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Abstract—The low-power cluster routing protocol is a 

significant research focus in the WSN course. The utilization of 
Matlab for digital modeling and teaching simulation 
significantly enhances the understanding of this particular 
subject matter. This article introduces a low-power cluster 
routing algorithm based on the adaptive SSA and applies it to 
the simulation teaching process. Firstly, the SSA is enhanced by 
sine and cosine functions, with the addition of an adaptive 
adjustment factor. Subsequently, Levy flight is incorporated 
into SSA to improve its ability to escape from localized extremes. 
Additionally, a standard normal distribution random number is 
introduced to increase individual diversity within the 
algorithm's population. Furthermore, this proposed adaptive 
algorithm ASSA undergoes testing for convergence accuracy 
and speed using standard test functions. Finally, the proposed 
algorithm ASSA is utilized in cluster routing algorithms and 
simulation teaching. This article utilizes MATLAB simulation 
analysis tool for modeling and visually demonstrating processes 
such as cluster head election, clustering, data communication, 
and node death in clustering algorithms. Simultaneously, it 
illustrates how the ASSA algorithm effectively reduces energy 
consumption in each round and prolongs system stability 
running time to students. This simulation teaching process 
enables students to gain a deeper and more intuitive 
understanding of important features such as low power 
consumption of nodes, system lifetime, and energy utilization; 
thereby enhancing teaching effectiveness. 

 
Index Terms—SSA, Low power, Cluster routing, Matlab 

simulation teaching  

I. INTRODUCTION 

umerous studies and applications have been conducted 
on routing algorithms in low power sensor networks. 

However, with the continuous development of IoT, many 
scholars are persistently deepening their research on routing 
algorithms in order to further enhance and optimize 
algorithm performance and reliability. Their ultimate goal is 
 

Manuscript received April 20, 2024; revised October 16, 2024.  
This work is supported in part by the Doctoral Research Fund of Hebei 

North University (BSJJ202322), in part by the Medical Science Research 
Project of Hebei Province (No. 20200488), and in part by the Research 
Project on Educational and Teaching Reform of Hebei North University 
(JG2024044). 

Xiao-Ling Guo is a lecturer of Hebei North University, Zhangjiakou 
075000, China. (e-mail: 175666832@qq.com).  

Xing-Hua Sun is a professor of Hebei North University, Zhangjiakou 
075000, China. (corresponding author to provide phone:189-313-11869; 
fax:189-313-11869; e-mail:1030704295@qq.com). 

Rui Wang is a lecturer of Hebei North University, Zhangjiakou 075000, 
China. (e-mail: 33403408@qq.com).  

Bing-Qing Han is a postgraduate student of Hebei North University, 
Zhangjiakou 075000, China. (e-mail: 2559403868@qq.com). 

Xin-Yu Yang is a postgraduate student of Hebei North University, 
Zhangjiakou 075000, China. (e-mail: 990820203@qq.com). 

 
 
 

to make significant contributions to the rapid advancement of 
IoT. This is because low power sensor routing plays a crucial 
role in overall network performance, directly impacting 
transmission efficiency and energy consumption [1]. 

In Ref. [2], an adaptive double cluster head energy-saving 
routing program is proposed above non-uniform partitioning. 
The algorithm initially divides the network into several 
uneven regions based on spatial factors, and then selects the 
main cluster head for each partition. Additionally, the 
algorithm also chooses secondary cluster heads in the vicinity 
of the BS to handle data routing. The utilization of 
non-uniform regions and dual cluster heads strategies leads to 
a more proportional distribution of energy usage. 
Sowndeswari et al. [3] conducted a comparative analysis of 
five distinct energy-saving clustering algorithms based on 
ABC optimization, namely EMABC, CGTABC, EC-ABC, 
MeABC, and RMABC. These algorithms were then utilized 
to form clusters, with cluster heads and relay nodes being 
dynamically selected. The findings revealed that EMABC 
demonstrated outstanding performance in maintaining low 
power consumption. Wu et al. [4] propose an efficient double 
cluster head approach called DCK-LEACH. Firstly, they 
utilize Canopy and K-means for clumping to achieve as 
uniform clustering as possible. Next, DCK-LEACH exploits 
a hierarchical structure to minimize the load on head nodes. 
In addition, it selects the main cluster head based on surplus 
energy and range, then chooses the secondary cluster head 
based on remaining energy and position relative to the BS. 
The results indicate that the algorithm can significantly 
extend the lifespan of sensors in both homogeneous and 
heterogeneous networks. Koyuncu et al. [5] proposed an 
energy-efficient clustering algorithm DEC based on 
multi-layer random probability protocols. They also 
introduced the concept of a two intermediate node structure. 
The algorithm fully utilizes distributed networks and presents 
a mathematical model for cluster head selection based on 
probability. This approach has been shown to improve the 
survival time of sensor nodes in the network. In Ref. [6], a 
path selection strategy is proposed based on a clustering 
mechanism and particle swarm optimization algorithm. This 
strategy involves monitoring, tracking, and predicting the 
remaining energy of adjacent sensor nodes. Additionally, it 
includes increasing data weights, introducing global optimal 
factors, and optimizing routing using energy prediction 
scheduling algorithms to ensure the power supply of sensors 
by balancing node scheduling. Hilal et al. [7] proposed the 
ECHO-BAT algorithm, which is based on the metaheuristic 
echo localization. The algorithm begins by clustering sensor 
nodes and then utilizes the BAT algorithm to identify and 
tentatively determine temporary cluster heads and entropy 
values. Subsequently, it searches for high-energy nodes to 
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replace temporary cluster heads. Finally, it applies Dijkstra's 
algorithm to find the best route for sending and transmitting 
data from each cluster. Manikandan et al. [8] propose the 
Memory Adaptive Hill Climbing method, which fully 
leverages the advantages of Memetic and Hill Climbing. This 
method effectively prevents premature convergence and 
efficiently clusters. It utilizes Memetic to determine the best 
cluster head and Hill Climbing to determine the shortest path. 
Anuradha et al. [9] propose a novel unequal clustering model 
(SGOBUC) based on Seagull Optimization (SGO). The 
model utilizes the SGO algorithm to simulate the migration 
and attack behavior of seagulls, collecting information such 
as node ID, layer ID, and RSSI. Subsequently, it employs RE, 
BS, ND, NC, and LQ to construct uneven clustering. Mehra 
et al. [10] proposed a cluster head selection algorithm based 
on fuzzy equilibrium cost. This algorithm takes surplus 
energy, node degree, and range to aggregation node as inputs. 
By evaluating the fuzzy cost, the qualification index of each 
node is calculated, and the cluster head role is ultimately 
determined. Venkatesan et al. [11] propose a novel clustering 
and routing energy-saving strategy for heterogeneous 
networks. The Minkowski distance is utilized to calculate 
routing, while a ranking strategy is employed to select cluster 
heads. Additionally, DD-TDMA scheduling is implemented 
to balance the load. This study has also been validated in the 
context of smart cities application. Saini et al. [12] introduces 
the concept of Virtual Grid Dynamic Path Adjustment, which 
involves dividing regions into equally sized blocks and then 
using the GA algorithm for clustering and optimal path 
selection. The data is transmitted among cluster heads and 
ultimately forwarded to the aggregation node. The study also 
evaluates its effectiveness in heterogeneous networks with 
varying numbers of nodes and areas. Chang et al. [13] 
propose an allocation cluster head selection scheme based on 
node distribution density. This approach effectively utilizes 
spatial position parameters and local distribution features to 
calculate each node's own distribution density. Cluster heads 
are then selected through a specific merging strategy, 
allowing for quick clustering segmentation and cluster head 
selection. In Ref. [14], a software-defined multi-hop WSN 
architecture is proposed. This model encompasses neighbor 
detection, neighbor advertising, system organization, and 
package gathering functions. It calculates the overall energy 
consumption of SD-WSN across all processes and presents 
the advantages of SD-WSN in terms of cost control, node 
survival, and lifecycle management perspectives. Jovith et al. 
[15] proposed the EETTC-MRP technology, which involves 
three main stages. Firstly, preliminary cluster head selection 
is completed using Type II fuzzy logic. Subsequently, the 
Quantum Group Teaching Optimization Algorithm is 
employed to derive the best cluster head. Finally, the Political 
Optimizer is utilized to establish multi-hop routing between 
cluster heads. Saoud et al. [16] propose a solution for 
determining the optimal cluster head set using the firefly 
optimization algorithm. This process fully considers 
topology architecture, energy hierarchy, and flow mode. It 
also explores methods for selecting the best cluster heads and 
provides a simple derivation. Additionally, it illustrates the 
relationship between cluster head number and energy drain. 
In Ref. [17], the algorithm described is a dual cluster head 
heterogeneous network clustering routing algorithm. It 

makes use of quantum optimization algorithms and PSO to 
minimize power consumption. The algorithm not only 
ensures an even distribution of cluster heads by designing 
reasonable objective functions, but also establishes weights 
between cluster heads and aggregation nodes. By 
constructing a directed connected graph, it utilizes a 
minimum spanning tree for inter-cluster communication. 
SSA is a novel search strategy that emulates the predatory 
behavior of sparrows, and it has been further developed and 
utilized in numerous academic works [18]-[20]. Sun et al. [21] 
proposed an enhanced SSA algorithm based on the 
t-distribution and applied it to WSN clustering. The 
algorithm initially utilizes the t-distribution to update 
discoverer positions, thereby improving search efficiency.  

The main contribution of our article is to enhance the SSA 
algorithm through various strategies and apply the improved 
algorithm to low-power cluster routing MATLAB simulation 
teaching. The simulation method demonstrates to students 
the routing processes, such as cluster head election, 
clustering, and data communication. Through data 
comparison and analysis, it helps students comprehend 
energy utilization efficiency and network lifetime. 

II. IMPROVED ALGORITHM 

A. Sparrow Search Algorithm  

In the context of SSA, there are three key roles: the 
discoverer, the follower, and the scout. The discoverer is 
responsible for locating food sources, while the follower 
retrieves the food once it has been found. The scout's primary 
duty is to monitor the area where food is located and provide 
early warnings in case of potential predator threats. If a 
warning signal surpasses a predetermined threshold, the 
entire population will relocate to a new foraging location 
under the guidance of the discoverer. The position of the 
discoverer is determined by Eq. (1).  
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t
bestX  is the global optimal position.   follows a standard 

normal distribution, if , gf  and wf  is respectively the 

current, global optimal, and the worst fitness value. 
[ 1,1]K   . 

B. Adaptive Sparrow Search Algorithm  

Utilizing the sine and cosine functions with volatility and 
periodicity for iterative optimization not only exhibits strong 
local search capability, but also demonstrates robust global 
search ability. The discoverer formula in Eq. (4) is updated by 
incorporating the sine and cosine functions. 
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To prevent the algorithm from becoming trapped in local 
optima, a Levy flight strategy is employed for followers to 
enhance their capacity for global search exploration. 
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shown in Eq. (5)-(8). 
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For scouts, use standard normal distribution random 
number   to update the position when gif f . The 

improved formula is shown in Eq. (9). 

 
1

,

,

t t t
i i best i gt

i t t t
i worst i i g

X X X f f
X

X X X f f






    
  




 (9) 

C. Test Function Validation  

To assess feasibility and effectiveness, a comparison is 
made between ASSA and SSA in finding the best value. One 
unimodal test function, two multimodal test functions, and 
one fixed dimensional multimodal test function are selected 
for analysis in Table I. To ensure fairness, the population is 
set to 15 and the maximum iteration is set to 500. Thirty 
optimization experiments are conducted to contrast the 
capabilities of the two algorithms.  

Fig. 1(a)-(d) illustrates the convergence curves of SSA and 
ASSA applied to four test functions. It is evident from these 

graphs that the convergence speed and accuracy of the ASSA 
method are notably superior. 
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(c) 

 

 
(d) 

 
Fig. 1. The convergence curve of test function. (a) shows the 
convergence curve of 1( )F x . (b) shows the convergence curve of 

2 ( )F x . (c) shows the convergence curve of 3( )F x . (d) shows the 

convergence curve of 4 ( )F x . 

III. ASSA CLUSTER ROUTING APPLICATION 

Applying the ASSA algorithm for cluster head election 
and routing communication results in the development of an 
algorithm known as LEACH-ASSA. 

A. The Optimal Number of Cluster Head 

In LEACH-ASSA routing protocol, the cluster head is first 
chosen and then the cluster is built. The optimal number of 
selected cluster heads plays a crucial role as it directly 
impacts energy usage and network lifetime. The number of 
cluster heads is related to the total number of nodes, the area 
of the region, and the distance to BS. Therefore, the optimal 
number of cluster heads is determined by Eq. (10). 
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B. Initial Population 

In each round, the cluster head accepts packets from 
member nodes, performs local fusion, and then forwards 
them to the BS. Member nodes only need to transfer packets 
to the cluster head. As a result, member nodes consume less 
energy, while cluster heads lose more capacity. If the 
remaining energy of some node is low, it is no longer suitable 
as a cluster head. Considering the remaining energy of 
surviving nodes, the LEACH-ASSA algorithm defines nodes 
with remaining energy higher than the average value of all 
surviving nodes as high-energy nodes. It then selects cluster 
heads for each round from high-energy nodes according to Eq. 
(11), electing np  times to form a population.  
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C. Fitness Function 

Equation (12) serves as the fitness function in the 
LEACH-ASSA algorithm for cluster head election. It 
encompasses three influencing factors. 

 1 2 3fitness f f f    (12) 

1f  calculates the sum of squared distances from all 

member to their respective cluster heads. A shorter distance 
results in lower energy consumption for data transmission. 

1f  is represented as follows in Eq. (13). 
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2f  calculates the sum of the squared distances from all 

cluster head to the BS position. A shorter distance results in 
lower energy consumption for the cluster head node. 2f  is 

represented as follows in Eq. (14). 
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3f  calculates the number of member C within a cluster 

and aims to ensure that member within each cluster is as 
evenly distributed as possible. 3f is represented in Eq. (15). 
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IV. SIMULATION TEACHING AND ANALYSIS 

A. Simulation Deploy 

The algorithm parameters are presented in Table II. 
Subsequently, we utilized Matlab to program and simulate 
the algorithm for educational purposes. Throughout the 
teaching process, Matlab digital modeling offers a 
visualization of the entire cluster head election, clustering, 
and data communication processes. This enables students to 
gain a deep understanding of fundamental concepts such as 
survival nodes, death nodes, and base stations while also 
vividly experiencing the data communication process among 
cluster heads, member nodes, and BS. Such an approach is 
highly beneficial for comprehending cluster routing 
algorithms. Furthermore, this article compares the 
performance of LEACH, LEACH-C, and LEACH-ASSA in 
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terms of lifetime and energy utilization which significantly 
enhances students' learning experience and the effectiveness 
of education and teaching. 

 
Table Ⅱ 

Simulation parameter 

Parameter  Value  Description 

*M M  200*200 Region size 
N  200 The total sensor number  

BS  (0,0) Base station position 
p  0.05 Cluster head ratio 

0E  0.5J Initial energy  

l  4000bit Data length 

np  15 Population number 

maxT  20 Max iteration number 

elecE  50 /nJ bit  
Unit data transmission 
energy consumption 

fs  210 / /pJ bit m  Free space coefficient 

mp  40.0013 / /pJ bit m  
Multipath attenuation 
coefficient 

0d  0 87fs mpd     Coefficient ratio 

DAE  5 /nJ bit  
Unit data fusion energy 
consumption 

 

B. Simulation Teaching Process 

Fig. 2 illustrates the outcome of cluster head election using 
the LEACH-ASSA algorithm in the 550th round. The 
depicted region size is 200 * 200, with the central pentagram 
representing the position of the base station and hollow 
circles symbolizing randomly deployed sensor nodes, 
totaling 200 in number. The purple solid circle indicates the 
cluster head elected in the 550th round. A total of 10 cluster 
heads are elected in each round before any occurrence of 
dead nodes.  

 

 
Fig. 2. Cluster head election in 550th round 
 

During the cluster head election stage, high-energy nodes 
are filtered out first using formula (11), as they are more 
likely to become cluster heads due to their higher remaining 
energy levels, thus avoiding premature depletion of 
low-energy nodes. Subsequently, formula (12) for fitness 
function is employed to select an optimal set of cluster heads 
for this round based on minimizing energy consumption 

during data communication. The advantage of this approach 
lies in its ability not only to select a group of cluster heads 
with minimal energy consumption for each round but also to 
balance energy consumption . 

Fig. 3 depicts the node clustering diagram for the 550th 
round. After the selection of the cluster head node, other 
sensor nodes will choose the closest cluster head node to 
form clusters. It is evident that the cluster structure is 
predominantly uniform, with cluster heads evenly distributed 
throughout the survey region. Member nodes surround their 
respective cluster heads in an even manner, and members 
within each cluster exhibit similar characteristics. This 
indicates that our designed fitness function has effectively 
fulfilled its role. A stable cluster structure is advantageous for 
balancing energy consumption among nodes. In this routing 
communication, cluster members are tasked with data 
collection and direct transmission to their respective cluster 
heads. The diagram clearly depicts the cluster structure and 
intra-cluster communication. 

 

 
Fig. 3. Cluster structure in 550th round 

 

 
Fig. 4. Data communication structure diagram 

 
Fig. 4 illustrates the communication process from cluster 

heads to BS. The LEACH-ASSA algorithm utilizes a direct 
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one-hop communication method. Upon receiving data from 
member nodes, the cluster head initially conducts local data 
fusion and subsequently transmits the data to the BS. The 
figure vividly depicts the path selection and data forwarding 
process of the clustering routing algorithm for students, 
aiding in their comprehensive understanding of fundamental 
concepts such as survival nodes, member nodes, cluster head 
nodes, data fusion, routing paths, and data forwarding. 

 

 
Fig. 5. Distribution map with 1st death node 
 

Fig. 5 depicts a schematic diagram illustrating the first 
dead node that appears in the LEACH-ASSA algorithm. The 
green hexagonal star symbolizes the initial node depletion of 
energy. The presence of a dead node signifies a blind spot in 
sensor monitoring and data collection tasks, leading to 
decreased precision in these activities within its vicinity. 
Therefore, the emergence of the first dead node plays a 
crucial role in exploring relevant applications of IoT.  
 

 
Fig. 6. Distribution map with 40% death nodes .  
 

Fig. 6 presents a schematic diagram illustrating the 
presence of 40% dead nodes. In the LEACH-ASSA algorithm, 
the program terminates when 80% of nodes perish, indicating 
that half of the dead nodes have already manifested in the 
network at this juncture. The distribution of deceased nodes 

in the region appears to be relatively uniform, suggesting that 
sensor nodes have similar probabilities of being chosen as 
cluster heads and consequently exhibit comparable energy 
consumption patterns. 
 

 
Fig. 7. Fitness function value in each round 
 

Fig. 7 illustrates the fluctuation of fitness function values 
for each round of the LEACH-ASSA algorithm. The graph 
indicates that the fluctuation range of the fitness function 
value is predominantly between 150 and 300, demonstrating 
a relatively small and stable fluctuation range. Although 
there are occasional individual high values, reaching around 
550; these occurrences are rare and represent small 
probability events suggesting that cluster head election 
scheme in each round remains highly effective at 
minimizing energy consumption while ensuring consistency 
across rounds. 

 

C. Network Lifetime 

Fig. 8 illustrates comparison graphs of the network 
lifetimes of three algorithms.  

 

 
Fig. 8. Comparison chart of cumulative death nodes 

 
Lifetime is defined as the round at which the first death 

node appears (FND). A later appearance of a death node 
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indicates better overall operation of the network, while no 
death nodes indicate stable network performance. The 
appearance of a death node signifies a monitoring blind spot 
in the network. Additionally, this algorithm defines the round 
at which 80% of nodes in the network have died as program 
ending (LND), and the round at which half of nodes (40%) 
have died as HND. 

Fig. 8 illustrates the occurrence of the first dead node in the 
LEACH algorithm at round 829, while LEACH-C terminates 
at round 897. In contrast, LEACH-ASSA emerges in the 
1029th round, which is 200 rounds later than LEACH. It is 
noteworthy that the lifetime of LEACH-ASSA is the longest. 
LEACH algorithm concludes at round 1027, while for 
LEACH-C it ends at round 1014 and for LEACH-ASSA it 
finishes at round 1051. It is worth noting that the termination 
times of these three algorithms are almost identical, with a 
difference not exceeding 30 rounds. This phenomenon can be 
attributed to uneven energy consumption between nodes in 
the first two algorithms, resulting in some nodes having a 
longer survival time and consequently prolonging the overall 
program duration. From a vertical perspective, the first dead 
node in the LEACH algorithm occurs at round 829, and the 
program concludes at round 1027. It takes approximately 200 
rounds from the appearance of the first dead node to the 
conclusion of the program, indicating a relatively lengthy 
process. Similarly, in the case of LEACH-C, the process from 
round 897 to round 1014 spans about 120 rounds, also 
considered relatively long. On the other hand, utilizing the 
LEACH-ASSA algorithm results in a process ranging from 
round 1029 to round 1051, which only takes approximately 
20 rounds. This rapid progression suggests that energy 
consumption in LEACH-ASSA is essentially uniform. 

 

 
Fig. 9. Comparison chart of network life 

 
Fig. 9 illustrates a comparison graph of the lifetime, 

vividly depicting the entire process of changes in the 
algorithm program's lifetime. The graph clearly shows that 
both LEACH and LEACH-C exhibit prolonged periods of 
decline, while LEACH-ASSA demonstrates a nearly constant 
trend. This indicates that all node deaths occur within a 
relatively short time, suggesting an ideal effect in terms of 
uniform energy consumption and supporting the rationality 
of the fitness function. Additionally, this diagram facilitates a 

more vivid and profound understanding of basic concepts and 
principles such as lifetime and energy utilization for students. 

 

D. Lifetime with Different Cluster Head 

Table Ⅲ and Fig. 10 present a comparison of the network 
lifetime of three algorithms across varying cluster head 
ratios. 

 
Table Ⅲ 

Lifetime with different cluster head 
Cluster Head LEACH LEACH-C LEACH-ASSA 

0.03p  (6) 507 602 976 
0.04p  (8) 704 780 1009 
0.05p  (10) 829 897 1029 
0.06p  (12) 884 1012 1050 
0.07p  (14) 894 1042 1059 
0.08p  (16) 889 1055 1069 
0.09p  (18) 916 1062 1079 
0.10p  (20) 911 1073 1086 
0.11p  (22) 884 1081 1090 
0.12p  (24) 872 1083 1093 
0.13p  (26) 860 1087 1083 
0.14p  (28) 821 1086 1093 
0.15p  (30) 821 1060 1094 

 
As the ratio increases, the lifetime of LEACH initially rises 

and then declines, indicating the presence of an optimal ratio 
in the LEACH algorithm. In a 200*200 area, it is observed 
that approximately 16-20 cluster heads are optimal for 
maximizing lifetime. For LEACH-C, the lifetime also 
increases until it stabilizes at 22 cluster heads; beyond 30 
cluster heads, there is a decline in lifetime. The initial ratio 
for LEACH-ASSA is found to be 0.05; decreasing this ratio 
results in decreased lifetime for LEACH-ASSA as well. 
Conversely, an increase in the ratio leads to only a slight 
increase in lifetime not exceeding 50 rounds. These findings 
suggest that the initial ratio discussed in this article is quite 
reasonable. 

 

 
Fig. 10. Lifetime with different cluster head 
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E. Average Energy Usage  

Fig. 11 illustrates the remaining energy of nodes that have 
survived in the region. Each node initially possesses an 
energy level of 0.5 joules for all three algorithms, and there 
are a total of 200 nodes in the region. The overall energy 
carried by sensor nodes in the region is 100 joules, which 
remains constant across the algorithms. In the case of the 
LEACH algorithm, when the first node reaches depletion, 
there is still a significant amount of energy remaining in the 
region. Similarly, with the LEACH-C algorithm, there is also 
a relatively large amount of remaining energy when the first 
node becomes inactive. However, with the LEACH-ASSA 
algorithm, the remaining energy ratio at the point of its first 
dead node is already relatively low. Based on Fig. 8, it is 
evident that the lifetime of LEACH-ASSA is longest, 
reaching 1029 rounds. This indicates that the LEACH-ASSA 
algorithm program is relatively stable and capable of running 
for an extended period of time. In contrast to this finding, it 
can be observed that both LEACH and LEACH-C have 
shorter lifespans implying non-uniform energy consumption 
patterns. Additionally noticeable observation shows that lines 
representing performance for LEACH-ASSA are relatively 
flat while those for LEACH show gradual decrease and those 
for LEACH-C exhibit significant turning points indicating 
optimal performance with 80% dead nodes occurring at 
relatively low energy levels. 
 

 
Fig. 11. Comparison chart of remaining energy 
 

 
Fig. 12. Cumulative energy consumption for each round 

Fig.12 illustrates a comparison of cumulative energy 
consumption for each round among these three algorithms. 
For all three algorithms, there is a significant difference in 
cumulative energy consumption after running for 1000 
rounds. At this stage, the LEACH-C algorithm exhibits the 
highest cumulative energy consumption, exceeding 99 joules. 
It is followed by the LEACH algorithm, which also surpasses 
98 joules, and then the LEACH-ASSA algorithm with the 
lowest energy consumption at slightly over 95 joules. As the 
network operates further, it can be observed that the 
LEACH-C algorithm consumes nearly 100 joules of energy 
in 1014 rounds, leading to all nodes in the network depleting 
their energy. The LEACH algorithm consumes over 99.5 
joules of energy in 1027 rounds while the LEACH-ASSA 
algorithm consumes approximately 96.5 and 97.5 joules in 
respective rounds, maintaining network operation until round 
1051. It is evident that compared to other two algorithms, the 
LEACH-ASSA algorithm consumes less energy per round. 
 

Fig. 13. Comparison chart of energy consumption in each round 
before node dead 
 

Fig. 13 illustrates that the energy consumption of each 
round of the LEACH algorithm fluctuates around 0.1 joules, 
with a large upward fluctuation amplitude and a high 
frequency of abnormally high energy consumption 
occurrences. High peak energy consumption occurs multiple 
times and exceeds 0.2 joules. The energy consumption of 
each round for the LEACH-C algorithm also fluctuates 
around 0.1 joules, with relatively small fluctuation amplitude 
and fewer instances of abnormally high energy consumption, 
reaching a peak at 0.15 joules. In contrast, the energy 
consumption of each round of the LEACH-ASSA algorithm 
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fluctuates below the 0.1 joule line, with extremely small 
fluctuation amplitude and no abnormally high energy 
consumption.  
 

 
Fig. 14. Comparison chart of energy utilization efficiency 
 

Fig. 14 illustrates a comparison of energy utilization rates 
for each round of three algorithms. In this context, average 
energy usage is defined as the number of sent packets per 
joule. As depicted in Fig. 13, the energy utilization plane of 
the LEACH-ASSA algorithm demonstrates the highest level 
and tends to be parallel. This suggests that the 
LEACH-ASSA algorithm has the highest energy utilization 
rate and maintains a relatively balanced performance in each 
round. The energy utilization efficiency of LEACH-C falls 
within the middle range, while LEACH exhibits the lowest 
energy utilization efficiency. In comparison to the 
LEACH-ASSA algorithm, both LEACH-C and LEACH 
show some degree of fluctuation in their planes, indicating 
poor balance in energy utilization. 

V. CONCLUSION 

This article introduces a low-power cluster routing 
algorithm based on the adaptive SSA algorithm and applies it 
to MATLAB simulation for educational research purposes. 
The original SSA algorithm is first improved by 
incorporating adaptive adjustment factors using sine and 
cosine functions. Furthermore, Levy flight is integrated to 
enhance its ability to escape from local extremes, while 
standard normal distribution random numbers are added to 
increase individual diversity. This enhanced algorithm is then 
utilized in simulating teaching research on cluster routing 
communication.  

The simulation visually demonstrates the processes of 
cluster head election, clustering, data communication, and 
node death in clustering algorithms. This visual teaching 
process enables students to develop a deeper and more 
intuitive understanding of important characteristics such as 
low power consumption, network lifetime, and IoT energy 
utilization, thereby enhancing their cognition and improving 
teaching effectiveness. The next step will involve 
investigating the performance of the LEACH-ASSA 
algorithm in heterogeneous network deployment. 
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