel1) 
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IV. CLASSIFICATION ALGORITHM 

 

Regarding the architecture shown in Fig. 1, this section is 

dedicated to describing the main activities of the proposed 

algorithm which include three core steps; preprocessing, 

feature extraction, and post-processing (classification). 

The algorithm steps: The algorithm comprises three 

essential processing phases: preprocessing, feature 

extraction, and post-processing. By preprocessing, the 

acquired EMG signal is reconditioned for processing in real-

time application algorithms of prosthetic hand applications. 

Therefore, consecutive windowing of EMG signals in batches 

of data samples is adopted and a set of extracted features is 

evaluated. For each window, a set of features is computed to 

discern various movements. Subsequently, the classification 

stage takes charge of making decisions regarding movement 

predictions. This stage relies on the Feed Forward Back 

Propagation Neural Network (FFBPNN) classifier, 

specifically tailored for handling prediction tasks.  The output 

of these stages is the predicted motion of the prosthetic hand 

as illustrated in Fig. 7.  

 

 
 

   Fig. 7.  The proposed algorithm activity sequence 

-Signal Preprocessing: The EMG signal exhibits an 

amplitude range of (0-10 mV peak-to-peak), with a (0-500 

Hz) frequency, and a predominant power concentration 

within the 10 to 150 Hz frequency band. To enhance the 

signal's quality, the initial step involves subjecting the raw 

EMG signal to a band-pass filter ranging from 5 to 160 Hz. 

This filter effectively eliminates both unmarked signals and 

high-frequency noise, ensuring the purity of the data.   

-Features Extraction:  Time-domain (TD) features 

encompass energy-related attributes, demanding minimal 

computational resources. In contrast, frequency-domain (FD) 

features delve into the muscular activation power levels, 

necessitating a higher computational load. In real-time 

applications, computational load is a vital problem facing 

real-time activities. In order to overcome this problem, Xiao 

Feiyun [31] and Pengjie Qin [32] have used hardware circuits 

for real-time control of the upper-body exoskeleton. In this 

work, the DWT is adopted for feature extraction. 

-Classification: The classifier performs an in-depth 

analysis of the features in the EMG signals (gestures). The 

input vector to the FFBPNN classifier is a set of FD features 

derived by the DWT to a certain level. The NN is structured 

by; an input layer that has a connection to the network’s input 

vector, hidden layers that are fully connected with the 

adjacent layers, and the output layer that generates the 

classification scores for the seven motions (M1-M7) outlined 

in Table I.  The misclassification problem may arise when 

two or more classes have very close values. It can be fixed, 

based on Linear Discriminant Analysis (LDA) method can be 

employed to refine the feature vector and improve 

classification accuracy  [33, 34].  

 

 

 

V. SYSTEM EXPERIMENTATION AND TESTING 

 

This section dedicated to the testing, validation, and 

assessment of the algorithm. The primary parameters under 

evaluation are accuracy, response speed, and computational 

load, which are directly influenced by the degree of DWT, 

NN structure, and the number of hidden layers.  

In order to assess the performance of the NN classifier the 

data set is partitioned into approximately 70% for training set 

and 30% for test set of the total observations. The 

performance of the NN classifier is evaluated by computing 

the test classification error. The classification accuracy of the 

FFNN is visualized in (n * n) confusion matrix (CM) for 

training, testing, and validation. The CM is presented in a 

tabular form, in which the rows correspond to the n actual 

classes, and the columns correspond to n predicted classes. 

Within this matrix, a comparison is made between the six 

actual target values and those predicted by the NN model. 

This is a powerful concept that offers a concise summary of 

the model's performance, highlighting instances of 

misclassification and offering guidance for improvement. As 

an example, the CM when cd=3 is shown in Fig.8. 
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Fig. 8.   Confusion matrices for classification (cd=3) 

 

While the CM enables predictions for specific classes, it 

does not address the practical challenge of ranking different 

classes based on their performance to identify the best one. 

The CM can facilitate the calculation of various performance 

metrics, including the misclassification error, which 

quantifies the ratio of incorrectly classified instances to the 

total instances, and accuracy, determined by the ratio of 

correctly classified instances to the total measured instances 

[35, 36]. 

  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                      (5) 

 

Where the terminology: 

-TP (True Positive): Instances that are correctly classified 

as positive. 

-TN (True Negative): Instances that are correctly 

classified as negative. 

-FP (False Positive): Instances that are incorrectly 

classified as positive. 

-FN (False Negative): Instances that are incorrectly 

classified as negative. 

 

Additionally, there are other important metrics to consider, 

such as precision, recall, and specificity. Precision measures 

the ratio of correctly classified instances against the total 

predicted instances for a specific class. These metrics are 

expressed in formulas (6) and (7) respectively. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ( 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                               (6) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
𝑇𝑁

𝐹𝑁+𝑇𝑁
               (7) 

 

The recall, in classification measures the ratio of correctly 

classified instances to the total number of instances. False 

positive rate (specificity) is denoted as the ratio of instances 

incorrectly classified as positive to all negative instances. 

Similarly, positive recall and sensitivity refer to the same 

concept, which is the ability to correctly identify positive 

cases. The positive and negative recall is stated in formulas 

(8) and (9) respectively: 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑇𝑃

𝐹𝑁+𝑇𝑃
            (8) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
𝑇𝑁

𝐹𝑃+𝑇𝑁
            (9) 

 

The three metrics (accuracy, specificity, and precision ) are  

reasonable measures for the performance of the classifier. For 

evaluation, comprehensive measures employed, some of 

which trying to combine two complementary indicators into 

single metric, such as the F-measure, defined as the harmonic 

mean of the precision and recall indicators [37, 38]. Both 

misclassification error and accuracy serve as class-insensitive 

performance measures, basically presenting the same 

information. These performance metrics directly reflect how 

well the classifier identifies the true class correctly. 

Therefore, there is no need to use them simultaneously, as 

doing so would result in informational redundancy.  

Table II, illustrates the accuracy for different NNs, namely 

(PatternNet, FitNet, FFNet, and CascadeForwardNet) 

corresponding to the number of DWT levels:  3, 4, 5, 6, 7, and 

8 as well as the average of all 6 levels when implemented in 

parallel for each type of NN.  The input dataset is randomly 

divided into 70% for training (Tr), 30% for testing (Te), and 

validation (Va). The training process is limited to a maximum 

of 1000 epochs, employing the "Tansigmoid" training 

function and assessing performance using the "MSE" (Mean 

Squared Error) performance function to control the networks.  

 
TABLE II 

THE MEAN RECOGNITION ACCURACY (Ac) VALUE OF NNS 

CORRESPONDING TO DWT LEVELS (cd3- cd8). 

TrAc-training accuracy, VaAc-validation accuracy, TeAc-testing accuracy 

 

NN cd3  cd4 cd5 cd6 cd7 cd8 

P
a

tt
e
r
n

 

N
N

 TrAc 78.4 64.8 78.2 88.4 88.9 90.3 

VaAc 74.8 63.6 73.9 85.9 75.3 78.6 

TeAc 76.9 61.1 77.0 80.0 86.3 88.1 

F
it

 N
N

 TrAc 87.9 81.5 78.3 68.8 83.3 87.5 

VaAc 82.7 73.5 75.5 70.4 79.7 84.8 

TeAc 80.4 76.7 77.0 74.1 87.7 80.0 

F
F

N
N

 TrAc 86.9 91.7 88.0 90.8 91.2 90.8 

VaAc 83.1 84.4 83.1 83.0 86.3 76.2 

TeAc 81.9 84.4 82.4 82.2 84.9 90.5 

c
a

sc
a

d
e
 

F
N

N
 TrAc 68.2 60.9 64.3 70.4 91.8 90.3 

VaAc 64.4 60.1 68.2 64.4 93.7 78.6 

TeAc 60.8 62.3 60.5 70.4 82.6 81.0 

 

The DWT decomposition is evaluated with the maximum 

depth limited to 8 levels. To examine the significance of each 

level, we conducted many experiments by varying the 

number of levels and testing the resulting confusion matrices. 

The NN model we have adopted constructed of five hidden 

layers, and the number of neurons in each layer is fixed 

empirically by varying and tuning them. For L-level wavelet 

decomposition, the extracted features are obtained from F 

feature extraction functions and result in (L+1)×F features.  

The output layer of the network consists of 6 neurons, each 

one assigned to a unique class. In each layer of the NN, the 

activation function used is Tangent Sigmoid, with the 

exception of the final layer, which utilizes the Softmax 

function. A sample for the FFNN data classification 

performance is shown in Fig. 9. 

The assessment of (PatternNet, FitNet, FFNet, and 

CascadeForwardNet) performance is conducted by varying 
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the levels of DWT (3, 4, 5, 6, 7, and 8) and evaluating the 

mean squared error stopping criteria, which is a reliable 

metric of the accuracy, as demonstrated in Table III.   

 

 
 

Fig. 9.  The FFNN (8-28-64-32-16-8-6) performance in data 

classification. 

 
TABLE III 

THE NNS PERFORMANCE CORRESPONDINGS TO DWT (cd3- cd8) 

TrP-training performance, VaP-validation performance, 

       TeP-testing performance. 

NN 

DWT levels 

cd3 cd4 cd5 cd6 cd7 cd8 

P
at

te
rn

 N
N

 TrP 0.0554 0.0823 0.0563 0.0483 0.0323 0.0156 

VaP 0.0601 0.0835 0.0616 0.0571 0.0503 0.0252 

TeP 0.0582 0.0887 0.0565 0.0579 0.0347 0.0335 

Grad. 0.0525 0.0645 0.0553 0.127 0.0468 0.0484 

F
it

 N
N

 

TrP 0.038 0.0521 0.0618 0.0767 0.039 0.0123 

VaP 0.0507 0.0649 0.0659 0.0725 0.0514 0.0221 

TeP 0.0531 0.0645 0.0591 0.0743 0.0415 0.0406 

Grad. 0.0452 0.1210 0.1140 0.0600 0.0462 0.0146 

F
F

N
N

 

TrP 0.0411 0.0306 0.0393 0.0156 0.0332 0.0511 

VaP 0.0496 0.0491 0.053 0.0767 0.0364 0.0584 

TeP 0.0525 0.0456 0.0513 0.0687 0.0476 0.0497 

Grad. 0.0919 0.0593 0.0845 0.0465 0.1501 0.0062 

C
as

ca
d
e 

F
N

N
 

TrP 0.1093 0.1021 0.0976 0.0821 0.0339 0.0528 

VaP 0.0977 0.1032 0.1077 0.0973 0.0488 0.2145 

TeP 0.1093 0.1038 0.1091 0.0981 0.0787 0.1660 

Grad. 0.3400 0.2760 0.3390 0.7210 0.2840 0.0470 

 

Table IV contains the accuracy values obtained through 

testing EMG signals under specific conditions. In this test, the 

input data is distorted by a random noise on selected channel 

signals to simulate hardware errors and muscle dysfunction.  

The signals are deliberately contaminated using a random 

noise model that is adjusted to closely mimic real-world noise 

parameters, that characterized by the parameters; SNR 

(Signal-to-Noise Ratio) set at 45 dB, standard deviation (SD) 

equal to 5, and mean (µ) at 0.0. 

 

 

 

 

 

TABLE IV 

THE MEAN VALUE RECOGNITION ACCURACY (AC) FOR EMG 

SIGNALS CORRUPTED BY NOISE (SNR=45dB,  =5, µ=0.0). 

TrAc-training accuracy, VaAc-validation accuracy, TeAc-testing accuracy 

 

DWT Levels 

NN cd3  cd4 cd5 cd6 cd7 cd8 

P
a

tt
e
r 

N
N

 

TrAc 66.9 55.1 68.5 78.7 79.2 80.6 

VaAc 64.2 53.9 64.2 76.2 65.6 68.9 

TeAc 62.7 51.4 67.3 70.3 76.6 78.4 

F
it

 N
N

 TrAc 78.2 71.8 68.6 59.1 73.6 77.8 

VaAc 73.0 63.8 65.8 60.7 70.0 75.1 

TeAc 70.7 67.0 67.3 64.4 78.0 70.3 

F
F

N
N

 TrAc 77.2 82.0 78.3 81.1 81.5 81.1 

VaAc 73.4 74.7 73.4 73.3 76.6 66.5 

TeAc 72.2 74.7 72.7 72.5 75.2 80.8 

C
a

sc
a

d
e
 

F
N

N
 TrAc 58.5 51.2 54.6 60.7 82.1 80.6 

VaAc 54.7 50.4 58.5 54.7 84.0 68.9 

TeAc 51.1 52.6 50.8 60.7 72.9 71.3 

 

The mean performance accuracy for each type of neural 

network, with the highest values in terms of (Training 

Accuracy, Validation Accuracy, and Testing Accuracy) 

achieved by the FFNN is as illustrated in Fig.10-a.  
 

 
                                           (10-a) 
 

 
                                            (10-b) 
 

Fig. 10. The mean accuracy of (TrAc, VaAc, TeAc) for 

different NNs. (a) without noise, (b) when the EMG signal 

has additive noise; SNR=45 dB, SD =5, and µ=0.0. 
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By analyzing the results, it becomes evident that the neural 

network's performance has a direct impact on the overall 

performance of the recognition system. Even in the presence 

of noise in the EMG signal, the system still maintains a 

relatively high level of performance. Moreover, the FFNN 

consistently outperforms other neural networks, displaying 

superior mean accuracy values of (Training Accuracy = 

8.7%, Validation Accuracy = 4.17%, and Testing Accuracy = 

5.06%) compared to the nearest competitor in mean accuracy 

performance. This performance difference is clearly 

demonstrated in Fig. 10-b, which shows the accuracy using 

different NNs when the EMG signal is corrupted by additive 

noise characterized by; SNR = 45 dB, SD = 5, and µ = 0.0. 

 

VI.  DISCUSSION AND FUTURE WORK 

 

Based on the analysis of the results, it becomes evident that 

the filtering process plays a crucial role in noise reduction and 

eliminating redundant data.  Figures 3 and 4 underscore the 

significance of low-frequency components in EMG signal 

information, while also indicating that higher-frequency 

components carry minimal relevant information that may be 

safely disregarded. Consequently, a low-frequency bandpass 

filter was employed to select the informative signals. 

The utilization Confusion Matrix (CM) is an effective 

concept for assessing performance, as it involves comparing 

actual target value with predictions made by the machine 

learning model. Tables II and III demonstrate a direct 

correlation between classification accuracy and the number 

of DWT levels, showing a sensible improvement as the 

number of levels increases. The highest average accuracy of 

89.9% is achieved by training the FFNN. The performance of 

other neural networks is also presented in the aforementioned 

tables, where structural adjustments are explored and 

practically tested to enhance performance. 

In conclusion, it is imperative to make some notes about 

the limitations facing this work, and the proposed solutions 

for development. The first point is that the pattern recognition 

of the EMG data is adopted only in offline applications, thus 

the participants (both healthy and amputee subjects) are 

neither tested in real-time nor in a simulated environment. 

Functional testing is performed to check the usability, 

validity, and classification accuracy of a given hand 

movement or gesture. However, more extensive research on 

larger and more diverse datasets may yield even better 

performance results. A second point is, the algorithm 

primarily focused on single-hand movements, excluding 

wrist, arm, or finger movements (compound movements). 

This limitation could introduce confusion and interference 

between various movements, as well as considerations for 

limb position and forearm orientation.  One more point that 

may be an added value to the research, is expanding the 

number of cases (especially amputee persons) demonstrating 

the same functions. The results show that algorithm 

performance improves with a smaller set of movements and 

a larger pool of subjects.  

 

VII. CONCLUSIONS 

 

 This paper presents a comprehensive investigation into the 

utilization of surface electromyography (sEMG) signals for 

the precise identification of individual hand movements and 

dexterous prosthetic control.   This research also contributes 

to the development of real-time control mechanisms for 

prosthetic hands and electric-powered wheelchairs.  

Experimental results reported the crucial role of the discrete 

wavelet transform (DWT) in extracting features from EMG 

signals and subsequent motion recognition using neural 

networks (NNs). Specifically, the results underscore the 

efficacy of the system in accurately identifying various hand 

movements, with a remarkable maximum average accuracy 

of 89.9%.   

Practical analysis reveals that augmenting the components 

within low-frequency and high-frequency EMG signals does 

not yield a significant improve in the accuracy of identifying 

multiple classes. Instead, it emphasizes the importance of 

carefully selecting the cut-off frequency and sampling rate to 

ensure high classification accuracy, which directly impacting 

the performance of myoelectric prosthesis control.   A filter 

range of 5-160Hz looks to be an appropriate choice for EMG 

signals filtering in hand movement classification. The 

average classification performance depends on the number of 

DWT features incorporated. Augmenting additional number 

of DWT features generally enhances the classification rate, 

although there is a limited statistical change in accuracy when 

including features in higher DWT levels. 

The confusion matrix (CM) provides a direct measure of 

classification error, identifying instances where one type of 

gesture is confused with another gesture. Four different types 

of neural networks were employed and evaluated using the 

same datasets, exhibiting that the feedforward neural network 

(FFNN) has a superior performance in terms of accurate 

classification compared to other NNs. 

From a practical engineering standpoint, the design of 

prosthetic control architecture should prioritize simplicity to 

facilitate implementation. Therefore, the development of an 

efficient, low-encumbrance, gesture-based control system is 

imperative for optimizing the functionality of prosthetic 

devices. 
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