
 

 

Abstract—Determining the shortest path on a network is 

widely used for improving network performance. In fact, not 

all network can be generated with a single parameter and are 

simple graphs. Many networks contain multiple parameters 

and are not simple graphs (multigraphs). The shortest path in 

a multigraph is determined by removing the most weight 

before calculating with the algorithm. Eliminations on 

different parameters leads to in various shortest paths, hence 

an optimal path cannot be found in the multigraph. 

Multigraphs are built in this research using interval-valued 

intuitionistic fuzzy numbers, which are a combination of 

multiple parameters. The Floyd-warshall algorithm was 

modified to create an algorithm that may be applied on 

interval-valued intuitionistic fuzzy multigraphs. The optimum 

path for a transportation network made of various parameters 

in the form of a multigraph was determined as an experiment 

using an interval-valued intuitionistic fuzzy number approach. 

The improved Floyd-warshall algorithm generates an optimal 

path on the transportation network under consideration. 

 

Index Terms—optimal path, multiple parameters, Floyd-

warshall modification, multigraphs, fuzzy intuitionistic 

number, interval value. 

 

I. INTRODUCTION 

Multigraph is a non-simple graph with multiple edges 

connecting two vertices that share a common edge. 

Even though it connects the same two points, the weight of 

each edge varies depending on the parameters applied. 

Numerous studies [1] – [4] have also used multigraphs to 

construct network systems due to the realism of multigraphs 

as system representations. Multiple edges are not permitted 

in the shortest path problem because the edges must have 

the minimum weight. As a result, prior to using a particular 

procedure, the side with the greatest weight must be 

eliminated. This transforms the multigraph into simple 

graph, eliminating the opportunity for multiple edges to be 

chosen as the solution to the shortest path problem. 

 

The shortest path problem entails determining the path 

with the lowest weight. The edges weight is important 
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because it is the only indicator that depicts the systems. In a 

transportation network system, for example, we can 

minimize time, cost, distance, or various other factors to get 

through the shortest route. One of the challenges that arises 

with multigraphs is the use of a single parameter to 

organize edge weights. There are several methods for 

determining the shortest path in multigraphs, as earlier 

researchers have proved [5] – [7]. 

According to [8] a multigraph with three parameters will 

turn into three simple graphs depending on the parameters 

used. The three shortest paths that do not overlap will be 

determined after solving each graph. The ideal solution for 

this problem's shortest path to resolution cannot be 

determined 

In this study, edge weights were created by combining 

several parameter values with the desired proportions. The 

intuitionistic fuzzy number (IFN) approach is used to 

combine those several parameters. Because it comprises of 

degrees of membership and degrees of non-membership, 

IFN is a broad sort of fuzzy number that can be used to 

characterize data ambiguity and uncertainty. IFN has seen 

extensive use in graph optimize issues [9] – [12]. The 

multigraphs of IFN are known as intuitionistic fuzzy 

multigraphs (IFM). 

The shortest path problem becomes an optimal path 

problem due to the existence of numerous parameters. In 

contrast to [8], this study will use a linear approach of 

membership and non-membership functions. A modified 

Floyd-warshall algorithms will be used to determine the 

optimal path in this research. Using case studies of 

transportation network challenges, the best solution is 

obtained by determining the minimum values for three 

parameters: road length, travel costs, and travel time. 

II. METHODS 

A. Intuitionistic Fuzzy Multigraph (IFM) 

Definition 2.1. [13] An intuitionistic fuzzy set is a fuzzy 

set A in the space E so that 

     , ,
A A

A x x x x E    

where    : 0,1 , : 0,1
A A

E E    in which  
A

x is 

the membership function that show the possibility x  

belongs to set A  and  
A

x  is the non-membership 

function that show the possibility x  does not belongs to set 

A , also 

   0 1
A A

x x    . 
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Here the pair value     ,
A A

x x   is called intuitionistic 

fuzzy number (IFN) of elements x in set A . 

A graph that contains IFN is called intuitionistic fuzzy 

graph (IFG). The IFG as definition 2.2, can be contain at 

least one vertex (as common definition of vertices set of 

common graphs) without any edges.   

Definition 2.2. [14] An IFG is of the form ,G V E  

where 

i.  
1 2
, , ,

n
V v v v  such that  

1
: 0,1V   and 

 
1

: 0,1v V    denote the degree of membership and 

non-membership of the element 
i

V  , respectively, and 

   
1 1

0 1,
i i

v v     

For every  , 1, 2, ,
i

V i n   , 

ii. E V V  where  
2

: 0,1V V    and 

 
2

: 0,1V V    are such that 

      2 1 1
, min , ,

i j i j
v v v v    

      2 1 1
, max , ,

i j i j
v v v v    

and    2 2
0 , , 1

i j i j
v v v v     

for every    , , , 1, 2, ,
i j

v v E i j n  . 

 

Here we can say that the 

triple    
1 1

, ,
i i i

v v v  denotes the degree of membership 

and non-membership of vertex .
i

v  The triple 

   2 2
, ,

ij ij ij
e e e   denotes the degree of membership 

and non-membership of the edge relation  ,
ij i j

e v v  on 

V . For the next discussion we will use edge weight as 

   2 2
, ,

ij ij ij
e e e  . 

To find an optimal path in IFG we must have the 

definition of path and how to find the length of the optimal 

path. In IFG a path is define as below. 

Definition 2.3. [14] A path P  in an IFG is a sequence of 

distinct vertices 
1 2
, , ,

n
v v v  such that either one of the 

following conditions is satisfied: 

i.    2 2
0 and 0

ij ij
e e    for some i and j, 

ii.    2 2
0 and 0

ij ij
e e   for some i and j, 

iii.    2 2
0 and 0

ij ij
e e   for some i and j, 

 , 1, 2, ,i j n . 

The length of a path  
1 2 1

0
n

P v v v n


  is n. 

To obtain IFN as a graph weight, the parameter values 

must be converted into fuzzy values using the appropriate 

method. Numerous triangular and trapezoidal approaches 

were utilized by previous researchers to determine fuzzy 

numbers [15] – [17]. We will use linear approach to 

determine intuitionistic fuzzy number as an easy illustration 

here. 

A multigraph is a graph with numerous edges. The term 

"double edged" refers to the presence of at least two 

identical points connected by more than one edge. The 

presence of numerous sides in a multigraph suggests that 

the network established contains a large number of 

relationships. 

Intuitionistic fuzzy multigraph (IFM) indicates that the 

graph is complex and has IFN weight. As shown in Figure 

1, a multigraph in this paper define as 

Definition 2.4. [18] let  , ,G V E r  be a graph in which 

 , 1, 2,3, ,
i

V v i n  and 

  , , 1, 2,3,..., , 1
i j r

E v v i j n r     

A multigraph is a graph in which there can be more than 

one relationship (connection) between two adjacent 

vertices, i.e., it is a graph for which 1r  . 
 

B. Combination Function in Intuitionistic Fuzzy Set 

 Definition 2.5. [13] An IVIFS (interval-valued 

intuitionistic fuzzy sets) A over E is defined as an object of 

the form: 

     , ,
A A

A x M x N x x E   

where        0,1 and 0,1
A A

M x N x   are intervals, 

and for all ,x E  

   sup sup 1.
A A

M x N x   

To combine the tree parameter value that will be used in 

IFM, we will use weight function as mention in Definition 

2.6 below. Let  , 0,1   , the constant value ,   show 

the different proportional of the decision maker use to find 

the optimal path of IFM. 

Definition 2.6. [13] given an IFS A we define the 

operator        
,

, ,
A A

G A x x x x E
 

       . 

Then for IVIFS, the definition become 

 
    

    
,

, , ,

,

L U

A A

L U

A A

x M x M x
G A x E

N x N x
 






 



      
 
    

. 

To make the definition fits weighted function in discrete 

event, we need to make sure that    so that every 

interval value in membership degree and non-membership 

degree have equal coefficient value. The coefficient value in 

every IVIFS show the influence of the parameter to the 

decision to be taken. Then we will have theorem 2.7 below. 
 

 

 
Fig. 1.  Multigraph of Transportation Network. 
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Theorem 2.7. If 

  
    

    
,

, , ,

,

L U

A A

L U

A A

x M x M x
G A x E

N x N x
 






 



      
 
    

 

for every  , 0,1 and      then    
,

.G A A
 

 . 

Proof. We will define  ,G A   as  ,
G A

 
 and focused 

on the IVIFN. 

 

         

         

         

,

, , ,

, , ,

, , ,

L U L U

A A A A

L U L U

A A A A

L U L U

A A A A

G A

M x M x N x N x

M x M x N x N x

M x M x N x N x
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Several IFNs can be arranged based on theorem 2.7, 

which is a mapping from parameters to weighting 

functions, namely  

         

         

         

1 1 1 1

2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

, , ,

, , ,

, , ,
n n n n

L U L U

A A A A

L U L U

A A A A

L U L U

n n n A n A n A n A

A M x M x N x N x

A M x M x N x N x

A M x M x N x N x

    

    

    







      

      

      

 

 

Theorem 2.8. For every  
1 2
, , , 0,1

n
    , weighting 

functions [19]  n n n

n

f A A


  is an IVIFN if and only 

if 
1 2

1.
n

       

 

Proof.  

1.   
i

f A x  is an IVIFN 
1 2

1.
n

       

           , , ,
L U L Un n n n nM M N N

f A f A f A f A f A , 

where     ,
L

n

L

n n AM

n

f A M x


     ,
U

n

U

n n AM

n

f A M x




    ,
L

n

L

n n AN

n

f A N x


  dan    U
n

U

n n AN

n

f A N x


 . 

As mention in definition 2.1, the equals of interval-valued 

membership and non-membership degree have to less than 

1, then     1
U Un nM N

f A f A  . 

       U U
n n

U U

n n n A n AM N
n n

f A f A M x N x 
 

     

     

     

1 2

1 2

1 2

1 2

n

n

U U U
nA A A

U U U
nA A A

M x M x M x

N x N x N x

  

  

 
 
 

 
 
 

   

   

 

         

    

         

    

1 1 2 2

1 1 2 2

1 1 2 2

1 2

n n

n n

U U U U

A A A A

U U

n A n A

U U U U

A A A A

U U

n A A

M x N x M x N x

M x N x

M x N x M x N x

M x N x

   

 

 



    

 

    

 

 

Since    
1 1

1
U U

A A
M x N x   then 

1 2
1.

n
       

 

2. 
1 2

1
n

         
i

f A x  is an IVIFN. 

Based on definition 5.4,   
i

f A x  can be write as 

    

       

         

         

         

         

1 2 1

1 1 1 1

2 2 2 2

1 1 1 1

1 2 1

1 1 1 1

2 2 2 2

1 1 1 1

.

, , ,

, , ,

, , ,

, , , .

i

n n

n n n n

n n n n

i i

i

n n

L U L U

A A A A

L U L U

A A A A

L U L U

n A n A n A n A

L U L U

n A n A n A n A

f A x G A x

G A x G A x G A x G A x

x x x x

x x x x

x x x x

x x x x



   

       

       

       

       



   





   



    

 

 





  

        

        

        

        

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

,

,

,

.

n n
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n n

n n

i

L L L L

A A n A n A

U U U U

A A n A n A

L L L L

A A n A n A
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A A n A n A

f A x

x x x x
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Theorem 2.8 proved.  

TABLE I 

THE IVIFN OF EACH EDGE IN MULTIGRAPH 

Edge Parameter 1 Parameter 2 Parameter 3 
Combine 

parameter 

e1(1,2) (0.778,0.878), 

(0.022,0.122) 

(0.769,0.869), 

(0.030,0.130) 

(0.8,0.9), 

(0,0.1) 

 (0.782,0.882), 

 (0.018,0.118) 

e2(1,2) (0.8,0.9), 

(0,0.1) 

 (0.8,0.9), 

(0,0.1) 

(0.604,0.704), 

(0.196,0.296) 

 (0.735,0.835), 

 (0.065,0.165) 

e1(1,3) (0.425,0.525), 

(0.375,0.452) 

(0.567,0.667), 

(0.233,0.333) 

(0.465,0.565), 

(0.335,0.435) 

 (0.486,0.586), 

 (0.314,0.406) 

e2(1,3) (0.630,0.730), 

(0.169,0.269) 

(0.527,0.627), 

(0.273,0.373) 

(0.588,0.688), 

(0.212,0.312) 

 (0.582,0.682), 

 (0.218,0.318) 

e(1,4) (0.114,0.214), 

(0.686,0.786) 

(0,0.1), 

(0.8,0.9) 

(0,0.1), 

(0.8,0.9) 

 (0.038,0.138), 

 (0.762,0.862) 

e(3,4) (0.468,0.568),  

(0.332,0.432) 

(0.365,0.465), 

(0.435,0.535) 

(0.4,0.5), 

(0.4,0.5) 

 (0.411,0.511), 

 (0.389,0.489) 

e1(2,5) (0.575,0.675), 

(0.225,0.325) 

(0.653,0.753), 

(0.147,0.247) 

(0.604,0.704), 

(0.196,0.296) 

 (0.611,0.711), 

 (0.189,0.289) 

e2(2,5) (0.722,0.822), 

(0.078,0.178) 

(0.759,0.859), 

(0.041,0.141) 

(0.465,0.565), 

(0.335,0.435) 

 (0.649,0.749), 

 (0.151,0.251) 

e1(5,6) (0.772,0.872), 

(0.028,0.128) 

(0.769,0.869), 

(0.030,0.130) 

(0.792,0.892), 

(0.008,0.108) 

 (0.778,0.878), 

 (0.022,0.122) 

e2(5,6) (0.657,0.757), 

(0.143,0.243) 

(0.724,0.824), 

(0.076,0.176) 

(0.653,0.753), 

(0.147,0.247) 

 (0.678,0.778), 

 (0.122,0.222) 

e1(6,4) (0.495,0.595), 

(0.305,0.405) 

(0.608,0.708), 

(0.192,0.292) 

(0.531,0.631), 

(0.269,0.369) 

 (0.544,0.644), 

 (0.256,0.356) 

e2(6,4) (0.604,0.704), 

(0.196,0.296) 

(0.698,0.798), 

(0.101,0.201) 

(0.408,0.508), 

(0.392,0.492) 

 (0.570,0.670), 

 (0.230,0.330) 

e1(6,7) (0.674,0.774), 

(0.126,0.226) 

(0.709,0.809), 

(0.091,0.191) 

(0.702,0.802), 

(0.098,0.198) 

 (0.695,0.795), 

 (0.105,0.205) 

e2(6,7) (0.738,0.837), 

(0.062,0.162) 

(0.765,0.865), 

(0.035,0.135) 

(0.604,0.704), 

(0.196,0.296) 

 (0.702,0.802), 

 (0.098,0.198) 

e(4,7) (0.663,0.763), 

(0.137,0.237) 

(0.562,0.662), 

(0.238,0.338) 

(0.620,0.720), 

(0.179,0.279) 

 (0.615,0.715), 

 (0.185,0.285) 

e1(7,8) (0.632,0.732), 

(0.168,0.268) 

(0.683,0.783), 

(0.116,0.216) 

(0.661,0.761), 

(0.139,0.239) 

 (0.659,0.759), 

 (0.141,0.241) 

e2(7,8) (0.666,0.766), 

(0.134,0.234) 

(0.729,0.829), 

(0.071,0.171) 

(0.490,0.590), 

(0.310,0.410) 

 (0.628,0.728), 

 (0.172,0.272) 

e(8,9) (0.568,0,668), 

(0.232,0.332) 

(0.648,0.748), 

(0.152,0.252) 

(0.596,0.696), 

(0.204,0.304) 

 (0.604,0.704), 

 (0.196,0.296) 

e(4,9) (0,0.1), 

(0.8,0.9) 

(0.318,0.418), 

(0.481,0.581) 

(0.073,0.173), 

(0.727,0.827) 

 (0.131,0.231), 

 (0.669,0.769) 
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C. Modified Floyd-warshall Algorithms 

Floyd-warshall is a dynamic programming algorithm 

used to determine the shortest path for all paths in a graph. 

This algorithm's weakness is that it is slower than other 

algorithms. The primary advantage, however, is that this 

algorithm can determine the shortest path among all 

existing paths in a single calculation. This advantage can 

provide decision-makers with more options. 

This study modifies Floyd-warshall algorithm (FWA) by 

employing the IFN operator and side weights in the form of 

IFN and norms, which serve as decision-making indicators 

for determining the optimal path. The steps for FWA 

modification are as follows: 

1. The initial step in iteration 1 should be an evaluation of 

the edge with the greater weight. As a result, iteration 

1 will concentrate on eliminating multiple edges with 

provisions based on the goal of establishing the shortest 

path. As a result, the FWA must have explicit edge 

removal criteria or indicators. 

2. Because the Floyd-Warshall method has an advantage, 

namely the evaluation of a path that connects the same 

two sites, but also because it prolongs the execution 

time, the evaluation of the path, known as the triangle 

operator, must be performed in the second iteration. 

This procedure is employed to save time during 

execution and to avoid edges with greater weights. If 

iteration 1 provides a simple graph from a multigraph, 

iteration 2 provides an optimal simple graph. 

3. The results of identifying paths that connect the same a 

pair in the second iteration may be repeated for 

multiple iterations after that, such that the path 

assessment continues until the last iteration. The 

distinction is that there is no edge elimination after the 

third iteration since the optimal simple graph produced 

in the second iteration. 

4. The FWA set up for the weight and path matrices can 

be altered to calculate the path length. The third 

iteration will begin by collecting all optimal pathways 

with three points, the fourth iteration with four points, 

and so on until the destination point is reached. By 

analysing the path in iteration 2, the path produced in 

the following iteration leads to the most optimal path 

indirectly. 

5. The iteration comes to an end when the destination 

point is reached. 

 

Furthermore, prior to the completion of IVIFM, the 

following actions are taken: 

1. The function value is used to evaluate the multiple 

edges and path. The shortest path chooses the path 

with the highest value function. Because the value 

function is related to the degree of membership, the 

larger the value function, more probable it is that 

that path will be chosen as the shortest path. 

2. Intuitionistic fuzzy numbers are formed with interval 

values as edges weights    , , ,a b c d  in such a 

way that the value function is 

   1 1

2

a a a c b b b d
value function

      
  

3. The path weights are calculated by adding at least 

two edges weights 

( , ) ( , )i j e i k e k j    

for    
1 1 1 1

( , ) , , ,e i k a b c d  and 

   
2 2 2 2

( , ) , , ,e k j a b c d  then 

 
       1 2 1 21 2 1 2

2 2 2 2
, , ,

b b d da a c c
e i j

     
     

   
, 

4. Iteration calculations are performed in the same as in 

a normal graph, ensuring that each path weight 

obtained meets the requirements. 

 

This modification is more effective since it has a smaller 

iteration then the Floyd-warshall its self. Another benefit 

from this modification is that from second iteration the 

simple graph become optimal simple graph.  

III. RESULT AND DISCUSSION 

The multigraph in figure 1 show that there are 9 vertices 

and 19 edges in the graph. Before we find the optimal path, 

first we will have to convert the real value to be IFN. The 

membership and non-membership function construct from 

half-trapezoidal approach. The formula that is used as 

follow: 

 
   

,

,

0,

a

a

i

x a

a x b a
x a x b

b a

x b








  
  











 

 

TABLE II 

THE VALUE FUNCTION OF EACH EDGE 

Edge Value Function  

e1(1,2) 0.910614 

e2(1,2) 0.858163 

e1(1,3) 0.586586 

e2(1,3) 0.689755 

e(1,4) 0.091674 

e(3,4) 0.502074 

e1(2,5) 0.721743 

e2(2,5) 0.76374 

e1(5,6) 0.905566 

e2(5,6) 0.795668 

e1(6,4) 0.648833 

e2(6,4) 0.677246 

e1(6,7) 0.814387 

e2(6,7) 0.822289 

e(4,7) 0.726615 

e1(7,8) 0.774685 

e2(7,8) 0.741223 

e(8,9) 0.714345 

e(4,9) 0.193901 
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0,

,

,

a

i

a

x a

b x a b
x a x b

a b

x b








  
  











 

 

In this mapping we use interval value by choosing the 

 ,
a a

   so that we can have IVIFS as the weight of edges 

in figure 1.  

The constant values 
1 2
, , ,

n
a a a  indicate the strength of 

the parameters' influence on the decision to be made. This 

study's constant value applies the same percentage to all 

parameters. In other words, the effect of all parameters is 

equal. The parameter combination provides a single value 

for using in IFM. Now we have IFM that consist 

combination parameter as edges weight. 

Now we can use the FWA modification to determine the 

optimal path in multigraphs (Figure 1). After identifying 

the vertices and edges in a multigraph, we will iterate. As 

shown in Figure 1, the multigraph has 9 vertices, 19 edges, 

and 7 edges that are multiple. After identifying the edges 

and weight in Table I, column combine parameter, we can 

begin the iteration to find the optimal path in multigraph. 

 

 

Iteration 1. The evaluation multiple edges that we use is 

the elimination of the smallest value function. Form Table I 

the red colors show that the edge was eliminated. The 

multigraph changes to be simple graph as Figure 2. 

 

Iteration 2. Evaluation in second iteration in Figure 2 show 

that there are 2 triangle operators. The first is  1, 4e  and 

   
2

1,3 3, 4e e , the second is  
2

6, 7e  and 

   
2

6, 4 4, 7e e . By using value function we eliminate 

 1, 4e  since    
2

1,3 3, 4e e  has the biggest, and we 

choose to use  
2

6, 7e instead of    
2

6, 4 4, 7e e  

because value function of  
2

6, 7e  bigger then 

   
2

6, 4 4, 7e e . From this iteration simple graph 

become optimal simple graph as Figure 3. 

 

Iteration 3. Based on Figure 3, now we will find a path 

with length 2. There are 10 paths with 3 paths was reach 

the end point (3 – 4 – 9, 6 – 4 – 9, and 7 – 8 – 9). There is 

no evaluation in this iteration.  

  

Iteration 4. Based on Figure 3, now we will find a path 

with length 3. There are 10 paths and 4 paths reach the end 

point (1 – 3 – 4 – 9, 4 – 7 – 8 – 9, 5 – 6 – 4 – 9 and 6 – 7 – 

8). There are some evaluations in this iteration. We have to 

find which path is optimal between  4,9e  and path 4 – 7 

– 8 – 9 based on value function. Since value function of 

path 4 – 7 – 8 – 9 bigger than  4,9e , 0.7325 0.1939 . 

We also have to choose which path is optimal between 6 – 4 

– 9 or 6 – 7 – 8 – 9. Evaluation from value function show 

that value function of path 6 – 7 – 8 – 9, 0.75642 , is bigger 

than value function of path 6 – 4 – 9, 0.43557 .  

For the rest iteration we will use path 4 – 7 – 8 – 9 instead 

of  4,9e  and path 6 – 7 – 8 – 9 instead of path 6 – 4 – 9. 

 

Iteration 5. There are 6 paths in this iteration and 2 paths 

has reach end point (3 – 4 – 7 – 8 – 9 and 5 – 6 – 7 – 8 – 

 

 
Fig. 2.  Simple Graph of Transportation Network. 

TABLE III 

THE OPTIMAL PATH IN MULTIGRAPH 

Edge Value Function 

1 – 2 – 5  

1 – 3 – 4  

2 – 5 – 6  

3 – 4 – 7  

3 – 4 – 9 

4 – 7 – 8 

5 – 6 – 4 

5 – 6 – 7 

6 – 7 – 8 

7 – 8 – 9 

1 – 2 – 5 – 6 

1 – 3 – 4 – 7 

2 – 5 – 6 – 4 

2 – 5 – 6 – 7 

3 – 4 – 7 – 8  

4 – 7 – 8 – 9  

5 – 6 – 7 – 8  

6 – 7 – 8 – 9  

1 – 2 – 5 – 6 – 7  

1 – 3 – 4 – 7 – 8  

2 – 5 – 6 – 7 – 8  

3 – 4 – 7 – 8 – 9   

5 – 6 – 7 – 8 – 9  

1 – 2 – 5 – 6 – 7 – 8  

2 – 5 – 6 – 7 – 8 – 9  

1 – 2 – 5 – 6 – 7 – 8 – 9   

0.83718 

0.59591 

0.83465 

0.61434 

0.34799 

0.75065 

0.79141 

0.86393 

0.79849 

0.74452 

0.87137 

0.66127 

0.75595 

0.82847 

0.69452 

0.73250 

0.81931 

0.75642 

0.84638 

0.71798 

0.80158 

0.70443 

0.76683 

0.81076 

0.75796 

0.76255 

 

 

 
Fig. 3. Optimal Simple Graph of Transportation Network. 
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9). There is no evaluation in this iteration. 

 

Iteration 6. There are 3 paths in this iteration and 2 paths 

has reach end point (1 – 3 – 4 – 7 – 8 – 9 and 2 – 5 – 6 – 7 

– 8 – 9). We have to choose which path is optimal between 

path 1 – 3 – 4 – 9 and path 1 – 3 – 4 – 7 – 8 – 9. Evaluation 

based on value function, show that path 1 – 3 – 4 – 7 – 8 – 

9 is optimal. 

 

Iteration 7. As the last iteration, we reach start point to end 

point that is path 1 – 2 – 5 – 6 – 7 – 8 – 9 with value 

function 0.76255 . Compare to path 1 – 3 – 4 – 7 – 8 – 9, 

path 1 – 2 – 5 – 6 – 7 – 8 – 9 has the biggest value function. 

The optimal path from 1 to 9 should be path 1 – 2 – 5 – 6 – 

7 – 8 – 9. 

 

All the optimal path between any start point and end point 

in Figure 3 as shown in Table III. With total 7 iteration, the 

optimal solution for multigraph transportation network was 

solved. Table III contain all possible path from the problem 

statement. 

IV. CONCLUSION 

The modifications made to the Floyd-warshall algorithm 

permit optimal completion of paths in multigraphs. Even 

though the dual edges were ultimately eliminated, all sides 

had a chance of being selected because their side weights 

were based on a combination of multiple parameters. The 

optimal path of transportation network is 1 – 2 – 5 – 6 – 7 – 

8 – 9 which reach from 7 iteration, faster compare to 

regular algorithm. Although the case study is a directed 

multigraph, multigraph problems can also be solved on 

undirected graphs. Then, a computer program must be 

developed to facilitate multigraph calculations with more 

vertices. 
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