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Abstract—Blind image deconvolution has garnered significant
attention in the realm of image processing. Among existing blind
deconvolution models, the adaptive weighted total variation-
based model can better recover local image features. However,
this model may give rise to undesirable staircase effects. In
contrast, when considering non-blind deconvolution, a model
that uses adaptive Euler’s elastica (AEE) regularization can
reduce the appearance of staircase effects and better maintain
image local features. Inspired by the successful application of
the AEE regularization in non-blind deconvolution, we propose
an AEE model for blind image deconvolution. This novel model
can preserve image features in smooth regions and restore local
characteristics of the image. In addition, an efficient alternating
direction method of multipliers is designed to address this non-
convex model. Experimental results illustrate the superiority
of the proposed method compared with other related blind
deconvolution methods.

Index Terms—Blind deconvolution; Euler’s elastica regu-
larization; Adaptive weighted matrix; Alternating direction
method of multipliers (ADMM).

I. INTRODUCTION

DEGRADATION of image quality occurs during image
formation, transmission, and recording due to imper-

fections in the imaging system, transmission media, and
equipment. Mathematically, the process of image degradation
could be expressed as

f = k ∗ u+ n. (1)

In this equation, u stands for the original image, f denotes
the corrupted image, k represents the point spread function
(PSF), also known as the blur kernel, and n signifies additive
Gaussian noise. Depending on whether the blur kernel is
known during the degradation process, image deconvolution
techniques can be classified into two categories: non-blind
and blind deconvolution. Early work on image deconvo-
lution centered around non-blind deconvolution where the
blur kernel is known, and there has been much research
on non-blind deconvolution [1]–[6]. Nevertheless, in most
practical engineering applications, obtaining accurate infor-
mation about the blur kernel is often not feasible. As a
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result, blind deconvolution has received increasing attention
from researchers in recent years [7]–[9]. To address this
challenging problem, existing methods can be briefly divided
into two categories. The first method is based on the selection
of saliency edge [10]–[12], and the second is based on prior
information. [13]–[19]. It should be noted that the edge-
based approach does not apply to images with minimal
texture structure, such as the face images. If the image
edges are not selected appropriately, the accuracy of the blur
kernel estimation will be reduced, leading to unsuccessful
deconvolution results. Conversely, statistical priors for blur
kernels and real images have been widely explored in recent
years, such as heavy-tailed distribution of gradients [13],
L1 − L2 regularization prior [14], L0 prior [15], patch-based
prior [16], dark channel prior [17], low-rank prior [18], local
maximum gradient prior [19], etc.

As an effective prior, the total variation (TV) regularization
was first used by Chan et al. for blind image deconvolution
[20]. The corresponding minimization problem can be rep-
resented as

min
u,k

∥∇u∥1 + β∥∇k∥1 +
λ

2
∥k ∗ u− f∥22 , (2)

where the first and second terms are the regularization
terms of the clear image u and the blur kernel k, respec-
tively, and the last is a data fidelity term. ∇ stands for
the gradient operator, and β is a regularization parameter.
The anisotropic diffusion property of TV regularization can
be leveraged to handle image edges effectively. However,
solving the model is a challenging task due to its nonlinear
and non-differentiability nature. To deal with this problem,
various algorithms have been developed [21]–[23]. Addi-
tionally, although the traditional TV model does a good
job of preserving the image edges, it is not as effective in
dealing with local features of images. Therefore, in [24], a
blind deconvolution approach was introduced, using adaptive
weighted TV regularization (called AWTV-BD). Notably,
they combine the gradient operator of the image with an
adaptive weighted matrix. Specifically, the orientation of the
gradient operator is rotated due to the presence of this matrix
so that it tends to bigger weight and thus better describes
the local features in image. The AWTV-BD model can be
described as follows:

min
u,k

∥T∇u∥1 + β∥∇k∥1 +
λ

2
∥k ∗ u− f∥22, (3)

where T is the adaptive weighted matrix. Specific form is

T(i, j) =
[
t1(i, j) 0

0 t2(i, j)

]
=

[
1

1+ι|Gδ(i,j)∗∇xf(i,j)| 0

0 1
1+ι|Gδ(i,j)∗∇yf(i,j)|

]
.

(4)
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Here, Gδ(·) represents a Gaussian convolution kernel, ∇xf
and ∇yf refer to the horizontal and vertical gradients of
f , respectively, δ and ι serve as two adjustable parame-
ters. In recent years, adaptive techniques have experienced
widespread adoption in diverse image processing problems
[25]–[29].

Although the AWTV-BD model can effectively preserve
the local features of the image while maintaining the image
edges, the deconvoluted image tends to have staircase effects
in flat areas. In the last two decades, many higher-order mod-
els have been proposed to overcome the staircase effects and
better recover the image features in the smoothed regions.
[30]–[34]. Particularly, within the domain of non-blind image
deconvolution, Yang et al. [29] presented an adaptive Euler’s
elastica (AEE) model, which can be formulated as follows:

min
u

∑
i,j

g(κ(ui,j))|T∇ui,j |+
λ

2
∥u− f∥22. (5)

Here, g(κ(u)) is a specific function as

g(κ(u)) = 1 + α|κ(u)|, (6)

where κ(u) = ∇ ·
(

∇u
|∇u|

)
denotes the curvature of the level

curve u(x, y) = c. This model can achieve faster attenuation
of the high-frequency components of the image, reducing
the staircase effects and resulting in a more naturally restored
image. As the model is non-convex, the associated algorithm
converges to a locally optimal solution. Especially, when ι =
0, T(i, j) becomes the identity matrix. In this case, the model
(5) is related to Euler’s elastica model [35], [36].

Inspired by the successful application of the AEE regu-
larization in non-blind deconvolution, we extend its usage
to blind deconvolution of images. The main contributions of
this paper are threefold:

• A new blind image deconvolution model is proposed
based on an adaptive Euler’s elastica regularization. The
adaptive weighted matrix allows the model to handle the
local structures of the image better. To solve this non-
convex and non-smooth model, we propose an efficient
ADMM.

• Extensive experimental results concerning blind image
deconvolution have been furnished to showcase the
cutting-edge performance of the proposed method.

The rest of this paper is organized as follows. In section
2, we propose a novel model for blind image deconvolution
that utilizes an adaptive Euler’s elastica regularization. The
ADMM for solving the proposed model is presented in
Section 3. In Section 4, extensive experiments are conducted
to verify the efficiency of our approach compared with the
state-of-the-art methods. Finally, some conclusions are given
in Section 5.

II. THE PROPOSED MODEL

This section focuses on constructing a novel blind decon-
volution model for images. The TV-based blind deconvolu-
tion model (2) is isotropic due to the use of the same weight
for the sub-variables in the gradient operator. Therefore, it
cannot effectively deal with the local features of images. To
overcome this drawback, in [24], the authors proposed the
AWTV-BD model (3) for blind image deconvolution. This
model is able to spread along the tangential direction of

local features, recovering the local structure of the image
more effectively. Nevertheless, there are staircase effects in
the restored images using the AWTV-BD model. For non-
blind deconvolution, Yang et al. [29] proposed an AEE-based
model. Specifically, they used the curvature of the image
as a prior for the model, which can alleviate the staircase
effects to a certain extent and maintain the image features in
smooth regions. In addition, the adaptive weighted matrix can
enhance the preservation of local image features. Inspired by
the AEE regularization strategy, we propose a blind image
deconvolution model based on the AEE regularization:

min
u,k

∑
i,j

g(κ(ui,j))|T∇ui,j |+β∥∇k∥1+
λ

2
∥k∗u−f∥22. (7)

Here, the regularization parameters β and λ balance the data
fidelity and regularization terms. g(κ(u)) is defined as shown
in equation (6). It is worth noting that when α = 0, the model
reduces to the AWTV-BD model.

III. ALGORITHM

This section proposes an efficient ADMM [24], [34] for
obtaining optimal solutions to the above non-convex and non-
smooth optimization problem. First, we transform the pro-
posed model (7) into the following constrained optimization
problem.

min
u,k,p,q,w

∑
i,j

g(κ(ui,j))|qi,j |+ β∥w∥1 +
λ

2
∥k ∗ u− f∥22,

s.t. p = ∇u, q = Tp,w = ∇k.

(8)

Then, the augmented Lagrangian function of the constrained
optimization problem (8) is as follows:

L(k, u,p,q,w;λ1,λ2,λ3) =
∑
i,j

g(κ(un
i,j))|qi,j |

+ β∥w∥1 +
λ

2
∥Ku− f∥22 +

r1
2
∥p −∇u− λ1∥22

+
r2
2
∥q − Tp − λ2∥22 +

r3
2
∥w −∇k − λ3∥22,

(9)

where λ1, λ2, λ3 are three Lagrangian multipliers, and
r1, r2 and r3 are three penalty parameters. K denotes the
blurring matrix. In applying ADMM, we need to minimize
five subproblems with other variables fixed and update three
Lagrangian multipliers at each iteration, that is

kn+1 = argmin
k

L(k, un, pn, qn,wn;λn
1 ,λ

n
2 ,λ

n
3 ),

un+1 = argmin
u

L(kn+1, u, pn, qn,wn;λn
1 ,λ

n
2 ,λ

n
3 ),

pn+1 = argmin
p

L(kn+1, un+1, p, qn,wn;λn
1 ,λ

n
2 ,λ

n
3 ),

qn+1 = argmin
q

L(kn+1, un+1, pn+1, q,wn;λn
1 ,λ

n
2 ,λ

n
3 ),

wn+1 = argmin
w

L(kn+1, un+1, pn+1, qn+1,w;λn
1 ,λ

n
2 ,λ

n
3 ),

λn+1
1 = λn

1 +∇un+1 − pn+1,

λn+1
2 = λn

2 + Tpn+1 − qn+1,

λn+1
3 = λn

3 +∇kn+1 − wn+1.

(10)

The k-subproblem could be represented as

kn+1 = argmin
k

λ

2
∥Unk−f∥22+

r3
2
∥wn−∇k−λn

3∥22. (11)

Here, U refers to a block cycle matrix composed of the image
u. In this paper, the periodic boundary condition is assumed.
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Thus, we can obtain the solution by fast Fourier transform
(FFT) as

kn+1 = F−1

[
F
(
λ(Un)T f + r3∇T (wn − λn

3 )
)

F (λ(Un)TUn + r3∇T∇)

]
, (12)

in which F and F−1 respectively represent FFT and its
inverse transformation, and ∇T = −div signifies the adjoint
of ∇.

Similarly, the u-subproblem can be formulated as follows:

un+1 = argmin
u

λ

2
∥Kn+1u− f∥22 +

r1
2
∥pn −∇u− λn

1∥22.
(13)

By using the FFT again, we get

un+1 = F−1

[
F
(
λ(Kn+1)T f + r1∇T (pn − λn

1 )
)

F (λ(Kn+1)TKn+1 + r1∇T∇)

]
.

(14)
The p-subproblem can be articulated as

pn+1 = argmin
p

r1
2
∥p −∇un+1 − λn

1∥22

+
r2
2
∥qn − Tp − λn

2∥22.
(15)

According to its optimality condition, we derive the cor-
responding linear equation compiled as[

r1 + r2t
2
1 0

0 r1 + r2t
2
2

] [
pn+1
1

pn+1
2

]
=[

r1(∇xu
n+1 + λn

11) + r2t1(q
n
1 − λn

21)
r1(∇yu

n+1 + λn
12) + r2t2(q

n
2 − λn

22)

]
.

(16)

Thus, it is easy to get an explicit solution for p from equation
(16) as

pn+1
1 =

r1(∇xu
n+1 + λn

11) + r2t1(q
n
1 − λn

21)

r1 + r2t21
,

pn+1
2 =

r1(∇yu
n+1 + λn

12) + r2t2(q
n
2 − λn

22)

r1 + r2t22
.

(17)

The q-subproblem could be denoted as

qn+1 = argmin
q

∑
i,j

g(κ(un
i,j))|qi,j |

+
r2
2
∥q − Tpn+1 − λn

2∥22.
(18)

The soft-thresholding operator can provide a closed-form
solution for this subproblem.

qn+1
i,j = soft

(
(Tpn+1 + λn

2 )i,j ,
g(κ(un

i,j))

r2

)
= max(|(Tpn+1 + λn

2 )i,j | −
g(κ(un

i,j))

r2
, 0)

· sign((Tpn+1 + λn
2 )i,j).

(19)

The w-subproblem could be stated as

wn+1 = argmin
w

β∥w∥1 +
r3
2
∥w −∇kn+1 − λn

3∥22. (20)

In the same way, the solution to the w-subproblem can be
given by the soft-thresholding operator

wn+1
i,j = soft

(
(∇kn+1 + λn

3 )i,j ,
β

r3

)
. (21)

It is essential to mention that the solution (u, k) generated by
the proposed model may not be unique. Therefore, to obtain

the unique reasonable solution, we need to impose certain
constraints on k and u. As with the previous approaches
[21], [24], the image intensities are of nonnegativity, and the
estimated PSF is normalized. Specifically,∫

kn(x, y)dxdy = 1, (22)

and

un(x, y) =

{
un(x, y), un(x, y) ≥ 0,

0, else.
(23)

In particular, since the size of the support domain of the
true PSF is unknown, we set the initial PSF size to be larger
than the true PSF size and take the components outside the
true PSF support domain as 0. There is bound to be some
noise in the estimated PSF that affects the final deconvolution
result. Therefore, we exploit dynamic threshold constraints
during the iterative process to improve the PSF. Specifically,
we utilize

kn(x, y) =

{
kn(x, y), kn(x, y) ≥ ξmax(kn),

0, else.
(24)

Here, we denote the maximum value of the nth estimated
PSF by max(kn). ξ > 0 is a minor number, and we
experimentally set Xi=0.05.

Algorithm 3.1 summarizes the entire solution process for
the presented model.

Algorithm 3.1 ADMM to solve the problem (7)
1. Input and initialize: u0 = f,p0 = λ0

1 = q0 = λ0
2 = w0 =

λ0
3 = 0. Let n := 0.

2. kn+1 = argmin
k

λ
2 ∥U

nk − f∥22 + r3
2 ∥wn −∇k − λn

3∥22,
3. Impose constraints on k.
4. un+1 = argmin

u

λ
2 ∥K

n+1u− f∥22+ r1
2 ∥pn−∇u−λn

1∥22.
5. Impose constraints on u.
6. Calculating pn+1 through (17).
7. Calculating qn+1 through (19).
8. Calculating wn+1 through (21).
9. Update λn+1

1 , λn+1
2 and λn+1

3

10. If the stopping condition is met, then stop. If not, increase
n by one and proceed to Step 2.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct experiments on natural and
synthetic images and give related results for comparison with
the EP-L0RG model [37] and the AWTV-BD model [24].
Meanwhile, we refer to the newly proposed model as AEE-
BD for simplicity of presentation. The experimental results
demonstrate the validity and superiority of our proposed
AEE-BD model.

All numerical experiments are performed in the MATLAB
environment on a PC with a 2.50 GHz Intel(R) Core(TM)
i5-12500 CPU and 16GB RAM. We scale the pixel values of
all images to the interval [0,1]. To evaluate the quality of the
blind deconvolution results, quantitatively, the performance
of the algorithms is evaluated using three qualitative metrics,
peak-signal-to-noise ratio (PSNR), improved signal-to-noise
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ratio (ISNR), and structural similarity (SSIM). The specific
definition of PSNR is

PSNR = 10 log10
12

1
MN

∑M
i=1

∑N
j=1(ui,j − Ii,j)2

, (25)

where I represents the original clear image and u stands for
the recovered image. N and M denote the width and length
of the image, respectively. The ISNR is defined as

ISNR = 10 log10
∥f − I∥22
∥u− I∥22

, (26)

where f is the degraded image. The definition of SSIM is
as follows:

SSIM =
(2µIµu + c1)(2σIu + c2)

(µI
2 + µu

2 + c1)(σI
2 + σu

2 + c2)
, (27)

where µI and µu respectively stand for the mean values
of images I and u. The standard deviations of images I
and u are denoted by σI and σu, respectively, and their
covariance is σIu. The constants c1 > 0 and c2 > 0 are
employed to prevent extremely small denominator values. In
general, enhanced values of PSNR, ISNR, and SSIM mean
an improved quality for the recovered image. An expression
for the relative error of un is given below:

R(un) =
∥ un − un−1 ∥2

∥ un−1 ∥2
. (28)

When R(un) < 10−4 or 500 iterations, the iteration termi-
nates.

(a) Satellite (b) Peppers

(c) Geometric (d) Dot
Fig. 1. Test images.

Fig. 1 shows the Satellite (256 × 256), Peppers (256 ×
256), Geometric (120 × 120), and Dot (256 × 256) as the
four images tested in our experiments. We util the ”fspecial”
command in MATLAB to add different types of blur kernels
to the image. Two types of blur kernels are shown in Fig. 2,
linear motion blur with a length of 8 pixels and an orientation
of 45 degrees and Gaussian blur with a size of 7x7 pixels
and a variance of 25. And the size of the PSF is set to 101
× 101 pixels. Additionally, the Gaussian noise is added to
the blurry image.

(a) linear motion (b) Gaussian
Fig. 2. Blur kernels for image degradation.

In our proposed model, there are a total of five parameters,
namely λ, β, α, ι, and δ. In general, the result of blind
image deconvolution mainly depends on the regularization
parameters λ, β, α, the values of which affect the balance
between the regularization and fidelity terms. Taking too little
value for λ will result in an overly smooth recovered image
with lost image detail. In contrast, when λ is set to a large
value, there will be noise residue, resulting in a non-smooth
recovered image. Therefore, the value of λ should be chosen
according to the structure of the image and the degree of
degradation. In our experiments, the range of λ value is set
to [3 × 102, 1.5 × 104]. In particular, the optimal value of
λ becomes smaller as the noise level rises. β represents the
regularization parameter for k, influencing the extent of the
PSF expansion. When large deviations in the PSF occur, it
indicates that the value of k was obtained too large. Instead,
if the estimated support domain of the PSF was partially
extended, it suggests that the value of k was obtained too
small. Hence, we assign β ∈ [1 × 10−2, 1 × 104]. The
parameter α > 0 is to balance the curvature and surface area.
To obtain satisfactory results for the blind deconvolution of
images, it is essential to choose the optimal values for the
three parameters mentioned above.

ι and δ are the parameters of the adaptive weighted matrix.
Specifically, ι is used to control local adaptation, and δ is the
standard deviation, which can be selected according to [25].
r1, r2, and r3 are three penalty parameters that affect the
convergence speed and stability of the algorithm. According
to equation (17), (19), (21), they control the updating of p,
q, w. Based on previous experience, we set r1 ∈ [1, 2×103],
r2 ∈ [1× 10−1, 1.2× 103], and r3 to be multiples of 5.

The two different blur kernels from Fig. 2 are respectively
added to all the test images in Fig. 1, and the resulting blurred
images are contaminated with additive Gaussian noise with a
standard variance of 0.005. Especially, the numerical results
of the blind deconvolution at low noise level 0.005 are given
in Table I. It’s evident that our approach consistently yields
the highest PSNR values, and in the majority of cases, it also
attains the highest SSIM values. It can also be seen that AEE-
BD improves higher values in dealing with linear motion
blur than with Gaussian blur compared to other methods.
Therefore, AEE-BD is more suitable for removing linear
motion blur.

The results of the different blind deconvolution methods
on the two synthetic images are exhibited in Figs. 3 and 4,
respectively. Specifically, each figure shows the recovered
image, the recovered blur kernel, and the residual image
f − u. As can be seen from Fig. 3, the recovered image of
EP-L0RG loses a lot of details in the edge part compared to
the original image. Since both AWTV-BD and AEE-BD use
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TABLE I Blind deconvolution numerical results in Gaussian noise
of 0.005 standardized variance.

Image Blur type Method PSNR ISNR SSIM
Satellite linear motion EP-L0RG 31.97 6.05 0.953

AWTV-BD 33.26 7.54 0.956
AEE-BD 33.71 7.78 0.958

Gaussian EP-L0RG 28.85 4.66 0.896
AWTV-BD 30.23 6.04 0.913
AEE-BD 30.45 6.26 0.922

Peppers linear motion EP-L0RG 27.45 4.07 0.896
AWTV-BD 31.42 7.97 0.917
AEE-BD 31.70 8.25 0.919

Gaussian EP-L0RG 26.33 3.85 0.820
AWTV-BD 31.00 8.52 0.898
AEE-BD 31.12 8.64 0.899

Geometric linear motion EP-L0RG 32.90 5.59 0.941
AWTV-BD 37.82 10.51 0.976
AEE-BD 38.10 10.79 0.976

Gaussian EP-L0RG 32.10 6.05 0.864
AWTV-BD 39.32 13.27 0.971
AEE-BD 39.50 13.45 0.972

Dot linear motion EP-L0RG 27.58 11.22 0.953
AWTV-BD 28.75 12.39 0.970
AEE-BD 28.97 12.60 0.971

Gaussian EP-L0RG 26.88 11.62 0.954
AWTV-BD 27.84 12.58 0.970
AEE-BD 28.00 12.74 0.971

an adaptive weighted matrix, the localized regions recovered
are more natural, especially the upper right spherical part of
the Geometric image. From the residual images in Fig. 3,
we observe that AEE-BD removes more noise and retains
more image texture structure compared to AWTV-BD. This
is owing to the fact that it is a higher-order model based
on curvature information. From the recovered images in
Fig. 4, it is clear that the results obtained by EP-L0RG are
very unsatisfactory, while the difference between the other
two methods is not significant. Fortunately, the blur kernels
restored by AEE-BD are closer to the original blur kernels
compared to the results of AWTV-BD.

To further demonstrate the effectiveness of AEE-BD in
blind image deconvolution, we give numerical and visual
experimental results for adding 0.01 of high noise to blurred
images. It’s important to emphasize that the blur kernels
applied to these test images are consistent with those used
in the previous experiments. Table II displays the related
numerical of results for the four test images obtained by
the different methods. It reveals that AEE-BD continues to
obtain the highest PSNR, ISNR, and SSIM values.

Figs. 5 and 6 show the recovered images, recovered blur
kernels, and the locally enlarged images for the Satellite and
Peppers images at a high noise level of 0.01, respectively.
The enlarged images in Fig. 5 show that for each type of blur,
the recovered image of EP-L0RG is too smooth, resulting in
the loss of many details. Furthermore, the recovered blur
kernel is very different when compared to original kernel.
In contrast, the blur kernel acquired from AEE-BD closely
resembles the original kernel and has a better corrective
effect. Meanwhile, it can be seen from the recovered images
that the AEE-BD blind deconvolution results are better than
the other two methods, especially since the black dot above
the satellite body is closer to the clear image. From the

(a) EP-L0RG (b) AWTV-BD (c) AEE-BD

Fig. 3. Blind deconvolution outcomes of different approaches for
geometric images with the noise level of 0.005: linear motion blur
(row 1, 2) and Gaussian blur (row 3, 4).

(a) EP-L0RG (b) AWTV-BD (c) AEE-BD

Fig. 4. Blind deconvolution outcomes of different approaches for
Dot images with the noise level of 0.005: linear motion blur (row
1, 2) and Gaussian blur (row 3, 4).
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(a) linear mo-
tion

(b) EP-L0RG (c) AWTV-BD (d) AEE-BD

(e) Gaussian (f) EP-L0RG (g) AWTV-BD (h) AEE-BD

Fig. 5. Results of blind deconvolution from different methods for
Satellite image at a noise level 0.01.

(a) linear mo-
tion

(b) EP-L0RG (c) AWTV-BD (d) AEE-BD

(e) Gaussian (f) EP-L0RG (g) AWTV-BD (h) AEE-BD

Fig. 6. Results of blind deconvolution from different methods for
Peppers image at a noise level 0.01.

TABLE II Blind deconvolution numerical results in Gaussian noise
of 0.01 standardized variance.

Image Blur type Method PSNR ISNR SSIM
Satellite linear motion EP-L0RG 30.72 4.91 0.935

AWTV-BD 30.91 5.11 0.940
AEE-BD 31.26 5.45 0.953

Gaussian EP-L0RG 27.47 3.37 0.852
AWTV-BD 28.82 4.82 0.900
AEE-BD 29.03 4.93 0.899

Peppers linear motion EP-L0RG 26.84 3.46 0.879
AWTV-BD 29.11 5.73 0.892
AEE-BD 29.35 5.97 0.893

Gaussian EP-L0RG 25.27 2.85 0.795
AWTV-BD 29.31 6.89 0.862
AEE-BD 29.47 7.05 0.867

Geometric linear motion EP-L0RG 33.46 4.30 0.959
AWTV-BD 37.03 9.89 0.969
AEE-BD 37.21 10.05 0.969

Gaussian EP-L0RG 31.43 5.47 0.861
AWTV-BD 37.97 12.00 0.958
AEE-BD 38.19 12.23 0.960

Dot linear motion EP-L0RG 25.73 9.38 0.912
AWTV-BD 25.91 9.56 0.918
AEE-BD 26.16 9.81 0.929

Gaussian EP-L0RG 26.27 11.02 0.917
AWTV-BD 26.49 11.25 0.954
AEE-BD 26.89 11.65 0.956

enlarged images of Peppers in Fig. 6, we easily see that
AWTV-BD and AEE-BD outperform EP-L0RG in preserving
the image edges and local structure information, due to the
fact that both of them employ the adaptive weighted matrix.
However, AWTV-BD produces significant staircase effects
in the smooth regions. With the application of curvature
information, images restored by AEE-BD are more natural
in flat regions.

V. CONCLUSION

In this paper, we proposed a blind deconvolution model
that utilizes the adaptive Euler’s elastica regularization. Fur-
thermore, we designed an efficient ADMM in this work,
where the proposed model was split into several subprob-
lems, each with a closed-form solution. The proposed model
effectively restores the local features of the image while
mitigating the presence of staircase effects, thereby achieving
the desired deconvolution effect. Numerical experiments on
both natural and synthetic images were conducted under
two types of blur and two noise levels, showing that our
method performs better than the previous two approaches.
In the future, we will apply the presented adaptive technique
to blind deconvolution of Poisson images. In addition, we
will explore some acceleration technologies to reduce the
computational cost.
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