
 

    

Abstract— In this paper, we present an efficient iterative 

algorithm for finding the root of a nonlinear equation. We 

develop this approach by incorporating the weight function 

technique in the second step and applying Steffensen’s method 

in the third step. The presented scheme has been shown to be 

optimal based on convergence analysis, with an order of 

convergence of eight. We evaluate the performance of our 

method across various application problems, including beam 

designing models, fractional conversion, ideal and non-ideal 

gas laws, Planck's constant, multifactor effects, blood rheology 

models, volume calculations in the van der Waals equation, 

and stirred tank reactors. It demonstrates exceptional 

performance when compared to other iterative approaches 

with similar convergence orders. Furthermore, we explore the 

dynamical and fractal behavior of the proposed method and 

existing methods by using several complex polynomials as test 

functions and analyzing the basins of attraction. 

 
Index Terms— Nonlinear Equation, Optimal order, Iterative 

Method, Order of Convergence, Efficiency Index, Functional 

Evaluations, Dynamical Analysis. 

 

I. INTRODUCTION 

INDING the zeros of the nonlinear equation ( ) 0h x = is 

the most challenging problem in every science, 

engineering, and applied mathematics discipline. The simple 

roots of such equations cannot be found analytically since it 

is either computationally difficult or impossible. Then, we 

solve these equations using numerical techniques. So, to 

solve nonlinear equations, we require iterative techniques. 

The traditional Newton-Raphson's approach [NR] [6] is a 

well-known iterative approach for locating the root of such 

equations, denoted as  

( )

( )
, 0,1,2,. . .

1

h xn
x x nnn h xn

= − =
+ 

                           (1) 

This requires one step and involves two functional 

evaluations in each iteration. The convergence order of this 

approach is two, and the efficiency index is 1.414. 

In this paper, we present an innovative eighth-order 

optimal iterative method. To show the usefulness of a 

recently developed system, we employed a variety of 
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numerical examples and contrasted the results with those of 

other iterative processes of the same order. The 

recommended approach is efficient in terms of the number 

of iterations, function evaluations, and errors required to 

achieve a higher accuracy and efficiency index.   

Using complex polynomials, we created a procedure in 

this study and looked at how it behaved dynamically. The 

attraction zones of the proposed method and other same-

order current approaches are also illustrated and compared. 

  

Some Basic Definitions  

     This section will discuss basic definitions of iterative 

methods for solving nonlinear equations. 

  

Definition-1: Order of convergence [13]: 

     Consider 
0x  be a root of the nonlinear function ( )h x , 

x R . Let  1 0
x
n n



+ =
be a sequence that converges to 

0x . 

Then, the order of convergence of the sequence p
 

is 

defined as, if there exists a number p R+ such that 

( )
1 0

0

x x
nLim Kpn

x xn

−
+ 

→
−

 

For some 0K  , K  is known as the asymptotic error 

constant. 

If 1p = , the sequence has linear convergence and  

If 2 3p ,= , the sequence has quadratic or cubic 

convergence. 

 

Definition-2: Optimal order of convergence [16]: 

     The order for optimal iterative methods is defined as 

12n− , where n  is the function evaluations per iteration. It is 

known as Kung- Traub conjecture. 

 

Definition-3: Computational order of convergence [15]: 

     Let x  be a root of the nonlinear equation ( ) 0h x =  

and let , ,
1 1

x x x
n n n− +

 be convergence three successive 

iterations close to the root. Then it can be approximated as 

below 

( )
( )

log
1

log
1

x x x x
n n

x x x x
n n


− −

+
=

− −
−

 

It is used to check the convergence order of a given 

iterative method.  
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Definition-4: Weight function [9]: 

      The weight function is a fundamental variable that is 

sufficiently differentiable and defined on an interval. 

Iteration process behavior, order of convergence, and 

computational efficiency are the main goals of adding a 

weight function to a particular method. 

 

Several popular optimal eighth-order iterative techniques 

for finding roots to nonlinear equations are already in use: 

 

The following three-step optimal eighth-order iterative 

approach [PM] [11] was proposed by Prem Chand in 2019:  

( )

( )

( )

( )

( ) ( )

( )

( )

( )

2

1 2

21 2 2 3

1 1

h xn
y xn n

h xn

h y h x h yn n n
z xn n

h x h xn n

h z t u tn n n nx znn h x sn n

= −


 
  + = − +        

 

 + + +
 = −

+   −
 

             (2) 

where  

( )

( )

( )

( )

( )

( )
, ,

h y h z h zn n n
t u sn n n

h x h x h yn n n
= = =             

To resolve nonlinear equations in 2021, Sivakumar 

created the following optimal eighth-order scheme [PJ] [12] 

( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

2

h xn
y xn n

h xn

h x h x h yn n n
z xn n

h x h x h yn n n

h zn
w zn n

q zn

= −


 −
= −    − 

= −


                                      (3)  

where  

( ) ( ) ( ) ( )

 ( )  ( )

   

2
2 3 , ,

1 2 3 1

, , , ,
,

2

, , , ,
.

3

q z b b z x b z x b h xn n n n n n

h y x x z x h z x x y xn n n n n n n n n n
b

z yn n

h z x x h y x xn n n n n n
b

z yn n

 = + − + − =

− − −
=

−

−
=

−

 Al-Subaihi proposed an ideal eighth-order iterative 

approach in 2019 [SB] [1], provided by 

( )

( )

( ) ( )

( ) ( )

( )

( )

( )  
   

( )

( )

( )

( )

-

-
-

3
,

- 1 - 2
1 , ,

h xn
y xn n

h xn

h x h y h yn n n
z yn n

h x h y h xn n n

h z f x y h z h yn n n
x znn f x z f y z h x h xn n n n

=


+
=



 
  = +   +     

 

  (4)       

Kung and Traub created the following optimal eighth-

order approach [KT] [5] in 1974 for resolving nonlinear 

equations, is 

( )

( )

h xny xn n
h xn

= −


 

( ) ( )

( ) ( )( )

( )

( )

( )

( )

( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

2

1 2 2

h x h y h xn n n
z yn n

h xnh x h yn n

h x h y h y h zh x h x h y h z n n n nn n n n
x znn h xn h x h y h x h z h y h zn n n n n n

= −


−

+ −
= −

+ 
− − −

 (5) 

A derivative-free optimal iterative technique was 

proposed in 2020 by Ramandeep [RM] [3] and is as follows: 

( )

( )

( )

( ) ( )
( )

( ) ( )

21 2 5

2 2 3 21 2 6 4 6 14
1

h xn
y xn n

h xn

h yn
z y u un n

h xn

h zn
x z u t u ut t u u tnn h xn

= −


= − + +


= − + + + + + + +
+ 

  (6) 

where 

( )

( )

( )

( )

( )

( )
, ,

h y h x h zn n n
u k tn n n

h x h x h yn n n
= = =


 

Using the weight function technique, Sharifi suggested a 

three-point iterative method [MS] [14] of an optimal eighth-

order convergence in 2016, is provided by 

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )
( )

( )

( )

-

2 2
1

-
-

- , 1 2
1

h xn
y xn n

h xn

h x h yn n
z xn n

h x h y h x h xn n n n

h z h zn n
x z F x y zn n n nn h x h xn n

=


= +


= +
+ 

 
 
 
 

 
 
 

       (7) 

where 

( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

3 2 210 4

,
2

2

h y h x h y h x h yn n n n n

h x h yn n
F x y zn n n

h x h x h y h y h zn n n n n

 − + 
 
 + =

− −

 

 

The format of this research paper is as follows: Section I 

discusses the fundamental definitions that served as the 

foundation for this work and numerous existing 

methodologies are examined based on a review of the 

literature survey. Section II develops an effective three-step 

iterative process using the weight function technique and 

Steffensen's approximation. Section III investigates the 

order of convergence of the proposed approach. Real-world 

applications in science and engineering are included in 

Section IV of the developed scheme, along with numerical 

comparisons of the recommended technique with several 

existing, optimal approaches of the same order. The 

polynomiographs of various test functions using basins of 

attraction are described in Section V. The conclusions are 

provided in Section VI. 

II. EIGHTH-ORDER CONVERGENT METHOD 

Consider x
 is an exact root of the nonlinear equation 

( ) 0h x = where ( )h x  is continuous and has well-defined 
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first-order derivatives. Let xn  be the root of the nth 

approximation and is 

*x xn n= +                                                                 (8) 

where n  is the error. Thus, we have                                                

( ) 0h x =                                                                      (9) 

writing ( )h x  by Taylor’s series about xn ,  we get 

( ) ( ) ( ) ( ) ( )

2

...
2!

x xn
h x h x x x h x h xn n n n

 
 
 

−
   = + − + +

  

( ) ( ) ( ) ( )
2

...
2!
nh x h x h x h xnn n n


  = + + +                   (10) 

here higher powers of n are neglected from 3
n  onwards. 

Using (9) and (10), we have                                                              

( ) ( ) ( )2 2 2 0h x h x h xn nn n n  + + =  

( ) ( ) ( ) ( ) ( )2 4 8 2h x h x h x h x h xn n n n n n
 
 
 

   = −  −   

( )
( )

2 1

1 1 2

h xn
.n h xn n




−
=


+ −

                   (11) 

On substituting x  by 
1

x
n+

 in (9) and from (11), we get  

( )
( )

( )

2 1

1 1 1 2

h yn
x y H .nn h yn n




 
= −  

+  + −  

                  (12)                                  

where, 
( )

( )

h xn
y xn n h xn

= −


,  

( )   ( )2h y h y ,x h xn n n n = − , 
( ) ( )

( )

h x h yn n
n

h xn


 −
=


, 

and ( ) 1H  = − , and 
( )
( )

h yn

h xn
 = is the weight function. 

Equation (12) has optimal fourth- order convergence, with 

three functional evaluations per iteration. 

Now, we wish to enhance the order of convergence of the 

technique by taking equation (1) as the first step, equation 

(12) as the second step, and a modified version of Newton's 

method as the third step. To make the technique optimal, we 

further reduce the functional evaluations to four by taking 

the following Steffensen’s approximation: 

( )
( )( )( ) ( )( )( )

( )2

h z h z h z h zn n n n
h zn h zn

+ − −
 = .                    (13) 

 

Algorithm: The iterative scheme is computed as 
1

x
n+

 

( )

( )

( )
( )

( )

( ) ( )
( )

( ) ( ) ( )
( )
( )

1.

2 1
2.    .

1 1 2

   where, ,

2 , , 1 and

h xn
y xn n h xn

h yn
z y Hn n h yn n

h x h yn n
n

h xn

h ynh y h y x h x Hn n n n h xn






   
 

= −


 
= −  

 + −  

 −
=



 = − = − =

 

( )

( )

( )
( )( )( ) ( )( )( )

( )

3.
1

where,
2

h zn
x znn h zn

h z h z h z h zn n n n
h zn

h zn

= −
+ 

+ − −
 =

   (14) 

III. CONVERGENCE CRITERIA 

Theorem [4, 8]: Suppose 
0x D  be a single zero of a 

sufficiently differentiable function h  for an open interval 

D . If 
0x  is the neighborhood of x . Then the algorithm 

(14) has an optimal eighth-order convergence with error 

equation, 

2 2 8 9( )
1 2 3

c c on nn
   

 
 

= − +
+

. 

Proof:  Let the single root of ( ) 0h x = be x  and 

x xn n = + . Thus, 

 ( ) 0h x =  

Through Taylor’s series, writing ( )h xn  about x , we get 

( ) ( )( )2 3 4 ...
2 3 4

h x h x c c cn n n n n   = + + + +     (15) 

( ) ( )( )2 31 2 3 4 ...
2 3 4

h x h x c c cn n n n   = + + + +    (16) 

Dividing (15) by (16), we get 

( )
( )

2 3 42 32 2 3 7 4 . . .
2 3 2 4 2 3 2

h xn
c c c c c c cn n n n

h xn

   
   
   
   

= − − − − − + +


 (17) 

Substituting (17) in the first step of (14), we obtain 

( ) ( )2 2 3 3 42 2 3 7 4 . .
2 3 2 4 2 3 2

y x c c c c c c cn n n n  = + + − + − + + (18)   

Expanding ( )h yn  about x  by using Taylor series, we get
                                                 

 

( ) ( ) ( ) ( )( )2 2 3 3 42 2 3 7 5 . . .
2 3 2 4 2 3 2

h y h x c c c c c c cn n n n  = + − + − + +    (19) 

( ) ( ) ( ) ( )( )2 2 3 31 2 6 4 2 ...
2 3 2 3 2 4

h y h x c c c c c cn n n  = + − + − − +  (20)  

Dividing (19) by (20), we get 

( )
( ) ( ) ( )2 2 3 3 42 2 3 6 3 . . .

2 3 2 2 2 3 4

h yn
c c c c c c cn n nh yn

  = + − + − + +


  (21) 

From (16) and (20), we obtain 

( ) ( )2 2 3 32 4 6 6 16 20 ...
2 3 2 4 2 2 3

c c c c c c cn n n n   = + − + + − +         (22) 

From (22), on simplification 

( )2 2 31 2 3 23 4 2 32 21 1
1 1 2

2 4 2 2 437 8 12 522 4 32 3 2

c c c c c cn nn

n
c c c c c c n

  




 
 
 

   
   
   

 
 
 

 
 
 

 
 
 

+ + − + −
−

+ − =
+ + + −

(23)

Using (21) and (23), we get 

( )

( ) ( ) ( )
2 2 2 3 41 2 3 2 ...

2 3 2 4 2 31 1 2

h yn
c c c c c cn n nh yn n

  


 
 
 
 
 
 

= + − + −
 + −

      (24) 

and ( )
( )
( )

2 21 2 3
2 3 21

3 33 10 8 ...
4 2 3 2 2

c c ch y n nn
H

h xn c c c c

 




 
  
   
  

  
  
  
  

− − − −
= − =

− + +
      (25) 

From the second step of (14), we get 

4 5 6 ...
1 2 3

z x K K Kn n n n  = + + + +                        (26) 
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where 2 4K , K c c ,
1 2 3 2 2 4 3 2

c c c c= − = − +  

2 2 3 5K 6c 4 c 5c c 13
53 2 2 4 2 3 2 3 2 3 4 2 3 4

c c c c c c c c c c= + + + − − −  

Expanding ( )h zn about x  by using Taylor expansion as 

follows:

 ( ) ( )( )4 5 6 7 8...
51 2 3 4

h z h x K K K K Kn n n n n n    = + + + + (27) 

( ) ( )( )41 2 ...
1

h z h x Kn n =  + +                                  (28) 

Substituting (18), (24), and (25) are in the third step of (14), 

we get                          

2 2 8 9( )
1 2 3

c c on nn
  

 
 
 

= − +
+

 

Hence, the order of convergence of the proposed algorithm 

is eight with four functional evaluations and the efficiency 

index is 
1 4

. 8 1.6817E I = = . It is denoted with (MR). 

  

IV. NUMERICAL APPLICATIONS OF THE PROPOSED METHOD 

We performed a few numerical simulations to 

demonstrate how the proposed approach (MR) performed 

with eighth-order convergence employing problems from 

real-world applications. All numerical calculations are 

carried out by the mp-math library in PYTHON using an 

Intel(R) Core (TM) i5-10210U processor running at 2.11 

GHz and a 64-bit operating system. The halting criteria 

is ( )f xn  , where the tolerance is set to 

19910 −= , and the required accuracy is set to 690 decimal 

places. The analogy of the efficiency index is shown in 

Table I. We estimated the zero for two alternative initial 

assumptions (
0x ) for each application problem. Tables II 

show the numerical results obtained and contrast them with 

those of other approaches. Each table includes starting 

estimates
0x , the number of iterations ( n ), error values for 

the first five iterations (E1, E2, E3, E4, and E5), and the 

number of function evaluations ( ( )1nh x + ). 

 

Some real-life applications: 

To show the efficiency of the new optimal eighth-order 

method MR, this section presents a few real-world 

application problems from various fields. It compares the 

results to some well-known existing methods in Table II. 

The efficiency index is shown in Table I. 

 
TABLE I 

COMPARISION OF EIFFICIENCY INTEX 

  

                    

                        

 

                  

 

 

 

 
Where P is the order of convergence, N is the number of functional 

evaluations per iteration, and E.I is the efficiency- index. 

 

 

Application 1. (Beam Designing Model, [11]) 

The following nonlinear equation represents the depth of 

embedment in a sheet-pile wall: 

( )
3 22.87 10.28

1 4.62

x x
h x x

+ −
= −  

The approximated root is 2.0021187789538272. 

 

Application 2. (Fractional Conversion, [11]) 

The equation has the following form when the nitrogen is 

transformed to ammonia fractionally when fed hydrogen 

under certain conditions: 

( )
( )

( ) ( )

2 28 4
0.186

2 2
6 3 2

x x
h x

x x

−
= −

− −

 

It can be reduced in polynomial form as  

( ) 4 3 27.79075 14.7445 2.511 1.674
2

h x x x x x= − + + −  

The real root is 0.2777595428417206. 

 

Application 3.    (Ideal and Non-Ideal Gas Laws, [11])  

The ideal gas equation is given by      

( )
2

2
anp x nb nRT

x

 
+ − = 

 
 

where a, b, are constants characterizing the strength of the 

attractions, the size of the gas particle, and p , x , n , T , R , 

are constants describing pressure, volume, number of moles, 

temperature, and universal constant of the gas. The molal 

volume is calculated by solving the equation. 

( ) ( )1

223

c
h x p x c RT

x

 
= + − − 

 
 

We take parameter values when the root of the nonlinear 

equation is 24.5125881284415006.  

 

Application 4.     (Plank’s Constant, [12]) 

Plank's radiation law problem determines the energy 

density within an isothermal blackbody and is 

represented by  

( )
58

1

ch

ch kTe

 
 



−
=

−
                                                                          

Here, taking x ch kT= , the above equation becomes 

  1
5

x xe−− =   

Let us define  

( ) 1
4 5

xxh x e−= − +                                                                            

The root of the equation is given by 4.96511423174427630. 

 

Application 5. (Study of Multifactor effect, [17]) 

When two parallel plates are placed in an air gap, an 

electron's moment is given by 

( ) ( ) ( )

( ) ( ) ( )( )

1
(t) m sin

0 0 0 0 0

1
2m cos sin

0 0 0

x x v eE w wt t t

eE w wt wt



 

− = + + + − 
 

−
+ + + +

 

It can be reduced in nonlinear form as  

Methods P N       E. I 

PM 8 4 1.6817 

PJ 8 4 1.6817 

SB 8 4 1.6817 
KT 8 4 1.6817 

RM 8 4 1.6817 
MS 8 4 1.6817 

MR 8 4 1.6817 
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( ) 0.5cos
5 4

h x x x


= − +      

The above equation has a simple root at 

0.309466139208214x  − . 

 

Application 6.     (Blood rheology model, [2]) 

Blood rheology is a branch of science that studies the 

physical properties and flow characteristics of blood. Since 

blood is a non-Newtonian fluid, it is referred to as a Caisson 

fluid. We employ the following function in the form of a 

nonlinear equation to study the plug flow of Caisson fluids: 

16 4 1 41
7 3 21

H u u u= − + −  

Where flow rate reduction is computed by H . Take 

0.40H = , we have 

( )
1 8 168 5 4 20.0571428571 3.624489796 0.3

6 441 63 9
h x x x x x x= − − + − +  

The root of the nonlinear equation ( ) 0
6

h x =  is 

0.0864335580522467.  

 

Application 7.   (Volume of van der Waals equation, [2]) 

Van der Waals’ equation of a non-ideal gas is represented 

by 

( ) ( )3 2 2 3h V pV n RT bp V n aV n ab= − + + −  

Put V x= and by giving particular values to the parameters, 

the above equation is of the form 

( ) 95.26535116 35.283 24 5.699830 68
7

x xh x x= − + −  

The above equation has three roots in which one is real, that 

is 1.9707842194070294x  . 

 

Application 8.   (Stirred Tank Reactor, [10]) 

At rates of   and q − , respectively, the reactor gets 

materials from the stirred tank. The following are the 

equipment improvements for mixed reactions: 

; ; ;
51 2 3 3 2 4 4 2 4 2 6

H H H H H H H H H H H H+ → + → + → + →  

The nonlinear polynomial equation shown below was found 

by Douglas et al. [7] during their initial examination of this 

sophisticated control system: 

( )

( ) ( ) ( )

2.98 2.25 1

2
1.45 2.85 4.35

x

Gcx x x

 +
=

+  +  +

 

where Gc  is the gain of the proportional controller. By 

taking 0Gc = , we have 

( ) 4 3 211.50 47.49 83.06325 51.23266875 0
8

h x x x x x= + + + − =  

The root of ( )8
h x  is -1.45. 

 

 

 

 

 

TABLE-II 

 COMPARISON OF SUCCESSIVE ERRORS 
      
Method n 

1 0x x−  2 1x x−  3 2x x−       4 3x x−  ( )1
h x

n+  
 C. P. U 

h1(x) x0     1.6      

PM 

PJ 

SB 
KT 

RM 

MS 
MR 

4 

4 

4 
4 

5 

5 
4 

0.401753 

0.402125 

0.401917 
0.402236 

0.384636 

0.400477 
0.402112 

0.000366 

6.35E-06 

0.000202 
0.000117 

0.017482 

0.001642 
6.32E-06 

3.15E-29 

7.69E-45 

7.85E-32 
1.20E-33 

6.70E-18 

4.92E-25 
2.41E-45 

   9.49E-230 

   3.58E-356 

   4.08E-251 
   1.41E-265 

   6.70E-157 

   3.00E-197 
   3.98E-395 

3.88E-229 

1.46E-355 

1.67E-250 
5.78E-265 

1.59E-689 
1.59E-689 

1.63E-394 

0.00602 

0.00522 

0.00717 
0.00611 

0.00527 

0.00731 
0.00513 

h1(x) x0     3.8      

PM 

PJ 
SB 

KT 

RM 
MS 

MR 

5 

5 
 

 

5 
5 

5 

1.766047 

1.7917 
Divergent 

Divergent 

1.774966 
1.770605 

1.801014 

0.031834 

0.006181 
 

 

0.022915 
0.027276 

0.003132 

9.25E-14 

6.11E-21 
 

 

1.40E-17 
1.71E-16 

8.91E-24 

   5.30E-106 

   5.70E-165 
 

 
   5.10E-154 

   6.50E-129 

   3.76E-188 

1.58E-689 
1.59E-689 

 

 
2.68E-689 

1.59E-689 
4.40E-690 

0.00754 

0.00672 
 

 

0.00672 
0.00805 

0.00745 

h2(x) x0     0.5      

PM 
PJ 

SB 

KT 
RM 

MS 
MR 

4 
4 

4 

4 
4 

4 
4 

0.222232 
0.222239 

0.222235 

0.222235 
0.222237 

0.222234 
0.222240 

8.53E-06 
1.38E-06 

5.40E-06 

5.19E-06 
3.48E-06 

6.10E-06 
6.41E-07 

1.33E-39 
3.74E-47 

1.38E-41 

1.08E-41 
1.66E-45 

2.82E-41 
1.44E-50 

      4.52E-310 
      5.89E-372 

      2.55E-326 
      3.67E-327 

      4.52E-360 

      5.85E-324 
      9.44E-400 

   4.06E-309 

   9.53E-371 

   3.29E-325 
   3.30E-326 

   4.06E-359 

   5.26E-323 
   8.48E-399 

0.00652 
0.00538 

0.00701 

0.00688 
0.00527 

0.00698 
0.00532 

h2(x) x0     0.2      

PM 

PJ 
SB 

KT 

RM 
MS 

MR 

4 

4 
 

 

4 
4 

4 

Divergent 

0.07776 
Divergent 

Divergent 

0.077759 
0.077759 

0.07776 

 

1.04E-08 
 

 

8.98E-08 
8.81E-08 

8.42E-10 

 

3.92E-64 
 

 

3.29E-58 
5.32E-56 

1.27E-73 

 

      8.60E-508 
 

 

      1.07E-461 
      9.45E-442 

      3.42E-584 

 

1.39E-506 
 

 

9.61E-461 
8.49E-441 

3.07E-583 

 

0.00672 
 

 

0.00698 
0.00823 

0.00651 
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h3(x) x0     -5      

PM 

PJ 

SB 
KT 

RM 

MS 
MR 

4 

4 

4 
4 

4 

4 
4 

29.59136 

29.54655 

29.55738 
29.56122 

29.51775 

29.56122 
29.51276 

0.078771 

0.033965 

0.044796 
0.048628 

0.005163 

0.048632 
0.000171 

3.69E-28 

4.25E-31 

3.99E-30 
7.69E-30 

1.21E-37 

7.74E-30 
1.07E-51 

8.84E-239 

2.57E-262 
1.61E-254 

3.04E-252 

1.08E-314 
3.22E-252 

       2.53E-429 

8.79E-239 

2.55E-262 

1.59E-254 
3.02E-252 

1.07E-314 
3.20E-252 

2.51E-429 

0.00635 

0.00577 

0.00697 
0.00619 

0.00597 

0.00631 
0.00558 

h3(x) x0     10      

PM 

PJ 
SB 

KT 

RM 
MS 

MR 

4 

4 
 

4 

4 
4 

4 

14.51259 

14.51259 
Divergent 

14.51259 

14.51259 
14.51259 

14.51259 

8.32E-07 

6.34E-07 
 

7.26E-07 

5.02E-07 
7.48E-07 

3.64E-09 

5.90E-68 

6.35E-69 
 

1.94E-68 

9.69E-70 
2.45E-68 

4.44E-89 

3.73E-557 

6.42E-565 
 

4.93E-561 
1.86E-571 

3.29E-560 

       1.31E-689 

3.71E-557 

6.39E-565 
 

4.90E-561 
1.85E-571 

3.27E-560 

6.13E-689 

0.00745 

0.00672 
 

0.00714 

0.00672 
0.00805 

0.00702 

h4(x) x0     7      

PM 
PJ 

SB 

KT 

RM 

MS 

MR 

 
4 

4 

 

4 

4 

4 

Divergent 
2.034886 

2.034886 

Divergent 

2.034886 

2.034886 

2.034886 

 
1.39E-08 

1.53E-08 

 

1.51E-08 

1.55E-08 

7.80E-10 

 
4.62E-72 

1.34E-71 

 

7.84E-72 

1.51E-71 

2.93E-83 

 
7.00E-580 

4.73E-576 
 

4.23E-578 

1.28E-575 
1.17E-670 

 
6.76E-580 

4.57E-576 
 

4.08E-578 

1.24E-575 
1.13E-670 

 
0.00685 

0.00654 

 

0.00628 

0.00731 

0.00614 

h4(x) x0     14      

PM 

PJ 
SB 

KT 

RM 
MS 

MR 

4 

4 
4 

 

4 
 

4 

9.034885 

9.034885 
9.034885 

Divergent 

9.034885 
Divergent 

9.034886 

3.84E-07 

3.76E-07 
3.83E-07 

 

4.09E-07 
 

1.60E-08 

2.63E-60 

1.34E-60 
2.06E-60 

 

2.33E-60 
 

9.07E-73 

1.26E-485 

1.65E-488 
1.43E-486 

 

2.57E-486 
 

      9.82E-587 

1.22E-485 

3.30E-488 
1.38E-486 

 

2.48E-486 
 

9.48E-587 

0.00754 

0.00672 
0.00786 

 

0.00672 
 

0.00745 

h5(x) x0     0.5      

PM 
PJ 

SB 

KT 
RM 

MS 

MR 

4 
4 

4 

4 
4 

4 

4 

0.809400 
0.809469 

0.809438 

0.809439 
0.809456 

0.809432 

0.809465 

6.59E-05 
2.41E-06 

2.81E-05 

2.70E-05 
9.67E-06 

3.39E-05 

7.53E-07 

6.30E-37 
4.18E-50 

6.06E-41 

1.29E-40 
4.21E-45 

1.82E-39 

2.06E-54 

4.41E-293 
3.49E-400 

2.81E-326 

3.46E-323 
5.49E-360 

1.23E-313 

4.47E-435 

3.74E-293 
2.96E-400 

2.38E-326 

2.94E-323 
4.66E-360 

1.04E-313 

5.48E-435 

0.00482 
0.00467 

0.00514 

0.00551 
0.00496 

0.00478 

0.00454 

h5(x) x0     -2      

PM 

PJ 

SB 
KT 

RM 

MS 
MR 

4 

4 

4 
4 

5 

4 
4 

Divergent 

1.691365 

1.692022 
1.692443 

1.694103 

1.691815 
1.691115 

 

0.000831 

0.001489 
0.001909 

0.003570 

0.001281 
0.000581 

 

8.46E-30 

3.76E-27 
8.06E-26 

1.46E-24 

7.43E-27 
2.59E-31 

 

9.76E-238 

6.17E-216 
8.17E-205 

1.10E-195 

9.61E-213 
3.99E-250 

 

8.28E-238 

6.17E-216 
8.17E-205 

5.47E-691 

8.15E-213 
3.39E-250 

 

0.00579 

0.00704 
0.00712 

0.00618 

0.00675 
0.00564 

h6(x) x0    0.1      

PM 

PJ 
SB 

KT 

RM 
MS 

MR 

4 

4 
4 

 

4 
 

4 

0.186433 

0.186434 
0.186433 

Divergent 

0.186434 
Divergent 

0.186434 

1.67E-07 

7.33E-09 
6.97E-08 

 

1.06E-09 
 

6.01E-11 

1.92E-55 

7.61E-68 
5.48E-59 

 

1.35E-76 
 

2.03E-87 

5.86E-439 

4.07E-540 
8.00E-468 

 
9.51E-612 

 

      1.71E-692 

1.94E-438 

3.41E-539 
2.66E-467 

 
3.15E-611 

 

2.05E-691 

0.00389 

0.00372 
0.00369 

 

0.00404 
 

0.00364 

h6(x) x0     -0.6      

PM 
PJ 

SB 

KT 
RM 

MS 

MR 

4 
4 

4 

4 
4 

4 

4 

0.685932 
0.686373 

0.686133 

0.686176 
0.686252 

0.686063 

0.686433 

0.000501 
6.05E-05 

0.000301 

0.000258 
0.000181 

0.000370 

4.18E-07 

1.26E-27 
1.63E-36 

6.63E-30 

2.23E-30 
9.57E-35 

2.87E-30 

1.11E-56 

2.02E-216 
4.59E-289 

3.67E-235 
6.91E-239 

5.99E-277 

3.61E-239 
2.71E-453 

6.71E-216 
1.52E-288 

1.22E-234 

2.29E-238 
1.99E-276 

1.19E-238 

8.97E-453 

0.00564 
0.00556 

0.00603 

0.00591 
0.00582 

0.00625 

0.00509 

h7(x) x0     -1.2      

PM 

PJ 

SB 
KT 

RM 

MS 
MR 

5 

4 

4 
4 

4 

 
4 

0.249423 

0.249945 

0.249671 
0.249724 

0.249766 

Divergent 
0.249991 

0.000577 

5.5E-05 

0.000329 
0.000276 

0.000234 

 
8.65E-06 

1.16E-23 

2.24E-33 

3.53E-26 
1.08E-26 

1.96E-30 

 
1.76E-40 

3.20E-181 

1.72E-262 

6.22E-202 
5.79E-206 

       1.22E-238 
 

5.11E-318 

2.62E-689 

9.76E-260 
3.54E-201 

3.29E-205 

6.93E-238 
 

2.90E-317 

0.00798 

0.00765 

0.00786 
0.00759 

0.00762 

 
0.00754 
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Where, n represents the number of iterations, 
1 0x x−  to 

4 3x x−  are error values of first four iterations, and ( )1
h x

n+
 represents the functional evaluations. 

 

The residual fall graph for nonlinear equations using 

simultaneous methods PM, PJ, SB, KT, RM, MS and MR 

in the above-mentioned real-world problems. 
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Fig. 1. h1(x) at x0=1.6  
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Fig. 2. h1(x) at x0=3.8  
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Fig. 3. h2(x) at x0=0.5
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Fig. 4. h2(x) at x0=0.2  

h7(x) x0     -1.4      

PM 

PJ 

SB 

KT 

RM 
MS 

MR 

4 

4 

4 

4 

4 
4 

4 

0.05 

0.05 

0.05 

0.05 

0.05 
0.05 

0.05 

1.95E-08 

6.79E-10 

6.90E-09 

6.59E-09 

5.11E-10 
5.26E-09 

1.08E-10 

1.99E-59 

1.20E-72 

1.34E-63 

1.14E-63 

2.57E-75 
8.79E-65 

1.06E-79 

2.39E-467 

1.17E-574 

2.67E-501 

8.85E-502 

1.07E-597 
5.40E-511 

8.61E-632 

1.36E-466 

1.17E-574 

1.52E-500 

5.03E-501 

6.08E-597 
3.07E-510 

4.89E-631 

0.00459 

0.00492 

0.00487 

0.00511 

0.00487 
0.00531 

0.00465 

h8(x) x0     1.8      

PM 
PJ 

SB 
KT 

RM 

MS 
MR 

8 
8 

8 
8 

8 

8 
5 

0.170607 
0.170787 

0.170687 
0.170837 

0.162195 

0.170011 
0.170781 

0.000177 
2.84E-06 

9.73E-05 
5.32E-05 

0.008589 

0.000773 
3.60E-06 

1.96E-28 
2.77E-36 

1.17E-29 
3.51E-31 

1.35E-17 

1.10E-24 
2.38E-41 

1.89E-66 
2.66E-74 

1.13E-67 
3.37E-69 

1.30E-55 

1.06E-62 
  6.10E-120 

1.61E-218 
2.87E-224 

1.21E-217 
3.63E-219 

1.39E-205 

1.14E-212 
5.09E-275 

0.00745 
0.00742 

0.00766 
0.00714 

0.00694 

0.00705 
0.00654 

h8(x) x0     2.2      

PM 

PJ 
SB 

KT 

RM 

MS 

MR 

8 

8 
8 

8 

8 

8 

5 

0.229175 

0.229213 
0.229196 

0.229199 

0.229209 

0.229192 

0.229216 

4.04E-05 

2.46E-06 
1.97E-05 

1.68E-05 

6.36E-06 

2.43E-05 

4.34E-08 

1.39E-31 

1.81E-36 
3.06E-33 

5.79E-34 

3.31E-35 

1.39E-32 

4.83E-49 

       1.33E-69 

       1.74E-74 
2.94E-71 

5.57E-72 

3.19E-73 

1.33E-70 

  2.50E-135 

1.44E-219 

1.49E-226 
2.52E-223 

5.99E-222 

3.43E-223 

1.43E-220 

8.63E-306 

0.00602 

0.00595 
0.00543 

0.00578 

0.00558 

0.00548 

0.00527 
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Fig. 5. h3(x) at x0=-5  
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Fig. 6. h3(x) at x0=10
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Fig. 7. h4(x) at x0=7  
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Fig. 8. h4(x) at x0=14  
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Fig. 9. h5(x) at x0=0.5  
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Fig. 10. h5(x) at x0=2  
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Fig. 11. h6(x) at x0=0.1  
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Fig. 12. h6(x) at x0=-0.6  

Using Origin Pro software for graphical comparisons, 

"Fig. 1" to "Fig. 12" show the graphical behaviour. The 

residual fall graph shows SS's suggested strategy requires 

fewer iterations to reach zero error than another current 

methods PM, PJ, SB, KT, RM, MS, and MR. The error 

graph demonstrates the effectiveness and speedy 

convergence of the proposed technique MR in this way. 

V.   BASINS OF ATTRACTION 

One of the dynamical notions pertaining to the stability 

and convergence of roots for some iterative approaches is 

the idea of polynomiographs using a basin of attraction. A 

basin of attraction is a portion of 2D  space where iterations 

will continue into the attractor no matter what initial 

prediction is made. We employ a square region over a mesh 

grid     22,2 2,2 C−  −   with tolerance 
16

1 10n nx x −

+ −  to 

create polynomiographs over the complex plane C . The 

assumption is that 100N =  is the maximum number of 

iterations. It is possible to generate polynomiographs of 

different complex-valued polynomials over the complex 

plane C  using the PYTHON programming. Roots can be 

given various colors, and convergence can be observed 

when the colors are altered. Fig.1 and Fig.2 shows the 

basins of attraction of the proposed method and comparison 

methods for the complex polynomials 4

1( ) 1f z z= − , 

11

2 ( ) 1f z z= − .  

The developed algorithm MR and other existing 

methods have the following basins: 

 

Example 1. 4( ) 1
1
f z z= −    

                                        
                                 (a) MR 

                                                                                      
                                       (b) PM                                                                                                                                                                          

                                                                                                                                                                                           

                                       
                                               (c) PJ 
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                                               (d) SB   
                                                                                                              

          
                                               (e) KT 

                                                                                                                                                                                                      

              

                                     (f) RM    

       

                                                (g) MS 

 
Fig. 1.  The polynomiographs for the suggested methods (MR), PM, PJ, 

SB, KT, RM, MS for f1(z).  

.  

Example 2. 11

2 1( )f z z−=    

                               
                                         (a) MR 

 

                
                                        (b) PM 

              
                                       (c) PJ 
 

         
                                       (d) SB                                                                                           
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                                       (e) KT                                                                                                                                                                                

          

                                       (f) RM     

          

                                                   (g) MS                                                                                    

Fig. 2.  The polynomiographs for the suggested methods (MR), PM, PJ, 

SB, KT, RM, MS for f2(z). 

 

The fractal graphs illustrating the behavior of 

polynomials for the proposed MR method and other 

comparison methods are displayed in Fig. 1 and Fig. 2. 

The absence of chaotic behavior in the fractal graphs is 

indicative of the effective performance of the MR 

approach. On the other hand, methods PM, PJ, SB, KT, 

RM, and MS exhibit some unstable behavior near the 

boundary locations. This information underscores that, for 

all three polynomials considered, the proposed MR 

technique outperforms the others in terms of the number 

of iterations required to achieve convergence. 
 

VI.   CONCLUSIONS 

In this paper, we have developed an eighth-order 

iterative method for efficiently locating the root of a 

nonlinear equation. This method is constructed by 

combining the composition technique, a modified 

generalized form of the Newton-Steffensen method, and 

the weight function approach. The analogy of these 

approaches is presented in Table I. In Table II, we provide 

a comprehensive comparison of the method's performance 

in terms of errors and iterations with respect to other 

existing methods. We have conducted a thorough analysis, 

contrasting our proposed methodology with several 

alternative eighth-order algorithms, and detailing the 

dynamic behavior of the method. The results depicted in 

Fig. 1 and Fig. 2 illustrate that the new algorithm's basins 

of attraction converge more rapidly and accurately in 

terms of iterations. 
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