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Abstract—Diabetic Retinopathy is a common microvascular
complication of diabetes, and early and accurate diagnosis is
crucial for minimizing its impact on vision. To address the
complexity and diversity of lesions in diabetic retinopathy,
as well as the presence of numerous small-scale lesions, this
study proposes a multi-lesion segmentation framework based
on an improved UNet++ architecture. Utilizing ResNet50 as
the backbone network for feature extraction, we integrated a
hybrid attention module into the residual block to enhance the
model’s feature extraction capability in handling the complexity
of lesions. To address the information loss of small lesions
during feature extraction, we introduced and adapted Across
Feature Map Attention as an auxiliary branch, which enhances
the segmentation accuracy of small lesions. Furthermore, con-
sidering the insufficient feature extraction capability for DR
lesions in shallow network layers, the model abandoned the
deep supervision structure of traditional UNet++. Experiments
employed a weighted hybrid loss function. Evaluations con-
ducted on IDRiD and DDR segmentation datasets demonstrated
effective segmentation of four typical Diabetic Retinopathy
lesions. Results indicated that compared with other research
methods, our approach achieved superior performance in Dice
Coefficient and IoU metrics.

Index Terms—Diabetic retinopathy, Convolutional Neural
Network, Semantic Segmentation, Attention Mechanism.

I. INTRODUCTION

D IABETIC Retinopathy (DR) is a common chronic com-
plication of diabetes. It is a series of typical patholog-

ical changes caused by retinal microvascular damage caused
by diabetes, which affects vision and even causes blindness.
DR patients will have different pathological characteristics
at various stages of the disease, such as soft exudates (SEs),
hard exudates (EXs), microaneurysms (MAs), hemorrhages
(HEs), etc. According to the disease progression, diabetic
retinopathy can be divided into two stages: nonprolifera-
tive diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR).The PDR stage poses a significant threat
to vision. Timely identification of NPDR lesions consti-
tutes the optimal approach for delaying diabetic retinopathy
progression and preserving visual acuity [1]. In clinical
applications, ophthalmologists screen by manually observing
the lesions in color fundus images. However, this screening
method is not only affected by the subjective factors of doc-
tors but also has a large workload. Consequently, developing
automated lesion segmentation systems becomes imperative
for enhancing DR diagnostic workflows.
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As computer vision methodologies and neural network
architectures continue to grow, automatic lesion segmentation
methods are gradually emerging in DR screening. In recent
years, much research has been based on Convolutional Neu-
ral Networks (CNNs), and some pixel-level lesion annotation
databases have been published. These models can automat-
ically extract the features of specific lesions and perform
accurate segmentation in the image by learning annotated
fundus images. In contrast to conventional image processing
techniques, deep learning has shown better performance in
processing complex fundus images. Although these works
have made significant progress in the automatic segmentation
of DR lesions, they are still full of significant challenges.
Firstly, the structure of DR lesions is complex, and there are
differences in size, shape, color, brightness, and other aspects
among various lesions. Secondly, there are many small and
medium-sized lesions in DR lesions. In the IDRiD dataset,
the lesion size of images with a resolution of 4288 x 2848 is
counted, and 50% of lesions are less than 269 pixels [2]. The
small lesion size presents a significant challenge for CNN-
based segmentation methods in capturing discriminative fea-
tures with adequate spatial information. In addition, the chro-
matic characteristics, morphological profiles, and textural
patterns of retinal structures closely resemble those observed
in abnormal tissues, thereby potentially causing erroneous
positive diagnoses during medical imaging analysis[3].

To address the challenges posed by the abundance of
small-scale lesions and the structural complexity of DR,
this paper proposed an improved segmentation model based
on UNet++. The proposed model abandoned the traditional
deep supervision training approach and employed ResNet50
as the backbone network. Additionally, a hybrid attention
mechanism was integrated into the residual blocks to enhance
feature extraction for lesion regions. To further enhance
segmentation precision, we integrated an adjusted Across
Feature Map Attention (AFMA) as a dedicated auxiliary
branch. The effectiveness of the proposed model was vali-
dated through experiments on the IDRiD and DDR segmen-
tation datasets.

This paper is organized as follows: In section 2, we review
existing research on DR lesion segmentation. Section 3
presents a comprehensive explanation of our enhanced model
architecture. In section 4, we conducted ablation experi-
ments on our model and performed a comparative analysis
with other mainstream medical image segmentation methods,
which validated its superior performance. In conclusion, the
study summarizes the findings and suggests potential avenues
for further investigation.

II. RELATED WORK

DR lesion segmentation is generally achieved by analyz-
ing color fundus images. Lesion segmentation approaches
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broadly fall into two primary groups: traditional methods-
based and deep learning-based. The following will introduce
these two types of methods separately.

A. Traditional methods

Early-stage diabetic retinopathy lesion segmentation meth-
ods primarily rely on digital image processing and machine
learning-based approaches, categorized into morphology-
based lesion segmentation, clustering-based lesion segmen-
tation, and region growing-based lesion segmentation. How-
ever, the effectiveness of these methods is frequently con-
strained by suboptimal brightness and contrast in fundus
imaging, resulting in compromised robustness, reduced seg-
mentation accuracy, and failing to meet clinical screening
requirements.

B. Deep learning methods

In recent years, deep neural networks demonstrating no-
table efficacy have been increasingly adopted for diabetic
retinopathy lesion segmentation. In 2017, Tan et al. [4]
first utilized a 10-layer CNN to simultaneously segment
multiple lesions, including exudates, hemorrhages, and mi-
croaneurysms. They evaluated the output at the pixel level,
demonstrating the feasibility of using a single CNN structure
for segmenting multiple lesions simultaneously. In 2018,
Playout et al. [5] proposed an extension to U-Net that could
simultaneously segment red and bright lesions. Their decoder
incorporated new architectures such as residual convolution,
global convolution, and mixed pooling, employing two iden-
tical decoders, each dedicated to a specific lesion category. In
2019, Guo et al. [6] introduced a small object segmentation
network, L-seg, capable of simultaneously segmenting four
types of lesions: EX, SE, MA and HE. It uses VGG16
as the backbone network, incorporating multi-scale feature
extraction (from low-level details to high-level semantics)
to boost the ability to identify lesions of different sizes.
Subsequently, Yan et al. [7] proposed a novel cascaded
architecture to address the computational burden of high-
resolution DR color images and the poor global background
capture resulting from image tiling. The model was com-
posed of three key components: GlobalNet, LocalNet, and
the Fusion module. GlobalNet took downsampled image
features as input and produced coarse segmentation maps
with the same dimensions as the original image. LocalNet,
on the other hand, processed cropped patches of the image
to generate segmentation maps at the original resolution.
The Fusion module combined feature maps from Global-
Net and incorporated them into LocalNet, empowering the
framework to capture both global and local information
simultaneously. Guo et al.[3] proposed a dual-input segmen-
tation network architecture named DARNet. The framework
employs ResNet101 and ResNet50 as backbone networks for
feature extraction from the two input modalities, respectively.
To integrate multi-level feature information, an Attention
Refinement Module (ARM) is designed to dynamically fuse
features across different hierarchical layers. Addressing the
scale variation of different DR lesions, Liu et al. [2] modified
the upsampling and downsampling parts of the convolu-
tional neural network, designing a universal multi-to-multi
feature recombination network (M2MRF) to segment them.

Fig. 1: Image Cropping

A marked increase in segmentation accuracy for microscopic
DR lesions was thereby achieved.

This study develops a DR lesion segmentation method
to address limitations in existing approaches. To handle the
challenges of minute lesion sizes and complex feature vari-
ations in DR, we propose an improved UNet++ architecture
for automated multi-lesion segmentation in retinal images.

III. METHODS

UNet++ [8] is a widely used network architecture that
introduces a series of nested and skip connections to better
capture multi-scale feature information in images, reduce
feature loss problems, and improve the model’s perception
ability. At the same time, it provides more contextual and
detailed information, enabling it to handle better complex
situations such as target boundaries and small structures.
However, when processing DR fundus images, UNet++ still
has certain limitations, as traditional encoder structures can-
not solve the problems of slight target information loss and
significant sample differences in feature extraction. Further
improvements to the algorithm and model structure are
required.

A. Image Preprocessing

In the IDRiD segmentation dataset, certain fundus im-
ages exhibit extensive black background regions along the
periphery. These non-informative areas contain no ocular-
relevant information, failing to provide effective learning
features for models while simultaneously causing computa-
tional resource waste and compromising training efficiency.
This paper proposes an adaptive cropping methodology
that initially employs the Canny edge detection algorithm
to precisely localize the main retinal structure within the
IDRiD segmentation dataset, ensuring complete preservation
of critical lesion areas throughout the cropping process while
eliminating irrelevant background information. Subsequently,
the minimum bounding rectangle technique is implemented
to achieve adaptive trimming of black backgrounds, thereby
enhancing image focus on retinal regions and improving
overall data quality. The cropping process is shown in Figure
1.

B. Framework Design

To tackle the challenges of automatic segmentation in
DR, we introduce an innovative medical image segmen-
tation architecture adapted from the UNet++ framework.
We employed ResNet50 [9] as the backbone network and
incorporated a hybrid attention module into the residual
blocks to gain the model’s feature extraction capability.To
address information loss during feature extraction for small-
scale lesions in DR fundus images, AFMA was introduced
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Fig. 2: Network structure

and adjusted as an auxiliary branch. Considering the high
proportion of small lesions in DR samples and the insufficient
representation of lesion features in the shallow layers of the
model, we removed the deep supervision mechanism from
the UNet++ architecture. Figure 2 delineates the complete
framework of our model.

C. Encoder Design

1) Backbone Network: To improve the model’s capability
to adapt to different lesion types and stages in DR fun-
dus images, more advanced feature extraction is required.
UNet++ primarily utilizes basic convolution and pooling
operations, limiting its feature representation. While deeper
networks can improve fitting, excessive depth may lead to
degradation. ResNet mitigates this issue through residual
connections, enabling certain layers to bypass others and
reducing dependency strength. With increased depth, residual
blocks refine feature representation, enhancing learning ca-
pacity. Balancing computational efficiency with hierarchical
feature acquisition requirements, our implementation adopted
ResNet50 as the backbone network.

2) CBAM-ResBlock: To guide the model’s emphasis pri-
marily onto pathological areas rather than non-lesion content
within retinal scans, this paper integrates the Convolutional
Block Attention Module (CBAM) into the residual blocks of
ResNet, enabling the network to extract key lesion features
more effectively and enhancing the segmentation capability
of the model.

As depicted in Figure 3, the CBAM framework [10] inte-
grates dual attention components: Channel Attention Module
(CAM) and Spatial Attention Module (SAM). CAM captures

dependencies by modeling relationships across feature map
channels, while SAM focuses on spatial correlations to
enhance feature distribution understanding.

CAM(x) = Sigmoid(MLP (AvgPool(x)) +MLP (MaxPool(x))) (1)

As shown in Equation 1, CAM adjusts the spatial di-
mensions of the feature map using both average and max
pooling layers, maintaining the same number of channels.
After passing through the MLP module, the results from the
two layers are added together, and finally, the output result
is obtained through a sigmoid activation function.

SAM(x) = Sigmoid(f7×7([AvgPool(x);MaxPool(x)])) (2)

The SAM architecture processes input features through
parallel max-pooling and average-pooling operations, yield-
ing individual single-channel representations. These features
are concatenated across the channel axis and subjected to a
convolution layer for channel reduction. The resultant tensor
undergoes sigmoid activation to produce the final spatial
attention weights, with the complete computational workflow
formalized in Equation 2.

Specifically, the CBAM was embedded into the bottleneck
block by positioning it after the second 1×1 convolutional
layer in the bottleneck block, forming the CBAM ResBlock.
This integration leverages both channel and spatial attention
mechanisms to enhance the representation of lesion features.
By combining CBAM with residual blocks, the model more
effectively learns interdependencies between features, further
strengthening its feature extraction capability. This design
makes the architecture particularly suitable for extracting
features from multiple co-occurring lesions in DR retinal
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images. Ablation experiments confirmed that the CBAM
module significantly improved lesion segmentation accuracy
on DR images.

D. Information Loss Compensation

In DR fundus images, the presence of numerous mi-
crolesions poses significant challenges to feature extraction
and segmentation tasks. While traditional convolution and
pooling operations effectively extract deep-level features,
they inevitably reduce image resolution, leading to pro-
gressive loss of microlesion information during hierarchical
feature propagation. Given that these microlesions often
serve as critical biomarkers for diseases, such information
loss diminishes the model’s sensitivity to lesion regions,
thereby complicating the precise recovery of small-target
features from low-resolution feature maps. To resolve this
issue, this paper introduced and adapted the AFMA module
as an auxiliary branch. The AFMA module compensates
for information loss in convolution and pooling processes
by capturing cross-hierarchical feature correlations between
small and large objects within the same category, then
integrating these associations into the final feature maps[11].

The auxiliary branch for information loss compensation
operates in two phases. In the encoder phase, the model
processes the input image img ∈ RH×W×C and the Stage-
3 output feature F3 ∈ RH3×W3×C3 from the backbone
network through convolutional layers, aligning their channel
dimensions with the segmentation category count NC to
obtain Rimg and R3. Channel-wise processing is then applied
to Rimg and R3 : the feature map of each channel is
partitioned into d × d-sized patches, each flattened into a
vector of length d2. These flattened vectors are spatially
ordered and combined into a block matrix of size N × d2,
denoted as P i

img and P i
3 (where i is the channel index,

and N denotes the number of patches). Next, the matrix
multiplication between P i

img and the transpose of P i
3 is

performed to obtain the relationship matrix Ai for the current
channel.Finally, all channel-wise relationship matrices are
concatenated to form the complete feature map A. In the
second phase, the relationship feature map A is employed to
optimize the decoder’s predicted features. First, the decoder
output mask Mmask ∈ RH×W×Nc is resized to spatially
align with R3, yielding Rmask. For each channel in Rmask,
the same patch partitioning, flattening, and block matrix con-
struction are performed. All channel results are concatenated
to form Pmask. Channel-wise matrix multiplication between
A and Pmask produces P i

end , the results from all channels
are concatenated to form Pend. Finally, Pend is reshaped

to match Mmask’s dimensions and multiplied element-wise
with Mmask ,resulting in Omask ∈ RH×W×Nc . The com-
pensated output Pre ∈ RH×W×Nc is obtained by summing
Omask and Mmask, thereby enhancing segmentation perfor-
mance, the complete workflow is illustrated in Figure 4 [11].

E. Training module

1) Deep supervision: The deep supervision structure in
UNet++ facilitates model pruning and reduces the number
of model parameters. However, the difficulty of extracting
model features due to the small scale of DR lesions and
significant differences between samples makes it difficult,
and the shallow features of the model contain less informa-
tion. For pruning mode, the segmentation accuracy of sub-
network output feature maps is not high, and pruning will
cause a decrease in segmentation accuracy. For ensemble
mode, collecting the segmentation results of all segmentation
branches and taking their average will cause information
loss in profound network segmentation results, leading to
a decrease in model segmentation accuracy. Therefore, our
model abandoned the deep supervision structure and used
the last layer of upsampled feature maps as output. Ablation
experiment results demonstrated that removal of the deep
supervision structure enhanced model segmentation accuracy
in diabetic retinopathy cases.

2) Loss Function: The overall loss function of the model
consist of two components to ensure optimization at different
levels. First, the primary loss is the main segmentation loss,
which seeks to reduce the discrepancy between the model’s
predicted segmentation of retinal lesions and the ground truth
annotations. This ensures that the model accurately identifies
lesion areas and improves segmentation precision.Second, an
auxiliary branch loss was introduced to effectively supervise
the generated feature map A, enhancing its quality and
representational capability.

For the primary segmentation loss, this paper adopts the
widely-used Cross-Entropy loss LCE in deep learning. For
mitigating the category disproportion across lesion versus
background pixels within the DR dataset, we additionally in-
troduce the Dice loss LDice. These two losses are combined
in a weighted manner to form the primary segmentation loss,
as formally defined in Equation 3, λ1 and λ2 represent the
balance weights for LCE and LDice, respectively.

Lseg = λ1LCE + λ2LDice (3)

For the auxiliary branch loss, this paper employs the mean
squared error (MSE) loss function from reference [11] to
supervise the feature map A.

Lafma=
1

C· l1· l2

C∑
c=1

l1∑
i=1

l2∑
j=1

[A<c, i, j>−Agt<c, i, j>]
2 (4)

In the equation, A represents the relationship feature map
obtained in the first stage of the auxiliary branch, where l1
and l2 represent the height and width of A, respectively. Agtis
derived from the segmentation label G. First, G is resized
to match the dimensions of R3, denoted as Rgt . For each
channel i, Gi and Ri

gt undergo d× d-patch partitioning and
flattening to construct matrices P i

G and P i
gt ,Next, a matrix

multiplication is performed between P i
G and the transpose of
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P i
gt to obtain Ai

gt. Finally, the results from all channels are
concatenated to construct the complete relationship feature
map Agt. Thus, the overall loss can be represented as:

L = αLseg + βLafma (5)

IV. EXPERIMENTS AND ANALYSIS

A. Dataset

This paper evaluated the segmentation model’s perfor-
mance using the IDRiD and DDR segmentation datasets. The
key characteristics of these datasets are summarized below:

1) IDRiD: The IDRiD segmentation dataset consists of
81 retinal images from India, with 54 images designated
for the training set and 27 assigned to the test set. Each
image in the dataset maintains a resolution of 4288 × 2848
pixels. Each image is annotated with pixel-level labels[12].
In the experiments of this study, we subdivided the training
set the training set, dividing the 54 training images into 46
for training and 8 for validation.

2) DDR: The CFP images in the DDR segmentation
dataset were captured using different retinal cameras. This
dataset contains 757 color retinal images from Chinese
individuals, each labeled with four types of lesions. The
image resolution in the data set varies. In the course of the
experiments, a total of 383 images were designated for the
training phase, 149 images were set aside for validation, and
225 images were used for testing purposes[13].

B. Experimental environment

All experiments in this section were carried out on a high-
performance computing server featuring an NVIDIA V100
GPU. The experimental framework was built using PyTorch
with the following configurations: input image resolution
of 1024×1024 pixels, batch size of 2, and 650 training
epochs. The learning rate was set to 1e-4, with the Adam
optimizer, momentum set to 0.9, and weight decay set to

0. In the AFMA module, the patch size was established at
10×10 pixels. The loss function weighting parameters were
configured as λ1=λ2=1, α=1, and β=0.2. For identifying the
best-performing network hyperparameters, we adopted the
minimum validation loss criterion for final weight selection,
followed by comprehensive performance evaluation on the
test set image database.

C. Evaluation Criteria

To assess our method’s lesion segmentation perfor-
mance on the IDRiD and DDR segmentation datasets, two
widely recognized evaluation metrics in semantic segmen-
tation—Dice Coefficient (Dice) and Intersection over Union
(IoU)-were employed for performance quantification. Their
mathematical formulations are expressed as:

Dice =
2TP

2TP + FP + FN
(6)

IOU =
TP

TP + FN + FP
(7)

Where TP: Correctly classified positive-class instances,
FP: Negative-class instances misclassified as positive, FN:
Positive-class instances erroneously assigned to negative.

D. Ablation Experiments

To investigate the contribution of the ResNet50 backbone
network, the CBAM module, the AFMA module, and deep
supervision learning to the DR lesion segmentation per-
formance, systematic experimental analysis was carried out
using the IDRiD segmentation dataset. Using UNet++ with
deep supervision as the baseline model, we compared the
performance improvements brought by different modules.

The results in Table 1 show that UNet++ without deep
supervision outperforms the version with deep supervision
in terms of lesion segmentation accuracy. Furthermore, the
integration of other structures significantly enhanced the
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TABLE I: Ablation study results on IDRiD segmentation
dataset

Model Encoder DS CBAM AFMA mIou(%) mDice (%)

Baseline UNet++
√

- - 36.49 51.56

(a) UNet++ - - - 41.31 57.14

(b) ResNet50 - - - 43.26 59.02

(c) ResNet50 -
√

- 43.89 59.62

(d) ResNet50 -
√ √

47.83 63.57

model’s segmentation ability, with the AFMA module show-
ing the most notable improvement, indicating its crucial role
in enhancing the segmentation accuracy.

E. Comparative Experiments
To thoroughly assess the proposed method, we performed

comparative experiments against mainstream semantic seg-
mentation models using the DDR and IDRiD segmentation
datasets. Experimental results from IDRiD and DDR datasets
are separately presented and summarized in Table 2, where
the best-performing outcomes per dataset are highlighted in
bold.

As demonstrated in the comparative data of Table 2. On the
IDRiD dataset,the proposed model gained a mean Dice coef-
ficient (mDice) of 63.57%, demonstrating the highest average
Dice coefficient that substantially surpassed UNet (55.01%),
DeepLabv3+(56.44%), and UNeXt (51.29%). Compared
with TransUNet, our approach exhibited significant superi-
ority, particularly in HE lesion segmentation. Meanwhile,
the model exhibited outstanding performance in the IoU
metric, outperforming other models in overall segmentation
as well as in the segmentation of EX, HE, and SE lesions.
On the DDR dataset, our framework maintained competitive
lesion segmentation capabilities, with overall segmentation
results significantly surpassing those of UNet and UNeXt.
Compared to TransUNet, the proposed model demonstrates
superior performance in segmenting SE and MA lesion
types. The proposed architecture’s effectiveness in lesion
segmentation has been rigorously verified through extensive
multi-dataset experimentation.

Figure 5 depicts the segmentation results of partial fundus
images in IDRiD segmentation dataset and DDR segmen-
tation dataset, where (a) shows the ground truth labels, (b)
presents the segmentation outcomes from the UNet model,
(c) displays the segmentation results produced by the Tran-
sUNet model, (d) highlights the segmentation outcomes gen-
erated by the UNeXt model, and (e) depicts the segmentation
outcomes obtained from our model. In the segmentation
images, red indicates EX lesions, green indicates HE lesions,
yellow indicates SE lesions, and blue indicates MA lesions.
From the visualization results in Figure 5, it can be observed
that our model’s predictions closely match the ground truth
labels, further demonstrating the effectiveness and reliability
of the proposed model.

V. CONCLUSION

DR constitutes primary contributor to blindness, making
accurate detection and segmentation of DR lesions crucial.

Recent years have witnessed substantial progress in diabetic
retinopathy lesion segmentation through deep neural net-
works. However, challenges remain, such as the large varia-
tion in lesions between samples and the prevalence of small
lesions. To address these issues, we improved the UNet++
architecture by employing ResNet50 as the primary feature
extraction framework and incorporating attention modules to
raise the model’s feature extraction capability. Additionally,
we incorporated the AFMA module as an auxiliary branch to
compensate for the loss of small lesion information during
feature extraction. Furthermore, we discarded the traditional
deep supervision structure and adopted a weighted hybrid
loss function. While our model has improved segmentation
accuracy for DR lesions, challenges remain, including missed
and false detections, especially for small lesions like mi-
croaneurysms, owing to the insufficient quantity of precisely
labeled DR lesion datasets. Future work will focus on deep
learning-based medical image generation to mitigate data
limitations. Additionally, we will refine our model to enhance
small lesion segmentation accuracy and explore lightweight
network designs without sacrificing performance.
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TABLE II: Performance comparison with others for lesion segmentation.

Dataset Methods
Dice (%) IoU (%)

EX HE SE MA mDice EX HE SE MA mIoU

DDR

UNet [14] 56.46 43.23 43.85 26.42 42.49 39.34 27.58 28.09 15.22 27.56

TransUNet [15] 57.38 50.39 40.27 28.16 44.05 40.24 33.68 25.22 16.39 28.88

UNeXt [16] 56.51 45.40 39.14 23.63 41.17 39.38 29.37 24.34 13.40 26.62
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Date of modification: January 6, 2025. 

Brief description of the changes: 

1) Fig.1: added Max Pool annotation explanation 

2) Fig.3: changed the LN annotation to BN 

3) Fig.5: corrected the direction of the arrow 

4) Changed the value of the weight decay parameter from 0.1 to 0 

  

Date of modification: March 12, 2025. 

Brief description of the changes: The model structure has been adjusted, the experimental environment has 

been standardized, and the experimental data has been updated. 

 

Date of modification: April 16, 2025. 

Brief description of the changes:   

Fig.5: the subfigures have been adjusted and subfigure labels have been corrected. 

IAENG International Journal of Computer Science

Volume 51, Issue 10, October 2024, Pages 1587-1595

 
______________________________________________________________________________________ 


	IAENG_LaTeX_pub
	改稿 - 副本



