
An FPGA-based Object Detection Accelerator
Architecture with Multi-channel Parallel

Computation
Tianyong Ao, Member, IAENG, Suiao Yang, Lin Wang, Le Fu* and Yi Zhou

Abstract—Object detection algorithms are widely used but
involve significant amounts of computations, posing challenges
for adaptation to resource-constrained application scenarios,
such as Unmanned Aerial Vehicles (UAVs) and Unmanned
Surface Vehicles (USVs). To address these challenges, this
paper proposes an object detection accelerator architecture with
multi-channel parallel computation. In this architecture, the
computationally intensive modules, including the convolution
layer, pooling layer, and upsampling layer, are accelerated using
hardware, and other modules are dealt with CPU embedded
in the FPGA. The methods of pipeline design, loop expansion,
data reordering, and other technologies are fully utilized to
design hardware acceleration modules. A data transmission
architecture is designed, incorporating multi-channel transmis-
sion along with ping-pong buffering and employing a blocking
strategy for off-chip data access. Furthermore, the architec-
ture incorporates multiple acceleration IP cores to minimize
data transmission delays. Based on this architecture, the tiny-
YOLOv4 model is optimized and implemented on FPGA as
a hardware accelerator for object detection. The network
model is enhanced by integrating the convolutional layer with
normalization, and different attention mechanisms are applied
to improve feature extraction, thereby reducing computational
load and enhancing accuracy. The performance of the tiny-
YOLOv4 FPGA-based accelerator is validated using the SIMD
dataset. Experimental results demonstrate that the hardware
accelerator performs exceptionally, consuming only 2.4W and
surpassing existing alternatives. Such adaptability facilitates
its integration into complex environments such as intelligent
transportation systems.

Index Terms—FPGA, Object Detection, Tiny-YOLOv4, Par-
allel Computing, High Energy Efficiency.

I. INTRODUCTION

THE object detection algorithm [1] with Convolutional
Neural Network (CNN) is an important type of al-

gorithm in the field of Artificial Intelligence (AI), and its

Manuscript received January 30, 2024; revised August 7, 2024. This
work was supported part by the Program for Science and the Technology
Development of Henan Province (232102211011, 242102220111), the Na-
tional Natural Science Foundation of China (62176088, 62303160) and the
International Strategic Innovative Project of National Key Research and the
Development Program of China (2023YFE0112500).

Tianyong Ao is an Associate Professor at the School of Artificial
Intelligence, University of Henan, Zhengzhou Henan 450046, China. (e-
mail: tyao@vip.henu.edu.cn).

Suiao Yang is a postgraduate student at the School of Artificial Intel-
ligence, University of Henan, Zhengzhou Henan 450046, China. (e-mail:
yangsuiao@henu.edu.cn).

Lin Wang is a postgraduate student at the School of Artificial Intel-
ligence, University of Henan, Zhengzhou Henan 450046, China. (e-mail:
wl 6317@163.com).

Le Fu is a lecturer at the School of Artificial Intelligence, University of
Henan, Zhengzhou Henan 450046, China. (Corresponding author, e-mail:
lefu@henu.edu.cn).

Yi Zhou is a Professor at the School of Artificial Intelligence, University
of Henan, Zhengzhou Henan 450046, China. (e-mail: zhouyi@henu.edu.cn).

application requirements are very wide [2]. Representative
object detection algorithms include the SSD [3], Faster R-
CNN [4], and YOLO [5]. Compared with the other two
algorithms, YOLO algorithms have fast execution speed and
a small calculation amount. One of the main idea of YOLO
models is to transform the object detection problem into
a regression problem. Since the complete picture of the
image can be seen during the whole training and testing
periods, the number of background prediction errors is sig-
nificantly reduced compared with other network models. At
the same time, the network maintains better generalization
ability and has high stability when applied to new fields.
Neural networks commonly employ CPU, GPU, ASIC, or
FPGA for inference acceleration. In contrast to CPU and
GPU, FPGA offers the benefits of lower power consumption
and high energy efficiency [6]. Compared to ASIC, FPGA
boasts advantages such as higher flexibility, low cost, and
a shorter development cycle [7]. Currently, FPGA-based
image recognition application scenarios are becoming more
specific, including the detection and tracking of UAVs [8],
small medical assistance systems [9], lightweight robots [10],
etc. While detection accuracy is ensured, the emphasis in
most of these scenarios is on implementing low-power and
low-cost detection methods. Therefore, there is an urgent
demand for high energy efficiency, low power consumption,
and low-cost object detection systems. It is of tremendous
research significance to use FPGA to accelerate the reasoning
of the object detection model [11].

Studies on FPGA-based neural network accelerators pri-
marily concentrate on enhancing two key components: the
performance of computational units and the efficiency of
data access. Regarding computing unit performance accel-
eration, it is mainly reflected in reducing the amount of data
and accelerating modules through preprocessing. Wang [12],
Hobden [13], and Ali [14] et al. used model pruning to reduce
the computational complexity of the neural network and
make the network obtain faster reasoning speed. However,
their model is straightforward and lacks generality. Moreover,
for the pruned network, the power consumption of using
GPU for inference is unusually high, which is not suitable for
actual scene detection. To reduce the amount of data, Nguyen
[15], Liang [16], and Courbariaux [17] et al. binarized the
weight data and quantified the parameters of the model
to {-1, +1} or {-1, 0, +1}, to achieve the purpose of
model compression and calculation acceleration. However,
the precision loss caused by binarization is also apparent. T.
B. PreuBer [18], Yu [19], Li [20], Jung [21] et al. quantified
the weight in multiple bits to reduce the loss of data accuracy.
Data quantization can reduce the computational complexity

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

and solve the resource problem of FPGA. Data accuracy is a
crucial metric for object detection. Therefore, balancing the
data accuracy and the cost of FPGA resources is crucial.

The acceleration module design is mainly embodied in
how to reduce the calculation delay and improve the par-
allelism of the calculation. To solve this problem, Zhang
[22], Guan [23], Zhang [24] et al. proposed a reconfigurable
design method for a CNN accelerator based on ARM+FPGA
architecture. They used matrix segmentation and time divi-
sion multiplexing methods to design high-performance com-
puting units to reduce the accelerator calculation reasoning
delay. Due to the lack of continuity between computation
and memory access, the actual performance of the cell is
not significantly improved during inferential computation.
Therefore, the design of the acceleration module should
consider the data transmission mode and make full use
of the advantages of FPGA parallel computing to improve
the parallelism of computing. Otherwise, data transmission
between computing units and storage systems may become
the bottleneck of the entire design architecture.

Regarding the efficiency of data access, one should op-
timize storage resources as much as possible and reduce
access time as much as possible. At present, the commonly
used optimization methods for deploying neural networks on
FPGA mainly include loop unrolling [25], loop tiling [26],
and loop switching [27]. Aiming at these methods, Ma [28]
and Wu [29] et al. used cyclic expansion to carry out multidi-
mensional expansion of feature graphs and other parameters,
thus improving the degree of parallelism and saving the time
required for calculation. However, frequent memory access is
a challenging problem for neural network FPGA deployment.
References [30] and [31] proposed a feature mapping storage
format, which blocks data according to the rule and reads
data in sequence to improve the utilization rate of locality
and reduce the number of off-chip access. The present study
shows that time division multiplexing is an effective method
to solve the storage problem. Combined with block rules,
reusing on-chip resources can improve the utilization rate of
resources and reduce the number of visits outside the storage.

Through the analysis of the above problems, this paper
designs a high energy efficiency and high precision hard-
ware accelerator combined with the characteristics of FPGA
hardware and deploys the mainstream network model YOLO
in object detection on the accelerator. The main contributions
of this paper are as follows:

(i) A low-power and energy-efficient hardware acceler-
ation architecture is proposed in this paper. The architec-
ture is designed to minimize computation time delays by
incorporating a combination of the ping-pong buffer for
data transmission and a multi-channel parallel computing
framework. Furthermore, when integrated with intelligent
transportation systems, this architecture proves invaluable for
large-scale remote sensing data-based traffic monitoring.

(ii) To address the challenges associated with complex tim-
ing sequences and significant computation delays in existing
accelerator IP cores, acceleration engines of varying sizes for
convolution kernels, pooling, and sampling are introduced.
These engines are devised to resolve the memory access and
computation speed mismatch. Subsequently, the design space
of the accelerator is discussed.

(iii) In the training stage, diverse attention mechanisms

are employed to determine the weighting factors. Further-
more, convolution and Batch Normalization (BN) layers are
integrated to reduce the computational load and enhance
detection accuracy.

The rest of this article is organized as follows. Sec-
tion II introduces the design optimization method of each
hardware accelerator module. Section III deploys the Tiny-
YOLOv4 model to the accelerator. Section IV summarizes
and analyzes the experimental results through simulation and
physical verification. Section V summarizes the complete
text, analyzes it, and discusses the future work plan.

II. BACKGROUND

A. Tiny-YOLOv4

Tiny-YOLOv4 is designed based on YOLOv4. Its faster
detection speed and accuracy meet the requirements of practi-
cal applications, which significantly improves the possibility
of deploying object detection methods on mobile devices. As
shown in Fig 1, the process of Tiny-YOLOv4 detection can
be divided into five steps.

(1) Input a multi-target image and divide the image into
multiple grids.

(2) Inference operation by the neural network.
(3) Obtain the classification probility of the grid, as well

as the candidate boxes and confidence of each grid prediction
through network interence calculation .

(4) Multiply the classification probability and confidence
score of each box to obtain the confidence score of each box.

(5) Output the location and category information of the
detection object.

Input Picture

Inference and Calculation

Predicted Label

Superimpose Candidate Boxes

Output Test Results

Input Picture

Inference and Calculation

Predicted Label

Superimpose Candidate Boxes

Output Test Results

Fig. 1. The tiny-YOLOv4 inference process

The tiny-YOLOv4 network model is segmented into three
components: CSPDarknet53, FPN, and YOLO Head. CSP-
Darknet53 includes three BasicConv and three Resblocks,
which handle fundamental convolution, activation, and pool-
ing operations. Inspired by residual networks, this design
allows gradients to flow through two separate paths, en-
hancing the relevance of gradient information. FPN primarily
performs tensor splicing and sampling calculations, utilizing
a feature pyramid network to extract feature maps at various
scales and improve object detection speed. The network’s
output segment referred to as YOLO Head, accommodates
two sizes for detecting targets of different scales. Modularity
is embraced in the computation process of the Tiny-YOLOv4
network model by consolidating the convolution layer, pool-
ing layer, and activation function into a single module.
Convolution kernels come in two distinct types, and acti-
vation operations are typically carried out once convolution
calculations are completed. After computational processing,

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

the results are extracted from the network, encompassing
object coordinates, categories, and confidential information.
Subsequently, non-maximum suppression is employed to
filter out redundant boxes, yielding the final detection results.
A depiction of the specific network structure is presented in
Fig 2.

Input 416*416*3

BasicConv1 208*208*32

BasicConv2 104*104*64

Resblock_body1 52*52*128

Resblock_body2 52*52*128

Resblock_body3 52*52*128

BasicConv3 208*208*32

YoloHead

YoloHead

YOLO_Head

CSP Darknet53
BasicConv

BasicConv ConvBasicConv Conv

Resblock

BasicConvBasicConvBasicConv ConvConvConv

Resblock

Conact

Conv

Conv+Upsample

FPN

ConactConact

ConvConv

Conv+Upsample

FPN

BN LeakyReluConv BN LeakyReluConv BNBNBN LeakyReluLeakyReluLeakyReluLeakyReluConvConvConv

Concat

Conv3

Conv4

POOL

Concat

Conv2

Resblock

Conv1

Fig. 2. Structure of Tiny-YOLOv4 network

The Tiny-YOLOv4 model can be deployed to the hardware
acceleration designed above based on the network diagram.
This deployment encompasses two aspects. Firstly, there is
the convolution operation, which is further subdivided into
two different convolution kernel sizes: 1×1 and 3×3. The
focus of acceleration lies in optimizing the convolution oper-
ation. The second aspect involves lightweight computations,
including tasks such as pooling and sampling layers. For
the remainder of the network, the computational demands
are minimal, allowing for straightforward implementation
without requiring specific focus in this discussion.

B. Object Detection Accelerator

Object detection is a technology that utilizes computers
to process, analyze, and comprehend images, enabling the
identification of various objects within different patterns. It
made its debut during the 2012 ImageNet competition. In
recent years, the most remarkable advancements in image
classification, object detection, face recognition, and related
domains have been rooted in deep learning. As the parallel
computing performance of image recognition is hampered by
hardware resources and bandwidth limitations, an increasing
number of applications have turned to FPGA for image
recognition. With the evolving demands of diverse scenarios
and the quest for an enhanced user experience, recognition
systems are subject to increasingly stringent requirements.
Consequently, much of the research effort focuses on de-
ploying image recognition algorithms on FPGAs to evaluate
the proposed acceleration schemes and architectures. Given
the finite resources of FPGAs, completing all neural network
calculations in a single sweep is unfeasible. Instead, a time-
division multiplexing method is employed for computations.
The overarching approach involves transmitting images from
DDR to the FPGA chip cache, storing pertinent weight
information on the chip, and subsequently employing a
specially designed acceleration engine to execute the relevant
computations.

The neural network model is too extensive to fit entirely
within on-chip memory. To address this challenge, loop tiling

is employed, dividing data into blocks that can fit in on-chip
memory. The primary objective of this technique is to allo-
cate tiling sizes in a manner that optimizes data locality for
convolutions and minimizes data transfers between external
memories. Ideally, each input and weight is transferred to
the on-chip buffer only once from external memory.

Sacrificing small precision to enhance performance is
a common approach in FPGA implementation. The two
most prevalent strategies involve reducing precision and the
number of operations. During training, data is represented
in a floating-point format. During inference, data can be
converted to a fixed-point format, typically 8 or 16 bits, in
order to decrease storage demands, hardware utilization, and
power consumption.

C. Parallelism and Pipeline of FPGA

The primary advantage of FPGA compared to GPU lies
in its latency performance. It has the capability to output
computation results for multiple channels in a single clock
cycle, thereby significantly boosting throughput. FPGA’s
parallel processing hinges on precise clock construction
within digital circuits. This clock consistently triggers vari-
ous modules, propelling data progression according to pre-
determined objectives. There are two primary methods of
parallel processing based on FPGA: data parallelism and
pipeline parallelism.

Data parallelism shines in the data transmission process,
facilitating computed data input into the computing engine
through multiple channels. In interactions with external stor-
age, FPGA can leverage multiple external interfaces for data
transmission, effectively expanding the transmission band-
width. In the context of image processing, FPGA typically
manages multi-dimensional input feature maps and weights.
To augment input and output parallelism, dimensionality re-
duction is achieved through loop unrolling. However, caution
is warranted, as excessive unrolling may lead to increased
storage consumption and area sacrifice. Thus, employing
loop unrolling for moderate data parallelism necessitates
logical sorting and parallel transmission based on specified
rules. A proposed feature map storage format organizes data
into blocks, enhancing locality utilization and increasing data
transmission parallelism.

Pipeline parallelism forms the bedrock of hardware design,
breaking down substantial tasks into smaller, sequentially
executed operations. FPGA segments the combinational logic
system, introducing registers between segments to cache
intermediate results. This approach decomposes complex
operations into smaller, quickly completed tasks, thereby
boosting clock frequency. Pipeline parallelism is most ef-
fective when employed with as many tasks as possible,
considering emptying and filling times.

In our design, loop unrolling is initially used to expand
both input and output channels, enhancing data input and out-
put parallelism with minimal resource consumption. FPGA
interfaces with external storage devices through multiple
external interfaces, employing pipelines for data transmis-
sion and computation. This concurrent approach significantly
increases throughput across multiple tasks. It is important
to note that the emphasis on loop unrolling and pipelining
in this paper lies in their strategic application within our

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

proposed framework, addressing specific challenges and op-
timizing for efficiency.

D. Convolutions of Different Sizes

Most neural networks consist of convolutional layers,
pooling layers, and fully connected layers. Among these, the
convolutional layer exhibits the highest complexity, resulting
in the longest processing time. This article primarily focuses
on accelerating the convolution layer, with the majority
of current convolutions being either 1×1 or 3×3. A 1×1
convolution does not alter the height and width of the image,
its primary effect lies in dimensionality augmentation or
reduction. The operation of a 1×1 convolution is simpler
than that of a 3×3 convolution due to its smaller kernel
size. As depicted in Fig 3, it involves only a straightforward
point multiplication operation within the convolution kernel,
without performing a full matrix multiplication.

Input feature map kernel Output feature map

11 11 44 11

44 11 44 11

22 33 11 33

11 00 22 11

33 11 33 11

22 11 00 00

44 22 11 00

33 11 22 22

22 44 11 00

00 11 33 11

22 11 33 11

11 33 11 44
22 44 11 00

00 11 33 11

22 11 33 11

11 33 11 44

1 1 4 1

4 1 4 1

2 3 1 3

1 0 2 1

3 1 3 1

2 1 0 0

4 2 1 0

3 1 2 2

2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4
2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4

22 22 88 22

88 22 88 22

44 66 22 66

22 00 44 22

66 22 66 22

44 22 00 00

88 44 22 00

66 22 44 44

44 88 22 00

00 22 66 22

44 22 66 22

22 66 22 88

44 88 22 00

00 22 66 22

44 22 66 22

22 66 22 88

2 2 8 2

8 2 8 2

4 6 2 6

2 0 4 2

6 2 6 2

4 2 0 0

8 4 2 0

6 2 4 4

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

22* =2* =

1 1 4 1

4 1 4 1

2 3 1 3

1 0 2 1

3 1 3 1

2 1 0 0

4 2 1 0

3 1 2 2

2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4
2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4

2 2 8 2

8 2 8 2

4 6 2 6

2 0 4 2

6 2 6 2

4 2 0 0

8 4 2 0

6 2 4 4

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

2* =

Input feature map kernel Output feature map

1 1 4 1

4 1 4 1

2 3 1 3

1 0 2 1

3 1 3 1

2 1 0 0

4 2 1 0

3 1 2 2

2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4
2 4 1 0

0 1 3 1

2 1 3 1

1 3 1 4

2 2 8 2

8 2 8 2

4 6 2 6

2 0 4 2

6 2 6 2

4 2 0 0

8 4 2 0

6 2 4 4

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

4 8 2 0

0 2 6 2

4 2 6 2

2 6 2 8

2* =

Fig. 3. 1×1 convolution calculation process

The operation involving a 3×3 convolution kernel is in-
tricate. Within this operation, both the convolution and its
interior components require multiplication and addition, as
shown in Fig 4. This process is equivalent to expanding the
receptive field area. As a result, the computational complex-
ity and data transmission during the calculation process is
significantly higher compared to a 1×1 convolution.

01
4101
41

20
2320
23 01

41
20

23
01

4101
41

20
2320
23 01

41
20

23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
4101
41

20
2320
23 01

41
20

23
01

4101
41

20
2320
23 01

41
20

23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
4101
41

20
2320
23 01

41
20

23
01

4101
41

20
2320
23 01

41
20

23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
4101
41

20
2320
23 01

41
20

23
01

4101
41

20
2320
23 01

41
20

23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

01
41

20
23

0 210 210 210 21

0 210 210 210 21

0 210 210 210 21

0 21

0 21

0 21

24 21

24 21

24

12

21

12

12

Input feature map kernel Output feature map

Fig. 4. 3×3 convolution calculation process

At present, most hardware acceleration methods employ
3×3 convolution instead of 1×1 convolution to minimize
hardware resource usage. However, due to the differing
computational loads between these two convolution sizes,
data transmission and computation processes exhibit signif-
icant disparities, potentially resulting in a speed mismatch
between the two stages. Consequently, this paper introduces
specialized acceleration engines designed for convolutions of
varying sizes. Furthermore, it should be noted that the design
scope of this paper is not limited to the YOLO model, and
the proposed method is equally applicable and universal in
the deployment of other models.

III. SYSTEM ARCHITECTURE

A. Overview of Accelerator Architecture

The accelerator adopts an ARM+FPGA architecture to
accelerate neural network inference, comprising the Process-
ing System (PS) and Programmable Logic (PL). The PS
utilizes an ARM processor for task scheduling and data
loading allocation. Meanwhile, the PL leverages the parallel
computing capabilities of the FPGA to execute intricate
computations such as convolution, pooling, and sampling.
The structure of the system is shown in Fig 5.

The PS consists of the Core Processing Unit (CPU) and
the data control module, primarily responsible for prepro-
cessing images and allocating them to the PL for reasoning
and computation. This paper primarily focuses on the PL,
which encompasses two convolution acceleration modules of
different sizes, a pooling module, and a sampling module.
To enhance data transmission speed, multiple input and
output buffers have been designed. We employ a ping-pong
operation to facilitate parallel calculations across multiple
channels. Data interaction between the PS and PL is achieved
through the AXI bus. Exploiting the high-speed data pro-
cessing characteristics of the HP interface of the AXI bus,
we have designed five interconnection modules in a master-
slave configuration. The PL, functioning as the host, accesses
off-chip storage, while the PS, acting as the slave, reads
data from external storage based on address information and
transfers it to on-chip cache buffers via four HP interfaces.
Subsequently, the accelerator calls the Convolution IP and
Maxpool & Upsample IP, following the neural network’s
calculation process. After the IP core computations have been
accelerated, the results are written to the output buffer. The
accelerator workflow can be divided into four steps:

Step 1: Image preprocessing, preparation, and the trans-
mission of relevant information to the PL side.

Step 2: The PL engages in data interaction with the PS
and loads off-chip data into the on-chip cache.

Step 3: The accelerated IP on the PL side conducts
inference calculations and delivers the results to the output
cache.

Step 4: The PL side writes the results back to the PS side
via the HP interface and subsequently outputs the results.

B. Multi-Channel Data Transmission

The actual bandwidth of DRAM exceeds that of a single
interface. To address the memory optimization challenge
in the data transmission process, a solution is proposed,
which adopts a multi-channel DMA parallel data interaction
mode. A pipeline buffer is also implemented to enhance the
internal storage structure of the accelerator. The read and
write channels on the AXI bus operate independently, and
the AXI master interface module generated by Vivado HLS
resembles a DMA structure. When reading data from off-chip
storage, a 4-channel DMA is employed to retrieve the input
feature maps and weight information. The data is initially
stored in buffer A and subsequently in buffer B during the
following clock cycle. Each channel has a bit width of 32
bits, effectively quadrupling the interface’s bit width during
parallel channel processing. This leads to improved data
reading parallelism and throughput rate, as depicted in Fig 7.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

AXIconnect

Conv IP

Cross

bar

Weight Buffer0

..
.

..
.

Weight Buffer0

..
.

..
.

..
.

Weight Buffer1

..
.

Weight Buffer1

Weight Buffer0Weight Buffer0

Weight Buffer1Weight Buffer1

M
U

X
M

U
X

1*1 Conv

3*3 Conv

Output Buffer0

..
.

..
.

Output Buffer0

..
.

Output Buffer1

..
.

..
.

Output Buffer1

..
.

Output Buffer

Maxpool & Upsame IP

Mode=0 Maxpool

Mode=1 Upsame

Input BufferInput Buffer M
U

X

External Memory Device

Muliti-channel

interconnection

AXIconnect

AXIconnect

AXIconnect

AXIconnect

DDR3 SD CardDDR3 SD Card

Data Control

ContexA9

CPU

ContexA9

CPU

ContexA9

CPU

ContexA9

CPU

ARM Processor

Data Control

ContexA9

CPU

ContexA9

CPU

ARM Processor

Maxpool

Upsame

Fig. 5. Overall system design architecture diagram

WQ0

RDATA

Win0

WQ0

Win1

WQ1

Win1

Compute

Win0

WQ0

WQ1

Wout0

Win0

Wout1

Wout0

Wout1

WDATA

RDATA RDATA RDATA RDATA

WDATA WDATA WDATA WDATA

Wout0

Compute Compute Compute Compute

Clock frequency：100MHz

HP0-HP3

InputBuffer0

InputBuffer1

WeightBuffer0

WeightBuffer1

Compute

OutputBuffer0

OutputBuffer1

HP0-HP3

HP0-HP3

InputBuffer0

InputBuffer1

WeightBuffer0

WeightBuffer1

Compute

OutputBuffer0

OutputBuffer1

HP0-HP3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Fig. 6. Space-time diagram of convolution calculation

The space-time diagram of the entire convolution calcu-
lation is depicted in Fig 6. Initially, the PL retrieves data
from external storage via the HP interface on the AXI
bus, specifically the weights and input feature maps. Sub-
sequently, this relevant data is loaded into on-chip buffers.
In the design of the on-chip storage, a ping-pong buffer
strategy is implemented, featuring two weight buffers, two
input buffers, and two output buffers, respectively. The on-
chip buffer structure is based on the ping-pong buffer design,
with each buffer comprising a varying number of banks. The
number of banks in the input buffer correspond to the parallel
number of input channels Tn, while the number of banks in
the output buffer align with the parallel number of output
channels.

The data reading process primarily involves two aspects:
the retrieval of the input feature map and the retrieval of
weight data. In our design, multi-channel transmission has

been implemented to enable concurrent execution of these
two parts. However, the pooling module solely necessitates
the transmission of the input feature map, as it does not
consider the weights. The entire calculation process can be
divided into the aforementioned five steps. The execution
times for these five steps are denoted as T1, T2, T3, T4

and T5, and the total number of tasks to be executed is
represented as ‘times.’ In the absence of pipelining, the total
time required for the entire computation flow is calculated
as formula (1).

Tsum = N × (T1 + T2 + T3 + T4 + T5) (1)

After implementing the ping-pong buffer, data is efficiently
read from the DRAM and stored in buffer A. Simultaneously,
the data in buffer A is transferred to the computing unit
for computation. At the same time, feature map cache B

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

DRAM

4×DMA

4×DMA

4×DMA control

logic

Image Buffer A

3×3

Acc-engine

1×1

Acc-engine

Image Buffer B

Output Buffer B

Output Buffer A

Weight Buffer B

Weight Buffer A

Fig. 7. Diagram of ping-pong buffering and multi-channel transmission

accesses data from the DRAM, allowing for concurrent data
retrieval and computation. This overlap in data processing
optimizes access time. Furthermore, the total duration of the
entire calculation is contingent on the longest part of the
process. Following the principle of pipeline calculation, the
overall time required for the entire calculation process can
be summarized as formula (2).

Tpipeline = (N − 8)×MAX(T1, T2, T3, T4, T5)
+MAX(T1, T2, T3, T4)
+MAX(T1, T2, T3)
+MAX(T1, T2)
+MAX(T2, T3, T4, T5)
+MAX(T3, T4, T5)
+MAX(T4, T5) + T1 + T5

(2)

Based on the inequality Tpipeline ≤ Tsum, the optimiza-
tion strategy outlined in this section effectively enhances data
transfer efficiency and reduces latency.

C. Convolution Acceleration Engine with Different Sizes

Most of the computational time in neural network models
is concentrated within the convolution layer, which is our pri-
mary focus for acceleration. Due to limited FPGA resources
and the sheer size of neural network models, simultaneous
computation of all calculations is unfeasible. Consequently,
a circular chunking strategy is employed for off-chip data
reading. Circular partitioning enables the division of matrix
loops into smaller modules, facilitating data reuse on-chip
and minimizing memory access times.

Neural networks typically feature two types of convolution
kernel sizes. The 1×1 convolution operation is replaced with
the 3×3 convolution operation, and the accelerator’s effi-
ciency in the inference calculation process of the convolution
layer is assessed, as illustrated in Fig 8. Notably, the less
efficient layers are predominantly found in the 4th, 7th,
10th, and 12th convolution layers with a 1×1 convolution
kernel size. In these instances, the layer’s processing time is
dictated by data transmission, with computation time falling
short of data transfer time. Consequently, the computing
unit must pause and await data retrieval, leading to longer
actual computation times. To address this mismatch between
data storage and module calculation speed, we have devised
dedicated acceleration engines.

Layer

100%

90%
80%
70%

60%

50%

40%

30%
20%

10%

0%

Ef
fic

ie
nc

y
%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.12

0.1

0.08

0.06

0.04

0.02

0

Ti
m

e
(s

)

Actual delay Theoretical delay

Efficiency

Actual delay Theoretical delay Efficiency

Fig. 8. Accelerator efficiency evaluation for a single IP core

Calculation efficiency is defined as the ratio of theoretical
calculation time to actual calculation time. Certain variables
are defined and presented in Table I.

The accelerator employs a block strategy for reading
the data from off-chip memory to input buffers. The data
involves input feature maps and their weight parameters. The
selection of tile size significantly influences performance, and
our design is bound by the following constraints:

0 < Tm × Tn < (PEs)
0 < Tm ≤ Tout

0 < Tn < Tin

0 < Tr < Rin

0 < Tc < Cin

(3)

Following blocking rules, Tm is divided into Tin/Tn

blocks in the input channel, and Tout is divided into Tout/Tm

blocks in the output channel direction. Each original input
feature map of size Rin×Cin on each channel is partitioned
into (Rin/rin) × (Cin/cin) blocks. Similarly, the output
feature map Cout × Rout on the output channel is divided
into (Rout/rout) × (Cout/cout) blocks. In summary, for
each layer, the convolution operation necessitates reading the
convolution kernel from off-chip (Tin/Tn) × (Tout/Tm) ×
(Rout/rout) × (Cout/cout) times, reading the feature map
from off-chip (Tin/Tn)× (Rin/rin)× (Cin/cin) times, and
writing back to the off-chip storage system from the output
cache (Tout/Tm) × (Rout/rout) × (Cout/cout) times. The
block diagram is shown in Fig 9.

Input Image Weight Output Image

Tin

Tout

Cin

Rin

Cout

Rout

cin

rin

cout

rout

K

... Tm

Tn

Fig. 9. Block diagram of the convolution calculation

For the 3×3 convolution kernel, the input feature map
is expanded in two dimensions: the input and the out-
put channel. Additionally, multiple parallel multiplication
and addition units have been incorporated to facilitate the
convolution operation. During the data calculation process,

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

TABLE I
TABLE OF RELATED PARAMETERS

Symbol Meaning

Rin / Cin / Rout / Rout Length/width of input/output picture

Tin / Tout Number of channels to input/output images

Tn / Tm The parallelism between the input and output of the accelerator

rin / rout / cin / cout Length /Width of input/output picture each time

K Convolution kernel size

the weight data, input pixels, and output pixels are parti-
tioned based on the input and output channels, effectively
reducing the multi-dimensional array to a two-dimensional
array. Subsequently, the pixel blocks are sequentially fed
into the acceleration engine for computation. To enhance
FPGA’s calculation speed, pipelining is employed on the
output channel, allowing the results of 32 channels to be
output to the buffer in a single cycle. Our design consumes
approximately 128 DSP resources in this system.

During each clock cycle, the convolution module retrieves
pixels from the input buffer while simultaneously fetching
weight parameters from the corresponding position in the
weight buffer. It employs Tn × Tm parallel multiplication
units to perform multiplication calculations and subsequently
add the product results in pairs using Tm addition trees. Each
computing unit is independent of the others, and the pipelin-
ing work cycle reflects the advantages of FPGA parallel data
processing. Once all calculations are finished, the results are
written to the output buffer. As shown in Fig 10, illustrating
the schematic diagram of the 3×3 convolution operation.

PE

PE

PE

PE

4×32

..
.

Tm

cout

Tm

rout

Tn

rin

cin

..
.

Multiplying Array Addition Tree

Weight

Input Image Output Image

...

Tm

cout

Tm

rout

Tn

rin

cin

..
.

Multiplying Array Addition Tree

Weight

Input Image Output Image

...

Fig. 10. 3×3 Schematic diagram of the convolution operation

The 1×1 convolution involves significantly fewer calcula-
tions compared to the 3×3 convolution. It essentially involves
a dot product operation, which is amenable to a block matrix
multiplication design. Similarly, the weight data, input, and
output pixels are segmented into two-dimensional arrays, and
pipeline processing is implemented on the output channel.
In our design, each layer consists of 4 input channels and 8
output channels. The input image and weights are used for
point multiplication, as depicted in Fig 11.

The convolution layer’s computation is the primary focus
of this acceleration system. It has been observed that the
accelerator’s computational efficiency depends on the clock
frequency and the values of Tm and Tn. Convolution consists
of two parts: weight calculation and input feature mapping.
The total amount of calculation is the sum of these two

Multiplying Array Addition TreeInput Image

..
.

Output Image

PE

PE

PE

PE

4×8

Multiplying Array Addition TreeInput Image

..
.

Output Image

PE

PE

PE

PE

4×8

Fig. 11. 1×1 Schematic diagram of the convolution operation

parts, which are calculated in the same way, so they can
be expressed by the following formula (4).

E =2× (rin × cin × Tn × Tm ×K ×K) (4)

Due to the inherent characteristics of the Tiny-YOLOv4
network, the minimum input channel value is constrained
to 13, which we shall refer to as Tin. The value of Tm is
determined based on our input parallelism. With four HP
interfaces on the AXI bus, four banks in each buffer of the
input cache have been configured. The calculation engine
processes four channels in parallel during each cycle. The
network’s intrinsic attributes also dictate the value of Tm.
The network specifies a minimum of 32 output channels,
and we adhere to this value. In principle, the hardware
design parameters are optimized to the fullest extent allowed
by Tiny-YOLOv4. However, owing to constraints posed by
FPGA accelerator resources, 89% of the resources have been
allocated to the convolution operation, while the remaining
resources are reserved for other operations.

D. Other Acceleration Modules

The pooling layer in a neural network typically employs
maximum pooling with a step size of 2. Unlike the convolu-
tion layer, the pooling layer primarily relies on comparators.
The number of comparators is determined by the input
parallelism, denoted as Tn. In each clock cycle, pixel values
are read from the input buffer. After conducting S×S com-
parisons, the maximum value is written to the output buffer.
Once this layer’s calculations are complete, the next layer
proceeds. To enhance efficiency, parallel calculations across
multiple channels are implemented by cyclically expanding
the input channel. You can see the pooling circuit in Fig 12.

The sampling function serves to magnify the image’s finer
details. In our hardware design, this function is implemented
as a multiplexer. This selector takes a single pixel as input

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

Input Image Output ImageComparators Array

...

Reg

Reg

Reg

...

Tn

Tm

C1

C2

CTm

Fig. 12. Schematic diagram of the pooling operation

and creates four copies of the pixel, distributing them across
four separate buffers. To enhance computational speed, a
pipeline approach is employed to increase computational
parallelism with an input parallelism of 4. Within the FPGA,
multiple selectors are generated, and the specific structure
can be referred to in Fig 13.

Input Image

...

Multiplexers Output Image

Tn

...

M
U

X
M

U
X

M
U

X

Input Image

...

Multiplexers Output Image

Tn

...

M
U

X
M

U
X

M
U

X

Fig. 13. Schematic diagram of the sampling operation

IV. DEPLOYMENT OF THE MODEL

A. Convolution Layer Network Fusion

In the training of neural network models, the BN layer
is typically positioned after the convolution layer to ex-
pedite network convergence and mitigate overfitting. BN
normalizes the data, effectively addressing issues related to
gradient vanishing and explosion. However, during network
forward inference, the presence of additional calculation
layers can impact model performance and consume more
memory or video memory space. To enhance the speed of
forward inference, it becomes necessary to consolidate BN
layer parameters into the convolution layer. We achieve this
integration by incorporating the convolution and BN layers
into the weights, utilizing a specific calculation formula to
generate a bias parameter. The original calculation process
is as follows:

yi = γ
(wxi + b)− µ√

σ2 + ε
+ β (5)

Where µ is the mean, σ is the variance, and γ is the
scaling factor. These values are obtained through network
training and are fixed in the reasoning process. Let us put
α = γ√

σ2+ε
into the above formula Wnew = w × α, The

new bias yi = xi × ω × α+ α× (b− µ)× β. And then we
get the new weights βnew = α(b − µ) + β. According to
the analysis in Table II, a convolution requires at least four

multiplications and additions before the fusion. However,
after fusion, only one multiplication and one addition are
needed, reducing computation and memory retrieval times.

TABLE II
COMPARISON OF PARAMETER FUSION PERFORMANCE

Before fusion After fusion Promotion Error

Time(s) 0.5318 0.5103 4.2 5.206e-10

B. Network Training with Different Attention Mechanisms

Neural network computation involves two phases: training
and inference. Due to FPGA resource limitations, the CPU is
utilized for network training, with essential data like weights
and biases necessary for calculations being acquired. The
introduction of attention mechanisms during network training
enhances feature extraction, allowing the model to better
capture information from the training set and ultimately
achieve higher accuracy. Different attention mechanisms are
explored to extract essential features for improved model
precision.

One such mechanism is SENet, which employs channel
attention to assign feature map weights. This mechanism
optimizes feature maps by assigning higher weights to sig-
nificant features and lower weights to less influential ones,
directing the network’s focus on critical information. While
SENet performs exceptionally well on specific datasets, its
universality is limited, and the surplus parameters may affect
model speed.

The CBAM module extrapolates the attention map along
two independent dimensions and then multiplies the attention
map with the input feature map for adaptive feature optimiza-
tion. The key advantage of the attention mechanism is its
ability to focus on relevant information, eliminating irrelevant
details and establishing direct input-output dependencies
without recycling, thus enhancing parallelism.

Comparatively, the ECA attention mechanism stands out
for its simplicity, computational efficiency, and low parame-
ter count while delivering substantial performance improve-
ments. It enhances models without adding complexity, mak-
ing it a practical choice for lightweight network inference
compared to existing methods.

The above analysis employed different attention mech-
anisms to derive network weights, and their impact on
our proposed model was evaluated through experiments.
This comparative analysis identified the weight data with
the highest accuracy and was subsequently used for FPGA
accelerator computations.

C. Low-Bit Quantization

Convolution operations in neural networks rely heavily on
multipliers and adders. Resource consumption is intrinsically
tied to data accuracy. During the training of the YOLO
model, the 32-bit floating-point data type is employed.
Binarization and 8-bit fixed-point quantization compromise
data accuracy. Hence, our initial consideration is 16-bit
fixed-point quantization. Experimental results in Table III
showcase the resource and power consumption for DSP, FF,
and LUT in FPGA, which vary with different data accuracy.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

TABLE III
COMPARISON STATISTICS OF RESOURCES AND POWER CONSUMPTION

DSP FF LUT Power(PJ)

Adder(float32) 2 354 231 0.9
Adder(fixed16) 0 96 52 0.05

Multiplier(float32) 3 291 144 3.7
Multiplier(fixed16) 1 96 99 0.9

Experimental results demonstrate that, when compared
to the use of 32-bit floating-point data, employing 16-bit
fixed-point data significantly reduces resource and energy
consumption. The quantized value for 16-bit fixed-point data
can be expressed using the formula (6).

Vfixed =
15∑
i=0

Bi × 2−fl × 2i,Bi ∈ {0, 1} (6)

The theoretical FPGA resource consumption was assessed
following fixed-point quantization. Formulas (7), (8), and (9)
represent the respective theoretical consumption values for
DSP, FF, and LUT in the hardware architecture design.

CDSP = Tm × Tn × (δDSP + εDSP) (7)

CFF = Tm × Tn × (δFF + εFF) + Tm × γFF (8)

CLUT = Tm × Tn × (δLUT + εLUT) + Tm × γLUT (9)

Where CDSP , CFF , and CLUT represent the consumption
of DSP, FF, and LUT resources during convolution opera-
tions. Meanwhile, δ, ε, and γ reflect resource consumption
related to various data precision types. Notably, γ is directly
linked to the number of output channels. Our primary con-
cern is the resource consumption involved in adding bias
after multiplication and addition. A comparison with Table
III highlights the substantial reduction in resources and power
consumption achieved by using 16-bit fixed-point data types
in contrast to 32-bit floating-point data.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Characteristic weight values were extracted by different
attention mechanisms, and the optimal weights were selected
through a comparative analysis. Subsequently, these weights
were quantized into 16-bit fixed-point data types. Finally,
these quantized weights were integrated with the proposed
FPGA hardware accelerator. The hardware acceleration sys-
tem utilized a Xilinx PYNQ-Z2 board featuring a Cortex-
A9 chip, encompassing PL and the embedded processor
PS. The hardware core module was designed using Vivado
HLS 2019.2, and synthesis and layout were performed with
Vivado 2019.2. For system validation, an extensive series of
experiments was conducted to ensure system stability and
accuracy. A comprehensive evaluation of the accelerator was
conducted employing the SIMD dataset [32], considering
practical application scenarios.

B. Comparison of Training Accuracy

During the training phase, the SEnet, CBAM, and ECA
attention mechanisms were incorporated individually to boost
network accuracy. The SIMD dataset, comprising various
vehicle types such as cars, planes, ships, and ten other
standard modes of transportation, was utilized in our ex-
periments. After the network training was completed, the
optimal weights were determined. Then, various samples
were evaluated, and the accuracy comparison under different
attention mechanisms is shown in Fig 14.

No
SEnet
CBAM
ECA

100

80

60

40

20

0
m

ap
 %

va
n

bu
s

tra
iner

lon
g c

ar

pro
 ai

rcr
aft

fig
hte
r

air
cra
ft ca

r

ch
ar
ter sh

ip

No
SEnet CBAM

ECA

Fig. 14. Precision comparison of different attention mechanisms

The figure above clearly shows that the ECA attention
mechanism consistently outperforms other attention mecha-
nisms in terms of accuracy. This view was better illustrated
by evaluating our training model under different Average
Precision (AP) values, as shown in Table IV.

TABLE IV
PRECISION COMPARISON UNDER DIFFERENT AP VALUES

NO CBAM SEnet ECA

Ap30 71.7 74.1 73.3 74.4
Ap50 69.6 71.9 71.6 72.9
Ap75 44.3 46.4 40.9 47.9

The above clearly shows that the combination of attention
mechanisms improves the accuracy of our model, and ECA
produces excellent results, achieving higher accuracy than
other mechanisms. Subsequently, the best weight model was
selected, and its weight data were partitioned according to
each module described in Fig 2. The concept of modularity
is fully reflected in the partitioning process, which alleviates
multiple weight interactions in subsequent FPGA deployment
and reduces the number of times the FPGA accesses external
storage.

C. Deployment Result Analysis

After determining resource allocation, the corresponding
design configuration is presented in the following Table V.
To optimize FPGA resource utilization prior to deployment,
16-bit fixed-point quantization of weights was conducted.
Table V details the utilization of LUT, FF, BRAM, DSP,
and LUTRAM. Analysis reveals that LUT, BRAM, and DSP
experience high consumption rates. This is attributed to the
storage of output cache data within on-chip storage, leading

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

to significant BRAM resource utilization. In the convolution
operation, parallel processing on the output channel, along
with the use of multiple multipliers, results in high DSP
resource occupancy.

TABLE V
FPGA RESOURCE CONSUMPTION

Resource Utilization Available Utilization Rate(%)

LUT 42122 53200 79.18
BLUTRAM 7414 17400 42.61

FF 47709 106400 44.84
BRAM 96 140 68.57

DSP 220 220 100

The hardware performance was evaluated using throughput
as the criterion, which was calculated as the total number of
operations divided by the execution time. Total operations
serve as an indirect measure of network complexity. In the
FPGA implementation of this design, the quantized virtual
network entails a total of 8 GOP operations. For input feature
maps sized at 416× 416× 3, the Xilinx PYNQ-Z2 FPGA
yields output results from the last layer in 300ms. GOPS
stands for giga-operations per second. A remarkable overall
throughput of 26 GOPS for the quantized virtual network is
achieved at a 100MHz FPGA clock frequency through our
design. While the PYNQ-Z2 board boasts 220 DSP resources
and a 100 MHz clock frequency, practical performance
falls short of the theoretical maximum of 44 GOPS due
to bandwidth and clock limitations. The throughput and
complexity of each convolution layer are shown in Fig 15.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

/MB

Layer
Throughput(MB) Complexity(GOP)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/GOP
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Throughput

Complexity

Fig. 15. Model throughput and complexity

Based on our analysis, the computational load of convo-
lution layers like 6, 10, and 14 in the network was relatively
low, with a convolution kernel size of 1×1. To accelerate
these layers, a specialized convolution acceleration engine
was employed. Conversely, other convolution layers have
a larger size of 3×3, demanding more extensive internal
computations due to their higher computational complexity.
Therefore, another engine is used for acceleration, and the
number of resources is four times that of the acceleration
engine so that the calculation speed can be improved.

D. Contrast with Previous Work

Table VI compares this design with previous efforts in
YOLO hardware acceleration. As there was no dedicated
YOLOv4 accelerator, comparisons in our experiments were

made with other YOLO models. The design power consump-
tion of this paper was only 2.4W, which was the lowest power
consumption among different types of FPGAs, leading to a
dramatic reduction in system power consumption. Moreover,
the highest energy efficiency ratio was achieved by our
design method compared to other accelerators.

Table VII presents a comparison of various types of accel-
erators beyond object recognition accelerators. The compari-
son results demonstrate that the design approach proposed in
this paper offers significant accuracy and energy efficiency
advantages with low power consumption and high energy
efficiency in calculations.

E. Detection Results in Actual Scenarios

To assess the stability of the hardware acceleration system,
images captured by satellites were collected and subjected to
detection using the system developed in this paper. The se-
lected scenes encompass streets, docks, parking lots, airports,
and other complex environments. The detection results are
depicted in Fig 16.

As can be seen from the figure, the hardware accelerator
we designed maintains high accuracy in complex scenarios,
particularly in the field of intelligent transportation, which
demands strict power consumption control. Consequently, the
hardware accelerator and deployment method presented in
this paper upholds high accuracy while significantly reducing
the system’s power consumption.

VI. DISCUSSION

In our research, we implemented a new type of hardware
accelerator based on FPGA, designed multiple IP cores, and
finally used the YOLO network model for verification and
application in traffic monitoring scenarios. Our approach
represents a departure from previous methodologies, en-
compassing advancements in hardware architecture design
and network model optimization. Notably, the accelerator
demonstrates superior power efficiency and energy ratio
compared to CPU and GPU alternatives, while achieving
higher detection accuracy. Future endeavors will concentrate
on enhancing the computing performance of the proposed
architecture to support real-time detection requirements. This
will leverage more resources to enhance hardware capabil-
ities and maximize on-chip cache utilization to minimize
reliance on off-chip caches, thereby enhancing accelerator
speed.

VII. CONCLUSION

To address the issues of high power consumption and low
energy efficiency in object detection on current hardware
devices, a hardware accelerator based on FPGA architecture
is developed and deployed on FPGA. During the period of
training, the network is optimized through pruning, fusion,
and the integration of different attention mechanisms to
achieve higher accuracy. The weight parameters are modu-
larly divided based on hardware deployment requirements. In
terms of architecture design, a data transmission architecture
is proposed. A ping-pong buffer is utilized, combined with
multi-DMA transmission, and a block strategy for off-chip
memory access is included. Multiple accelerated IP cores
are designed to align with our transmission architecture,

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

TABLE VI
COMPARISON OF YOLO ACCELERATION-RELATED WORK

Model SimYOLO [33] YOLOv2 [34] Tiny-YOLOv2 [35] TinyYOLOv3 [16] This work
Platform GTX titan X Intel corei7-6700k CycloneV Zedboard PYNQ-Z2

Frequency 1GHz 4000MHz 117 MHz 100MHz 100MHz
Precision float32 float32 fixed16 fixed16 fixed16

Performance(GOPS) 1512 0.377 19.45 10.5 26
Power(W) 170 65 – 3.36 2.4

Power efficiency(GOPS per W) 8.89 0.0058 – 0.32 11

TABLE VII
COMPARISON OF OTHER ACCELERATORS

Model Ref[36] Ref[37] Ref[38] This work
Platform PYNQ-Z2 Aritix7 XC7045 PYNQ-Z2

Frequency 100HMz 100Mhz 150MHz 100MHz
Precision fixed16 fixed16 fixed8 fixed16
Power(W) 1.652 7.53 10 2.4

Performance (GOPS) 3.422 22 38.4 26
Power efficiency (GOPS per W) 2.07 2.92 3.84 11

(a) (b)

(c) (d)

(a) (b)

(c) (d)

aircraft 0.77

aircraft 0.89

aircraft 0.97

aircraft 0.88

car 1.00
car 0.51

ship 0.98

ship 0.95
ship 0.58

ship 1.00

ship 0.98

car 0.55

car 0.99

car 0.66

car 0.59

car 0.94

van 0.46
van 0.76

car 0.88

car 0.89
car 0.64

ship 0.95ship 0.95

ship 0.99

car 0.93

Fig. 16. Actual effect detection diagram

resulting in reduced data transmission delays. Regarding
system verification, the SIMD dataset is used to evaluate our
accelerator, and we integrated the intelligent transportation
application scenarios. The results confirm that our designed
accelerator maintains high accuracy in complex scenes. In
conclusion, our proposed acceleration method reduces sys-
tem power consumption, enhances energy efficiency, and
achieves high identification accuracy, making it applicable
for object detection in complex scenarios. Thus, it promises
significance in hardware platform acceleration and object
detection.

REFERENCES

[1] S. Castillo, A. Bernal, and J. Rodrı́guez, “Object Detection in Digital
Documents Based on Machine Learning Algorithms,” IAENG Inter-
national Journal of Computer Science, vol. 50, no. 2, pp. 688–699,
2023.

[2] D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trustworthy
Artificial Intelligence: A Review,” ACM computing surveys (CSUR),
vol. 55, no. 2, pp. 1–38, 2022.

[3] Y.-K. Wang, H.-Y. Syu, Y.-H. Chen, C.-S. Chung, Y. S. Tseng,
S.-Y. Ho, C.-W. Huang, I.-C. Wu, and H.-C. Wang, “Endoscopic
Images by A Single-Shot Multibox Detector for The Identification of
Early Cancerous Lesions in The Esophagus: A Pilot Study,” Cancers,
vol. 13, no. 2, p. 321, 2021.

[4] Y. Chen, H. Wang, W. Li, C. Sakaridis, D. Dai, and L. Van Gool,

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

“Scale-Aware Domain Adaptive Faster R-CNN,” International Journal
of Computer Vision, vol. 129, no. 7, pp. 2223–2243, 2021.

[5] R. Deepa, E. Tamilselvan, E. Abrar, and S. Sampath, “Comparison
of YOLO, SSD, Faster RCNN for Real Time Tennis Ball Tracking
for Action Decision Networks,” in 2019 International conference on
advances in computing and communication engineering (ICACCE).
IEEE, 2019, pp. 1–4.

[6] T. Fukagai, K. Maeda, S. Tanabe, K. Shirahata, Y. Tomita, A. Ike,
and A. Nakagawa, “Speed-Up of Object Detection Neural Network
with GPU,” in 2018 25th IEEE International conference on image
processing (ICIP). IEEE, 2018, pp. 301–305.

[7] S. Y. Neyaz, I. Saxena, N. Alam, and S. A. Rahman, “FPGA and ASIC
Implementation and Comparison of Multipliers,” in 2020 International
Symposium on Devices, Circuits and Systems (ISDCS). IEEE, 2020,
pp. 1–4.

[8] P. Hobden, S. Srivastava, and E. Nurellari, “FPGA-based CNN for
Real-time UAV Tracking and Detection,” Frontiers in Space Technolo-
gies, vol. 3, p. 878010, 2022.

[9] R. T. Kumar, S. Abinaya, D. Prakash, N. Janaki, S. Sivarajan, and
P. Mani, “FPGA Interfaced IoT System for Smart Medical Robot Mon-
itoring System,” in 2024 2nd International Conference on Computer,
Communication and Control (IC4). IEEE, 2024, pp. 1–6.

[10] A. A. Yazdeen, S. R. Zeebaree, M. M. Sadeeq, S. F. Kak, O. M.
Ahmed, and R. R. Zebari, “FPGA Implementations for Data En-
cryption and Decryption Via Concurrent and Parallel Computation: A
Review,” Qubahan Academic Journal, vol. 1, no. 2, pp. 8–16, 2021.

[11] R. Dong, D. Xu, J. Zhao, L. Jiao, and J. An, “Sig-NMS-based Faster R-
CNN Combining Transfer Learning for Small Target Detection in VHR
Optical Remote Sensing Imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 11, pp. 8534–8545, 2019.

[12] Z. Jiang, L. Zhao, S. Li, and Y. Jia, “Real-Time Object Detection
Method for Embedded Devices,” in computer vision and pattern
recognition, vol. 3, 2020, pp. 1–11.

[13] P. Hobden, S. Srivastava, and E. Nurellari, “FPGA-based CNN for
Real-time UAV Tracking and Detection,” Frontiers in Space Technolo-
gies, vol. 3, p. 878010, 2022.

[14] K. M. Ali, I. Alouani, A. A. El Cadi, H. Ouarnoughi, and S. Niar,
“Cross-layer CNN Approximations for Hardware Implementation,” in
Applied Reconfigurable Computing. Architectures, Tools, and Applica-
tions: 16th International Symposium, ARC 2020, Toledo, Spain, April
1–3, 2020, Proceedings 16. Springer, 2020, pp. 151–165.

[15] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A High-
Throughput and Power-Efficient FPGA Implementation of YOLO
CNN for Object Detection,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 8, pp. 1861–1873, 2019.

[16] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
Neural Network on FPGA,” Neurocomputing, vol. 275, pp. 1072–1086,
2018.

[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[18] T. B. Preußer, G. Gambardella, N. Fraser, and M. Blott, “Inference
of Quantized Neural Networks on Heterogeneous All-Programmable
Devices,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 833–838.

[19] Z. Yu and C.-S. Bouganis, “A Parameterisable FPGA-Tailored Ar-
chitecture for YOLOv3-Tiny,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications: 16th International Symposium,
ARC 2020, Toledo, Spain, April 1–3, 2020, Proceedings 16. Springer,
2020, pp. 330–344.

[20] Y. Li, X. Dong, and W. Wang, “Additive Powers-of-Two Quantization:
An Efficient Non-uniform Discretization for Neural Networks,” in
International Conference on Learning Representations, 2020.

[21] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, “Learning to Quantize Deep Networks by Optimizing Quan-
tization Intervals with Task Loss,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
4350–4359.

[22] J. Zhang, L. Cheng, C. Li, Y. Li, G. He, N. Xu, and Y. Lian, “A Low-
Latency FPGA Implementation for Real-Time Object Detection,” in
2021 IEEE international symposium on circuits and systems (ISCAS).
IEEE, 2021, pp. 1–5.

[23] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks Onto FPGAs with RTL-HLS Hybrid
Templates,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
2017, pp. 152–159.

[24] S. Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang, and Y. Wang, “An
FPGA-based Reconfigurable CNN Accelerator for YOLO,” in 2020

IEEE 3rd international conference on electronics technology (ICET).
IEEE, 2020, pp. 74–78.

[25] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing Loop Operation
and Dataflow in FPGA Acceleration of Deep Convolutional Neural
Networks,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 45–54.

[26] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler Transfor-
mations for High-Performance Computing,” ACM Computing Surveys
(CSUR), vol. 26, no. 4, pp. 345–420, 1994.

[27] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA international
symposium on field-programmable gate arrays, 2015, pp. 161–170.

[28] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing The Convolu-
tion Operation to Accelerate Deep Neural Networks on FPGA,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 7, pp. 1354–1367, 2018.

[29] J. Wu, B. Zheng, Y. Nie, and Z. Chai, “FPGA Accelerator for 3DES
Algorithm Based on OpenCL,” Comput. Eng, vol. 47, pp. 147–155,
2021.

[30] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-
based Neural Network Inference Accelerators,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[31] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going Deeper with Embedded FPGA Platform
for Convolutional Neural Network,” in Proceedings of the 2016
ACM/SIGDA international symposium on field-programmable gate
arrays, 2016, pp. 26–35.

[32] D. Wan, R. Lu, S. Shen, T. Xu, X. Lang, and Z. Ren, “Mixed Local
Channel Attention for Object Detection,” Engineering Applications of
Artificial Intelligence, vol. 123, p. 106442, 2023.

[33] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[34] F. Bi and J. Yang, “Target Detection System Design and FPGA
Implementation Based on YOLO v2 Algorithm,” in 2019 3rd Interna-
tional Conference on Imaging, Signal Processing and Communication
(ICISPC). IEEE, 2019, pp. 10–14.

[35] J. W. Yap, Z. bin Mohd Yussof, S. I. bin Salim, and K. C. Lim,
“Fixed Point Implementation of Tiny-YOLO-v2 Using Opencl on
FPGA,” International Journal of Advanced Computer Science and
Applications, vol. 9, no. 10, 2018.

[36] Y. Shi, T. Gan, and S. Jiang, “Design of Parallel Acceleration Method
of Convolutional Neural Network Based on FPGA,” in 2020 IEEE 5th
International Conference on Cloud Computing and Big Data Analytics
(ICCCBDA). IEEE, 2020, pp. 133–137.

[37] Q. Zhang, J. Cao, Y. Zhang, S. Zhang, Q. Zhang, and D. Yu, “FPGA
Implementation of Quantized Convolutional Neural Networks,” in
2019 IEEE 19th International Conference on Communication Tech-
nology (ICCT). IEEE, 2019, pp. 1605–1610.

[38] B. Khabbazan and S. Mirzakuchaki, “Design and Implementation of
A Low-power, Embedded CNN Accelerator on A Low-end FPGA,” in
2019 22nd Euromicro Conference on Digital System Design (DSD).
IEEE, 2019, pp. 647–650.

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1462-1473

__

