
  

Abstract—As an important piece of equipment in industrial 

production, the health of an air compressor directly impacts the 

success of production. Therefore, researching fault diagnosis 

methods for air compressors is of significant importance in 

improving the continuity, reliability, and safety of production. 

Traditional fault diagnosis methods, however, struggle to obtain 

accurate fault features. The measurement of feature 

distribution differences between various working conditions 

lacks sufficient domain adaptability, making it challenging to 

achieve high recognition accuracy. Additionally, the operation 

of air compressors generates background noise, which can 

introduce interference and impact the accuracy in fault 

detection. In order to overcome these limitations, a fault 

diagnosis method for air compressors based on feature fusion is 

proposed. Firstly, the Mel-frequency cepstral coefficients 

(MFCC) features and wavelet transform features of the air 

compressor are extracted separately. Then, late fusion is 

applied at the decision level to combine confidence scores and 

predicted bounding boxes. The best network model is 

determined based on evaluation metrics to complete the 

classification. Based on the experimental results analysis, the 

feature fusion method demonstrated superior recognition 

performance. 

 
Index Terms—Feature fusion, Voiceprint recognition, Fault 

recognition, Feature extraction. 

 

I. INTRODUCTION 

HE operational status of an air compressor is directly 

related to the safety of the entire workflow. Therefore, it 

is necessary to diagnose and monitor the air compressor for 

faults [1], [2]. Recently, deep learning (DL) methods have 

been widely applied, among which Convolutional Neural 

Network (CNN), leveraging their powerful non-linear 

mapping capability, are extensively used to extract features 

and classify raw vibration signals. They are employed to 

address mechanical fault diagnosis problems traditionally 

reliant on signal processing and expert knowledge [3], [4], [5], 

[6], [7]. He et al. [8] proposed a novel deep learning 
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framework called ResNet-ELM (RNELM) for classifying 

mechanical faults. The time-domain analysis of raw fault 

signals allows for extracting comprehensive and significant 

fault features encompassing both time-scale and 

frequency-scale information [9]. Additionally, there exists a 

correlation between the time scale and frequency scale [10]. 

Thus, the method begins by transforming one-dimensional 

time data from different fault categories into 

two-dimensional time-frequency images using Continuous 

Wavelet Transform (CWT). Following this, a deep ResNet 

structure is employed to extract comprehensive data features 

from these time-frequency images, facilitating precise fault 

diagnosis through advanced feature extraction techniques 

[11]. Prosvirin et al. [12] have developed a new method for 

air compressor fault diagnosis, utilizing an end-to-end 

approach. They introduced a deep neural architecture 

combining an Autoencoder (AE) and CNN, aimed at 

enhancing diagnostic intelligence and accuracy. In current 

CNN-based methods, the performance of CNN is influenced 

by the parameters of the convolutional kernel function, which 

in turn affects the diagnostic accuracy. However, the set 

parameters cannot adaptively reflect the differences in 

feature distribution under various operating conditions, thus 

reducing the diagnostic accuracy [13]. Nowadays, industrial 

equipment can generate a large amount of time series and 

diverse data, leading to a growing interest in data-driven fault 

diagnosis methods in recent years. Wang et al. [14] Detecting 

faults in air compressors through an integrated approach 

using CWT, dual-channel convolutional neural network 

(DCCNN), and long short-term memory network (LSTM). 

Hamzeh et al. [15] used an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to conduct analyses related to the reliability 

and stability of the production process. Soltanali et al. [16] 

prioritizing Risk Priority Numbers (RPN) for fault diagnosis 

using Support Vector Machines (SVM). Li et al. [17] pointed 

out that although SVM and Particle Swarm Optimization 

(PSO) can achieve fault type classification, the inherent 

limitations of traditional machine learning, such as sensitivity 

to feature selection dimensions, the need for independent 

feature extraction and classification, and shallow learning 

structures, prevent them from meeting the requirements. [18]. 

The CNN, as a mainstream deep learning approach, can 

effectively address these issues. [19], [20]. Wang et al. [21] 

proposed a DCNN that uses time-frequency images as inputs 

to address the classification of planetary gear bearing faults. 

Xiao et al. [22] modified a parallel ResNet network to extract 

time-frequency image features. Zhang et al. [23] employed 

transfer learning to train the model. Tian et al. [24] utilized 

residual networks to extract feature information, employing 

the ResNet50 network for feature extraction and 

augmentation. They fine-tuned the transfer learning using a 
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pre-trained dataset of CNN [25]. Liang et al. [26] integrated 

expanded convolution with residual networks to enhance 

fault diagnosis capability in noisy environments. While 

CNNs have shown significant improvements, the existing 

issues in fault diagnosis cannot be overlooked. 

The current methods solely focus on minimizing the 

overall feature distribution gap without taking into account 

the variations in class-specific features between the source 

and target domains. Not only does it blur the decision 

boundaries between classes, but it also decreases accuracy. In 

CNN architectures, simply concatenating or adding two 

convolutional layers does not effectively enhance 

information complementarity. On the other hand, although 

richer convolutional features are advantageous for enhancing 

fault classification accuracy, they can also lead to fault 

diagnosis model networks with deep layers. This, in turn, can 

cause issues such as gradient vanishing/exploding and 

challenges in parameter optimization. In practical industrial 

production environments, significant machine noises are 

common, making it challenging to extract features for noise 

identification and reducing the accuracy of fault 

determination. 

To effectively address various existing issues, this paper 

proposes a feature fusion-based model for air compressor 

fault diagnosis. The contributions of this paper are outlined as 

follows:  

1) We developed a neural network architecture search 

algorithm utilizing transfer learning and Bayesian 

optimization. Changing the network structure to expand 

artificially designed networks into hypernetworks, we 

conducted a structural search using network morphism. 

Subnetworks of the supernet were obtained as candidate 

networks for training and evaluation. The best model 

structure for classification was ultimately determined based 

on the evaluation metrics. 

2) In the data preprocessing stage, we introduce noise with 

a random signal-to-noise ratio to simulate real working 

environments. We construct an ensemble classifier to train 

and extract features from the wavelet scattering transform, 

and a neural network to train the MFCC features. By 

combining the input of wavelet scattering transform and 

MFCC features, our approach encompasses both types of 

features. Furthermore, considering the issue of underfitting in 

single-model classification, we employ late fusion to 

combine the output of the wavelet classifier and CNN. The 

combination generates a vector that displays the relative 

confidence level of decisions. which is then multiplied to 

create a late fusion system. This approach aims to enhance 

classification accuracy and generalization performance. This 

method can clarify the decision boundaries of different 

categories in the target domain, thereby improving fault 

diagnosis accuracy.  

II. THEORETICAL BACKGROUND 

A. Mel Frequency Cepstral Coefficients 

MFCC features are classical auditory perceptual features 

based on the human ear's perception of sound. Due to the 

nonlinear relationship between perceived pitch and frequency 

in the human auditory system, it is necessary to transform the 

signal into a frequency power spectrum and apply cepstral 

analysis to obtain features suitable for auditory perception. 

Therefore, extracting the optimal parameter representation of 

noise signals can enhance fault detection performance. [27]. 

The relationship between sound frequency and Mel 

frequency transformation is as follows: 

 

 ( ) 2595lg(1 / 700)Mel f f= +  (1) 

 

Given an input sound frequency f, the computation of 

MFCC involves six steps: framing, windowing, fast Fourier 

transform, filter bank processing, logarithmic operation, and 

discrete cosine transform (DCT). The process of MFCC 

feature extraction is illustrated in Figure 1. 

 
The sound signal and frames undergo changes; for instance, 

the slope of resonance peaks varies during transition periods. 

Therefore, it is essential to incorporate features related to the 

temporal changes of cepstral characteristics. In total, 13 delta 

or velocity features (12 cepstral features plus energy) and 39 

double delta or acceleration features  are added [28]. The 

energy in the frame of the signal x  in the window from time 

sample 1t  to time sample 2t  is represented by the following 

equation: 

 

 2[ ]Energry X t= 
 

(2) 

 

The frame-to-frame variations of cepstral or energy 

features in Equation 2 correspond to each of the 13 delta 

features, while the delta features correspond to each of the 39 

double delta features. 

B. Wavelet Scattering Transform 

Usually, when an air compressor is disturbed or 

malfunctions, it may exhibit abnormal vibrations and 

produce unusual noises, which align with elastic theory and 

wave theory. [29], we can find that: 

 

 E =  (3) 

 
v

c
 =  

 

(4) 

 

where   is the stress generated by the vibrations of the air 

compressor, E  is elastic modulus,     is strain and v , c  is 

particle vibration velocity, propagation speed of vibration 

wave, respectively Substitution of EQ. (3) into EQ. (4) gives: 

 

 Ev

c
 =   (5) 

 

split-frame windowing FFT/DFT

Mel filter
Logarithmic 

operations
DCT

 
Fig. 1.  The process of MFCC feature extraction 
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Traditional wavelet transforms ignore high-frequency 

signals when decomposing the low-frequency part of the 

signal, leading to the loss of high-frequency signal details. 

However, the wavelet scattering transform can recover lost 

high-frequency signals by utilizing the wavelet transform 

modulus after extracting low-frequency features. This paper 

utilizes wavelet scattering transform based on wavelet 

transform theory to extract more complex features. The 

wavelet scattering transform can reduce sample data size, 

minimize intra-class differences, and retain distinguishability 

among different classes. 

The wavelet scattering transform consists of three 

cascaded stages. In the first stage, the signal x  is 

decomposed and convolved with the mother wavelet   

centered at frequency  , yielding *x  . In the second 

stage, signals often undergo convolutional non-linear 

operations, which typically increase their frequency and can 

compensate for information loss caused by downsampling  

[30]. Finally, applying a time-averaged low-pass filter in the 

form of a scaling function     yields the absolute 

convolution signal: 

The zeroth-order scattering coefficient describes the 

signal's local translational invariance: 0s  

 

 
0s x =   (6) 

 

In each level, the loss of high-frequency components in the 

convolution signal is due to the averaging operation. 

Recovering these components requires convolving the signal 

with the wavelet of the next level. 

Therefore, the first-order scattering coefficient 1S  is 

defined as the average absolute amplitude of any wavelet 

coefficient at scale  1 j J    over a half-overlapping time 

window of size  2
j
 : 

 

 
1 1S x =   (7) 

III. SUGGESTED METHODS 

A. Presentation of THE Overall Structure of The Methods 

During the operation of air compressors, due to the high 

noise often present in the working environment, fault 

diagnosis is considered a challenging task. To address this 

issue, this paper proposes a fault diagnosis method based on 

feature fusion. The method aims to integrate wavelet features 

with MFCC features to enhance recognition accuracy, while 

also leveraging the classification capability of ensemble 

classifiers and the stable global dynamic search capability of 

Bayesian optimization. The overall method is illustrated in 

Figure 2.  

1) Preprocess the noisy data from the air compressor and 

extract MFCC features and wavelet scattering transform 

features separately.  

2) Train the MFCC features using CNN and train the 

wavelet scattering transform features using an ensemble 

classifier.  

3) Utilize the Bayesian optimization algorithm to optimize 

the hyperparameters of the neural network to enhance the 

model accuracy.  

4) Predict the probabilities of the target noise belonging to 

each class separately for the two classification models.  

5) Perform decision-level fusion of the classification 

results from the two different feature recognition models to 

obtain the fused decision outcome. 

B. Bayesian Optimization 

Let ( )f x  denote the mapping from the hyperparameter 

vector  to the model's generalization performance, where 

x X , X R , d  and X  represents the dimensions of 

a hyperparameter space of size d  [31]. The objective of 

hyperparameter optimization is to search within this d
-dimensional hyperparameter space for the optimal 

hyperparameter 
*x  that maximizes the model's 

generalization performance. The expression is defined as 

follows: 

 

 * arg max ( )x f x=  (8) 

As the function  f   evaluates the model's generalization 

metrics concerning its hyperparameters, such as 

generalization accuracy, it is a high-cost black-box objective 

function. This is because assessing  f   demands substantial 

computational resources and time for each training and 

evaluation of a set of hyperparameters. 

We propose using the Bayesian optimization algorithm to 

optimize the following network hyperparameters: initial 

learning rate, stochastic gradient descent momentum, L2 

regularization strength, maximum number of epochs, 

validation frequency, and minimum batch size. The input 

comprises training and validation data used to create the 

objective function for the Bayesian optimizer. This function 

trains a convolutional neural network and subsequently 

returns the classification error rate on the validation set. The 

algorithm flow is illustrated in Algorithm 1. Since Bayesian 

optimization is used to choose the best model based on the 

validation set error rate, The final outcome may suffer from 

overfitting, so it's necessary to validate on an independent test 

set, assess the error, and then select the best model. Bayesian 

optimization is conducted to further enhance the neural 

network by minimizing the classification error on the 

validation set as much as possible. The Bayesian 

optimization process is illustrated in Algorithm 1. 

C. Comprehensive Classifier Based on Subspace Method 

Using ensemble classifier based on subspace method, we 

can extract wavelet transform features from the noise 

generated by an air compressor and conduct classification. 

The subspace method involves selecting a subset of features 

from the original data to create new data [32]. As shown in 

Figure 3, the extracted wavelet transform features are used to 

create a new dataset by selecting various wavelet features 

from each sample. The new dataset is then used to train a 

classifier. The remaining features from each sample can be 

used to create a second new dataset, which can be utilized to 

train a second classifier, Continue this iterative process to 

train the classifier ensemble [33]. 
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The wavelet transform features extracted from the dataset are 

inputted into various classifiers for parallel training. Each 

classifier includes the target prediction output, and the 

predicted output probabilities from different models are 

weighted and averaged to create the final dataset. The 

ensemble classifier is then trained using this dataset to 

generate the final classification result of the dataset [34]. 

Figure 4 illustrates the training process of the ensemble 

classifier.  

 

 

DCNN Layers

Wavelet features

Extract MFCC 

features

Retrieve MFCC spectrogram

Train the ensemble classifier

Output the result

Network training

The optimized parameters

Train the DCNN

Bayesian optimization

Train the neural network

Output the result

The classification result of the 

ensemble classifier

  

Fusion

Transfer 

learning

conv pooling
conv

Fc

The classification result

pooling

Subspace

 
Fig. 2.  Overall Flow 
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Algorithm 1 Bayesian Optimization 

Input: 

Model f  , Collection function  , Existing samples 

D . 

Output: 

Hyperparameter vector 
*x . 

1: for t =1, 2, ...... , T  do 

2:       Maximize the acquisition function to get the next 

evaluation point 
1: 1arg max ( | )t tx X

x x D −
= . 

3: the value of the objective function 

. 

4:     Integration of data 1t t tD D Ux−= , ty , And update 

the model. 

5: end for 

 

Algorithm 2 Integrated classifier based on subspace 

method 

Input: 

Set of wavelet samples iX , Set of wavelet labels iY  , 

Set of old classifiers E . 

Output: 

Integrated Classifier newE . 

1: Update the weights for each classifier. 

2: Update the weights for each classifier . 

3: For each classifier E  . 

4: For iY  each unique label in y . 

5: Find every sample 
y

iX X  label y  . 

6: if y  is a new label for classifier   then 

7:        
yX to update   to make it acceptable to the new 

category. 

8: else 

9:        Use a multi-objective algorithm to select a subset 

of 

the samples of  
yX  . 

10:      the Update   with the selected samples. 

11: end if 

12: Generating new subspaces through existing 

classifiers. 

13: The weight of new  is set to 1. 

14: Train the classifier new  with the new subspace and 

Data ( iX , iY ) and add the set newE . 

Randomly selecting features to form a subspace dataset

Training 

Data

Training the classifier with the dataset input

Outputting the test results

Test Data

Weighted voting，outputting the final results

Inputting the test data

 
Fig. 3.  Subspace method 
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Fig. 4.  Flow of integrated classifier training  

 

D. Feature Fusion 

The focus is on integrating the classification results of 

different features under varying conditions. The 

classification results of MFCC features and wavelet 

transform features are fused at the decision level to combine 

the recognition results from different features and classifiers. 

The specific steps are as follows: 

1) Utilize a CNN model to extract MFCC features from the 

noise of the air compressor and perform classification. Use an 

ensemble classifier to extract wavelet features and conduct 

classification. Predict the probability of the fault category for 

each of the two classification models. 

2) Fuse the classification results of the 

low-recognition-rate model with those of the 

high-recognition-rate model to enhance the recognition 

performance and decision-making ability of the model. Fuse 

the classification results obtained from several CNN models 

and the ensemble classifier separately, then select the optimal 

fusion model through comparison. 

3) Perform decision-level fusion of the classification 

results from different features in the deep learning models. 

Utilize post-fusion theory to combine the optimal CNN 

classification results and the ensemble classifier at the 

decision level, resulting in the final classification model. 

4) Invoke the model to plot a confusion matrix to visualize 

the fused classification accuracy and obtain the final decision 

results. 

IV. EXPERIMENTAL STUDIES 

Analyze the classification recognition results of the CNN 

model and the decision fusion classification results of the 

four neural networks and ensemble classifiers respectively, 

validating the effectiveness of the proposed deep learning 

and machine learning decision fusion algorithms for air 

compressor noise fault detection. 

A. Data Sources 

This article utilizes a dataset created from acoustic 

recordings sampled at 16 kHz in a single-stage reciprocating 

air compressor. The specifications of the air compressor are 

as follows: 

⚫ Air pressure range: 0-500 𝑙𝑏/𝑚2, 0-35 . 

⚫ Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm. 

⚫ Pressure Switch: Model PR-15, Range 100-213 PSI. 

Dataset 1 consists of 1800 noise data samples, including 

normal state and 7 types of fault states. The seven fault 

states are: Inlet Valve Leakage (LIV) fault, Outlet Valve 

Leakage (LOV) fault, Non-Return Valve (NRV) fault, 

Piston Ring fault, Flywheel fault, Rider Belt fault, and 

Bearing fault. Dataset 2 consists of 600 noise data samples, 

including normal and fault states. Table 1 presents the 

fundamental information of air compressor noise dataset 1 

for this experiment, while Table 2 displays the basic 

information of air compressor noise dataset 2 for this 

experiment. Add white noise with a random 

signal-to-noise ratio (SNR) ranging from -20 to 20 to 

create datasets with varying SNR conditions. For dataset 1, 

divide it into a training set, validation set, and test set in a 

ratio of 0.7: 0.2 : 0.1, while for dataset 2, divide it into a 

training set, validation set, and test set in a ratio of 0.6: 0.2: 

0.2. Apply data augmentation to both dataset 1 and dataset 

2 by flipping along the X and Y axes, shifting between -30 

and 30, and randomly scaling between 0.8 and 1.2. 
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TABLE I 

AIR COMPRESSOR NOISE DATASET 1 BASIC INFORMATION 

operational state 
serial 

number 
quantities 

Leakage at inlet valve fault LIV 225 

Leakage at outlet valve fault LOV 225 

Non-return valve fault NRV 225 

Pistonring  fault Piston 225 

Flywheel  fault Flywheel 225 

Riderbelt  fault Rider 225 

Bearing  fault Bearing 225 

Healthy Healthy 225 
 

TABLE II 

AIR COMPRESSOR NOISE DATASET 2 BASIC INFORMATION 

operational state serial number quantities 

normal normal 300 

abnormal abnormal 300 

 

B. Data Processing 

The waveforms of eight types of faults and normal states in 

Dataset 1 are shown in Figure 5, and the waveforms of faults 

and normal states in Dataset 2 are shown in Figure 6. The 

analysis results of wavelet scattering transformation are 

obtained by averaging the scattering coefficients of 

10-second audio segments. Parallel feature extraction is 

performed using the tall array and cellfun. Wavelet feature 

vectors are extracted, and the results of MFCC analysis are 

presented in the form of MFCC spectrograms. 

As shown in Figure 7, through comparative analysis of the 

Mel spectrogram between faults and normal states, 

differences in the distribution of sample data can be observed. 

In the Mel spectrogram, each audio segment can be 

represented by a corresponding Mel-spectrogram, with each 

frame corresponding to a certain frequency band as a feature. 

The color of each point represents the magnitude of the 

inverse frequency coefficient. Under normal circumstances, 

the colors in the high-frequency region are darker. When the 

air compressor is in a fault state, the colors in the 

low-frequency region are darker, which differs significantly 

from the normal state. Therefore, using the Mel spectrogram 

obtained from MFCC analysis of air compressor vibration 

signals can more accurately detect faults. 

C. Comparative Analysis 

The performance of the fault diagnosis model for air 

compressors based on feature fusion is validated through 

three aspects: comparison between single and multiple 

features, selection of feature fusion neural networks, and 

choice of feature fusion methods. The models requiring 

feature fusion include DCNN, GoogleNet, SqueezeNet, 

ResNet-50, and ensemble classifiers. These five models are 

evaluated based on accuracy, recall, and F1 score, with each 

model trained for 30 epochs. 

1) Comparative analysis of single feature and feature fusion 

recognition results 

By comparing six different network models including 

DCNN, GoogleNet, SqueezeNet, ResNet-50, ensemble 

classifier, and the fusion model, we trained DCNN, 

GoogleNet, SqueezeNet, and ResNet-50 based on MFCC 

features, while the ensemble classifier was trained based on 

wavelet features. These two sets of features were fused at the 

decision level to obtain the final fusion model. Table 3 

presents the training statistics of the models. Through 

comparison, we can observe that on both datasets, the 

training performance of the fusion model is superior to that of 

individual models. 

As shown in Figure 9a, b, the multi-class confusion 

matrices for the feature fusion models on Dataset 1 and 

Dataset 2 are presented. The multi-class confusion matrices 

provide a detailed display of the classification results of this 

method, with the horizontal and vertical axes representing the 

predicted labels by the model and the true data labels, 

respectively. It is evident that the proposed method 

effectively learns the fault feature information, as different 

fault states exhibit a distinct separation without overlapping. 

There is no overlap between categories, demonstrating the 

outstanding defect diagnostic capability of the proposed 

method. 

2) Comparison of neural network models 

After assessing the performance of various feature fusion 

models and considering factors such as MFCC feature 

extraction, training time, and the accuracy of fusion results, a 

decision fusion training was conducted using different deep 

learning neural networks and ensemble classifiers. The goal 

was to select the optimal feature fusion model by combining 

the classification results of these models. 

The experimental results, as shown in Table 4, involved 

comparing four selected neural networks to determine the 

most suitable one for fusion with ensemble classifiers. The 

accuracy of these four models is depicted in Figure 8a, b, c, d. 

By combining the information from Tables 3 and 4, it was 

observed that ResNet-50 performed the best on Dataset 1 but 

had the longest training time. Therefore, while ensuring 

accuracy, priority should be given to training time. On 

Dataset 2, DCNN exhibited the best performance with the 

shortest training time. This is because complex network 

models may overfit small sample datasets, whereas DCNN, 

with its shallower depth, performed well in recognizing small 

sample data. Thus, after comparing DCNN and ResNet-50, 

DCNN was chosen as the preferred model. Referring to Table 

3, the precision of DCNN was 0.83 and 0.99 respectively, 

while ResNet-50's precision was 0.88 and 0.55 respectively. 

Considering all factors, DCNN showed strong applicability, 

shorter training time, and better precision. Therefore, DCNN 

was selected for late fusion with ensemble classifiers. 

As illustrated in Figures 9a, b, the multi-class confusion 

matrices for Dataset 1 and Dataset 2 based on the DCNN and 

ensemble classifier feature fusion model are provided. These 

matrices detailedly display the classification results of the 

method, the horizontal axis represents predicted labels, and 

the vertical axis represents true data labels. Clearly, the 

proposed method effectively learned fault feature 

information, as different fault states exhibited distinct 

separation without overlap. The absence of overlap between 

categories demonstrates the excellent fault diagnostic 

capability of this method. 

3) Comparing with other feature fusion methods 

Based on the comparison between model-based feature 

fusion and late feature fusion, we explored their differences 

in handling complex tasks. Model fusion integrates the 

outputs of multiple models, while late fusion applies 
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additional fusion strategies after model output. The 

comparative results, as shown in the Figure 10, indicate that 

late fusion performs better in detecting faults in air 

compressors. 

 
(a) Riderbelt                                                           (b) Bearing 

  
(c) Flywheel                                                           (d) Healthy 

 
(e) LIV                                                              (f) LOV 

 
(g) Pistion                                                              (h) NRV 

Fig. 5.  The waveforms of dataset 1 
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(a) normal                                                              (b) abnormal 

Fig. 6.  The waveforms of dataset 2 

 
(a) Normal MFCC Characterization Spectra (b) Abnormal MFCC Characterization Spectra 

        Fig. 7.  Comparative analysis of Mel spectrograms 

 
TABLE III 

COMPARISON BETWEEN SINGLE-FEATURE NETWORK MODEL AND FUSION MODEL 

Neural network model Data 1 Accuracy Recall F1-score Data 2 Accuracy Recall F1-score 

DCNN 0.83 0.80 0.81 0.99 0.99 0.99 

Squeeze net 0.74 0.72 0.72 0.52 0.48 0.50 

Google net 0.73 0.70 0.69 0.52 0.51 0.51 

Resnet-50 0.88 0.81 0.81 0.55 0.50 0.50 

Integrated Classifier 0.99 0.98 0.99 0.98 0.97 0.98 

Fusion 1.00 1.00 1.00 0.99 1.00 0.99 
 

TABLE IV 

COMPARISON OF THE NETWORK MODELS 

Neural network model Data 1 Accuracy Time (min) Data 2 Accuracy Time (min) 

DCNN-Integrated Classifier 1.00 15 0.99 13 

Squeeze net-Integrated Classifier 1.00 18 0.99 18 

Google net-Integrated Classifier 1.00 19 0.99 19 

Resnet-50-Integrated Classifie 1.00 22 0.99 20 

 

Late fusion allows for the application of various fusion 

strategies after model output, thus offering greater flexibility. 

This means that the most suitable fusion method can be 

chosen based on task requirements and data characteristics. 

Late fusion does not require training multiple models 

simultaneously but performs fusion processing 

independently after each model is trained. This reduces the 

overall training cost. Both deep learning and machine 

learning models can utilize late fusion techniques, thereby 

demonstrating strong compatibility. This enhances its general 

applicability in practical scenarios. 
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Fig. 8.  Model Accuracy Chart 

TABLE V 

COMPARISON BETWEEN THE TRANSFER LEARNING-BASED NETWORK AND THE FUSION MODEL 

Neural network model Data 1 Accuracy Recall F1-score Data 2 Accuracy Recall F1-score 

DCNN 0.85 0.82 0.83 0.99 0.99 0.99 

Squeeze net 0.78 0.75 0.74 0.53 0.50 0.51 

Google net 0.80 0.80 0.79 0.55 0.52 0.51 

Resnet-50 0.90 0.90 0.89 0.57 0.55 0.55 

Fusion 1.00 1.00 1.00 0.99 1.00 0.99 

 
TABLE VI 

COMPARISON BETWEEN THE NETWORK BASED ON BAYESIAN 

OPTIMIZATION AND THE FUSION MODEL 

Hyperparameters Range 

Initialized learning rate [1e-2,1] 

Stochastic gradient descent 

momentum 

[0.8,0.98] 

L2 regularization strength [1e-10,1e-2] 

Maximum number of rounds [20,40] 

Validation frequency [5,40] 

Minimum lot size [20,50] 

D. Parametric Analysis 

To address the complexity of deep learning neural network 

structures and further enhance model performance, it is 

essential to conduct parameter analysis following 

comparative analysis. Parameter settings are crucial as they 

directly impact the final experimental results and model 

performance. To further improve the overall classification 

accuracy of neural networks, we suggest employing two 

optimization methods: transfer learning and Bayesian 

optimization. Additionally, we also consider the influence of 

signal-to-noise ratio on the model. 

1) Comparison of Different Signal-to-Noise Ratios 

By conducting experiments under different signal-to-noise 

ratio (SNR) conditions, we can observe the robustness and 

performance variations of the system under different levels of 

noise. A higher SNR typically indicates less noise 

interference, while a lower SNR may lead to confusion 

between signal and noise, thereby affecting the system's 

performance. 

In our experiments, we simulated different SNR conditions 

by adjusting the relative strengths of the signal and noise. We 

collected data under each SNR condition and evaluated and 

compared the system's performance. By comparing the 

experimental results under different SNR conditions, as 

shown in Figure 11, we can observe that the feature fusion 

model exhibits better noise robustness in different 

environments. 

2) Transfer learning 

A comparative test was conducted on the fault diagnosis 

performance of neural networks using transfer learning. The 

effectiveness of the method was analyzed by replacing the 

final layer and freezing the initial layers for each network. As 

shown in Table 5, it can be observed that the accuracy of 

different neural networks improved in both sets of data. In 

dataset 1, the recognition accuracy of the ResNet-50 network 

model showed a significant improvement, attributed to its 

efficient resolution of the vanishing gradient problem 

through residual structures. However, the improvement in 

model performance was less pronounced in dataset 2. 

Nonetheless, the fused model exhibited the highest accuracy, 

recall rate, and F1 score. 
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(a) Data 1 Late Fusion Confusion Matrix Map 

 
(b) Data 2 Late Fusion Confusion Matrix Map 

Fig. 9.  Late Fusion Confusion Matrix Map 

 

 

TABLE VII 

COMPARISON OF MODELS AFTER BAYESIAN OPTIMIZATION 

Neural network model Data 1 Accuracy Recall F1-score Data 2 Accuracy Recall F1-score 

DCNN 0.86 0.83 0.83 0.99 0.99 0.99 

Squeeze net 0.79 0.77 0.78 0.54 0.53 0.52 

Google net 0.82 0.80 0.80 0.55 0.52 0.51 

Resnet-50 0.93 0.92 0.90 0.58 0.56 0.55 

Fusion 1.00 1.00 1.00 0.99 1.00 0.99 
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3) Bayesian optimization 

Based on transfer learning, to achieve higher model 

accuracy, this paper opts to use Bayesian optimization. In this 

optimization process, we use training data and validation data 

as inputs to optimize specific variables, as shown in Table 6. 

We create an objective function for the Bayesian optimizer, 

which train the CNN and returns the classification error on 

the validation set. Due to the setup based on Bayesian 

optimization, overfitting may occur, necessitating additional 

independent testing. Through maximizing the reduction of 

classification error on the validation set during Bayesian 

optimization, we found that all networks in dataset 1 showed 

some degree of improvement in multiple tests, as shown in 

Table 7, there is an overall improvement in accuracy, and the 

fusion model continues to perform the best. 

E. Experimental Results 

Evaluate the effectiveness of the method proposed in this 

paper, we fused various neural networks with ensemble 

classifiers and optimized different model parameters through 

a series of experiments to select the optimal fusion model. 

Based on the performance of different models, we ultimately 

decided to adopt decision fusion between DCNN and the 

ensemble classifier. The resulting model not only 

demonstrates good accuracy in fault detection but also 

requires less training time and exhibits better adaptability to 

different datasets. 
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Fig. 11.  Comparison of Feature Fusion Models at Different 

Signal-to-Noise Ratios 

V. CONCLUSIONS 

Through the use of transfer learning, Bayesian 

optimization, and late fusion methods, it has been 

demonstrated through comparative analysis that feature 

fusion is more effective than transfer learning and Bayesian 

optimization. This paper presents a fault diagnosis model for 

air compressors based on feature fusion, which extracts 

wavelet scattering features for input integration with a 

classifier and MFCC features for input into a convolutional 

neural network for training and testing. After training, the 

classification results are fused to obtain the final fault 

diagnosis result. 

The following conclusions can be drawn: The wavelet 

scattering transform, after extracting low-frequency features, 

utilizes wavelet transform modulation to recover lost 

high-frequency signals and extract more complex features, 

thereby minimizing intra-class differences to the greatest 

extent. Meanwhile, MFCC features preserve the 

discriminability between different classes. The late fusion 

method consistently achieves good results in fault 

recognition accuracy after multiple tests. In comparison to 

other deep learning networks that rely on single-feature 

extraction, the late fusion-based approach proposed in this 

paper significantly enhances recognition accuracy and 

consistently outperforms other literature-based detection 

methods in fault recognition accuracy. The air compressor 

fault diagnosis method proposed in this paper can enhance 

fault identification accuracy, decrease training time for deep 

learning networks, and provide valuable insights for 

production. The late fusion-based air compressor fault 

diagnosis model still has room for improvement in feature 

extraction. It can extract additional sound features to further 

enhance the accuracy of air compressor fault recognition. 
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