
 

  

Abstract—Age-related macular degeneration (AMD) 

primarily affects individuals aged 50 and above. Analyzing 

optical coherence tomography (OCT) images for the presence 

of drusen is essential to diagnosing AMD. OCT produces 

accurate cross-sectional images that may identify retinal 

thinning and accumulation of fluid. Feature learning 

techniques, such as the Gray Level Co-occurrence Matrix 

(GLCM), Neighborhood Gray-Tone Difference Matrix 

(NGTDM), First Order Statistics, and Gray Level Run Length 

Matrix (GLRLM), enhance OCT image analysis by extracting 

texture features. The application of machine learning 

methodologies, including support vector machines (SVM), 

facilitates the automated evaluation and classification of AMD 

according to predetermined criteria. Integrating advanced 

processing technologies with OCT imaging for AMD diagnosis 

could potentially lead to improved patient outcomes and the 

preservation of visual acuity among the older adult population. 

In the study, linear SVM achieved perfect accuracy (1.0) with 

scaling and regularization. RBF SVM performed well, scoring 

0.981, excelling with non-linear data. Polynomial SVM 

matched this score but was sensitive to cross-validation. 

Sigmoid SVM had the lowest performance, scoring 0.7736 

when unscaled and 0.981 when regularized, indicating poor 

adaptability without preprocessing. 

 
Index Terms— AMD, drusen, OCT image, texture analysis, 

SVM, accuracy, f1score 

I. INTRODUCTION 

GE-related macular degeneration (AMD) causes 

progressive blurred vision for various people, primarily 

impacting individuals aged 50 years and older. AMD affects 

over 200 million people globally and will reach 300 million 

by 2040. Older people are disproportionately affected by 

this condition [1]. Drusen, yellowish deposits beneath the 

retina, are key indicators of AMD. A non-invasive 

diagnostic method is optical coherence tomography, which 

can reveal issues such as fluid buildup, retinal thinning, and 

drusen formation within the retinal layers [2]. OCT plays a 

crucial role in AMD diagnosis and monitoring by providing 

detailed retinal images [3]. Ophthalmologists may now more 

easily diagnose retinal diseases due to automated retinal 

image processing in biomedical applications. Traditional 

therapies like pupil dilation are no longer necessary because 

 
Manuscript Received August 10, 2024; revised September 23, 2024. 

R Loganathan is a PhD student of Department of Electronics and 
Communication Engineering, College of Engineering and Technology, 

SRM Institute of Science and Technology, Kattankulathur Campus, 

Chengalpattu 603203, Tamil Nadu, India. (e-mail: lr1054@srmist.edu.in) 
S Latha* is an Associate Professor of the Department of Electronics and 

Communication Engineering, College of Engineering and Technology, 

SRM Institute of Science and Technology, Kattankulathur Campus, 
Chengalpattu 603203, Tamil Nadu, India. (Corresponding author to provide 

e-mail: lathas3@srmist.edu.in) 

of this elimination [4]. An important defining feature of 

AMD is the vascular destruction that occurs in the retina. 

The ageing process causes this condition, which results in 

the deterioration of the small veins, supplying the retina 

with oxygen and nutrients [5]. 

A broad spectrum of disorders and conditions has the 

potential to impact the eyes, leading to vision impairment or 

a substantial deterioration in visual acuity. There are several 

common visual illnesses and abnormalities, including 

cataracts, diabetic retinopathy, glaucoma, hypertensive 

retinopathy, myopia, and age-related macular degeneration 

[6]. Identification and diagnosis promptly are essential for 

effective treatment and vision preservation. An ideal 

solution to this issue would be a model that integrates deep 

learning (DL) and machine learning (ML) to differentiate 

between healthy eyes and those who are infected [7]. 

The creation of an approachable educational platform on 

eye disorders is essential, as various people suffer from 

degenerative diseases that cause blindness for which there is 

no treatment. Grouping multi-label OCT images helps 

diagnose eye diseases, but getting true OCT data, 

particularly for uncommon conditions, is difficult. The 

accuracy of the infected detection model is reduced by data 

scarcity and visual noise. 

Recent advances in machine learning have dramatically 

improved OCT images for eye disease diagnosis. Voter 

classifiers like XGBoost, Support Vector Machines, 

Gradient Boosting, and Decision Trees, along with Random 

Forests, have proven effective in accurately identifying 

different retinal disorders in images. SVM, which utilizes 

multiple kernel functions such as linear, polynomial, and 

radial basis functions (RBF), helps diagnose AMD by 

distinguishing between healthy and infected AMD OCT 

images. Feature extraction methods like the Gray Level Co-

occurrence Matrix (GLCM), Gray Level Run Length Matrix 

(GLRLM), Neighborhood Gray Tone Difference Matrix 

(NGTDM), and First Order Statistics are applied to an OCT 

image dataset and then combined to form a new dataset. 

Sigmoid, linear, Radial Basis Function (RBF), and 

polynomial SVM kernel functions are tested for multi-label 

OCT image classification to diagnose AMD. A lack of 

adequate and reliable OCT data for rare retinal illnesses 

makes accurate disease identification difficult. Comparison 

of SVM confusion matrices, accuracy, precision, and f1 

score helps find the best AMD classifier. This study 

correlates four SVM kernels (linear, RBF, polynomial, and 

sigmoid) under identical conditions and investigates the 

combined effects of scaling, regularization, and cross-

validation. It determines SVM performance accurately, 

quantifies the influence of preprocessing techniques, and 

provides practical advice for optimizing model performance. 
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II. RELATED WORKS 

Recent research has examined the possibility of 

predicting AMD using OCT images. Machine learning is 

being studied for several medical conditions, including 

AMD. Researchers used these algorithms to diagnose and 

predict various medical problems. Machine learning 

techniques are implemented using SVM, KNN, Random 

Forest, Logistic Regression, and Decision Tree algorithms 

[8].  

Researchers survey AMD by utilizing a variety of 

datasets, which include OCT scans, fundus images, and 

hospital data. OCT image databases provide innovative 

methods for identifying and investigating this potentially 

blinding issue. Recently developed machine learning and 

deep learning in OCT image processing for retinal 

diagnostics are promising. 

Harshini et al. demonstrated a voting classifier [9] with 

98.79% accuracy. Shamsan et al. achieved 99.23% AUC 

utilizing hybrid techniques [10], and Esraa Hassan et al. 

used CNNs and modified ResNet models and Random 

Forest classifiers [11] to classify general OCT images with 

99.2% accuracy. Amin Alqudah presented 98.7% accurate 

hybrid AI systems using machine learning and CNNs [12]. 

Xing Wei et al. accurately segmented retinal cysts 96.8% for 

therapeutic planning [13]. Venkatesan Rajinikanth et al. 

improved imaging for age-related macular degeneration 

categorization, attaining 93.67% accuracy [14]. Geetha 

Pavani classified neovascularization with 93.4% accuracy 

using extreme learning machine (ELM) classifiers [15]. 

Abdulrahman et al. employed Genetic Programming to 

select the Gabor filter, LBP, GLCM, histogram, and SURF 

for feature extraction, achieving 90.95% accuracy in 

detecting retinal abnormalities with SVM, outperforming 

traditional methods [16]. Venkatraman et al. utilized 

preprocessing and histogram of oriented gradients (HOG) 

feature extraction to classify OCT images based on fluid 

patterns, achieving 89.29% accuracy with KNN 

classification [17]. 

III. METHODOLOGY 

A. Optimization Methods for Classification Leveraging 

Machine Learning 

Classification, in particular, supervised learning, is highly 

suitable for the machine learning challenge of differentiating 

between typical OCT images and those exhibiting AMD. 

OCT scans assist in the diagnosis of AMD and other retinal 

disorders by offering detailed cross-sectional images of the 

retina. The objective is to ascertain whether the OCT images 

depict age-related macular degeneration signaling retinal 

structures or those that are normal. The input (OCT images) 

and output (diagnosis of normal or AMD) are explicitly 

specified under the principles of supervised learning [18]. 

Fig. 1 illustrates the process for classifying optical 

coherence tomography (OCT) images using SVM 

algorithms. 

After importing the data and extracting the features, the 

model is constructed for AMD/normal categorization. To 

enhance the differentiation between age-related macular 

degeneration (AMD) and typical macular degeneration 

(OCT) in images, the model will undergo modifications, 

considering the nuances of medical image processing. At 

that point, the model would be more capable of 

differentiating between the two cases. These changes would 

not emphasize the features of OCT images or the clinical 

indications associated with AMD. 

 

 
Fig. 1. OCT image classification model. 

 

B. Support Vector Machine 

SVM is used widely in data mining, machine learning, 

neural networks, and pattern recognition. SVM algorithms 

are used to represent the problem of defining two classes in 

feature space: normal and AMD, as shown in Fig. 2. 

 

 
Fig. 2. SVM-based linear data classification 

 

Support Vector Machines (SVM) employs the Maximum 

Margin Hyperplane (MMH) to partition the two data 

elements through the creation of numerous hyperplanes. 

Identifying the hyperplane with the greatest distance 

between data points and correctly categorizing them is 

realistic. Fig. 2 shows positive and negative hyperplanes, 

with the first type supporting positive data points and the 

latter supporting negative ones. When these hyperplanes are 

positioned optimally, the distance between them may be 

maximized. SVM solves regression and data classification 

optimization challenges. Hyperplane identifies and divides 
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the data into positive and negative points and classifies them 

accordingly. The hyperplane that is illustrated herein 

symbolizes the anticipated decision boundary for the linear 

support vector machine. 

 

 
Fig. 3. SVM-based nonlinear data classification 

 

Kernels translate nonlinear data into higher dimensions 

for SVM classification, as seen in Fig. 3. Several classes for 

the kernel function can be used for classification. Choosing 

the right kernel function is very important for correctly 

grouping data points. Applying the kernel function raises 

one class of data to a higher dimension, enabling decision 

surfaces to categorize data points. The significance of 

choosing the right kernel function for maximizing SVM 

classification performance is emphasized by this technique. 

The primary principle is to create nonlinear separators. 

Classification using linear decision surfaces requires data 

transformation into a higher dimensional space. As shown in 

Fig. 3, a reformulation problem implicitly maps the data to 

this space. The method improves SVM's discriminative 

features by handling complicated data distributions more 

successfully. 

The process of transforming data into a higher 

dimensional feature space, represented as F(x1, x2), is 

facilitated by the kernel function. Data points (x1, x2) can 

be separated linearly by this method. Thus, linear and 

nonlinear classifications may be performed using SVMs. To 

perform nonlinear classification, the kernel function projects 

dataset points into a higher dimensional feature space. 

Additionally, kernel functions are required to meet the 

stipulation delineated in Mercer's theorem [19].  

Kernels are used in SVM for decision making the most 

common are linear, polynomial, RBF, and sigmoid, and they 

all have their unique uses in classification problems. 

Frequently employed kernel functions consist of: 

 

Linear kernel:                                (1) 

 

Polynomial kernel:            (2) 

 

RBF kernel:                                (3) 

 

Sigmoid kernel:         (4) 

 

The simplest kernel function is linear, which takes the 

inputs (x1 ∙ x2) and uses an optional constant c to determine 

the linear kernel's inner product. Noise or inadequate feature 

representation causes nonlinear separability. Data is mapped 

into a separate space. The Polynomial kernel, utilizing 

mathematical function (2) instead of (x1 ∙ x2), C balances 

training data fit and margin size. Large C has low training 

error but overfit, whereas small C has high error but 

underfit. The polynomial's degree d controls the model level 

of complexity. Higher degrees of d may provide more 

complicated overfitting models, whereas lower degrees may 

produce simpler underfitting models. Gaussian kernel, or 

Radial basis function (RBF) kernel, is equation (3), in this 

case, σ controls the spread of the kernel. The sigmoid kernel 

is given by equation (4), where α scales input data and C 

regulates the mapping threshold.  

C. Dataset Acquisition 

Open Access OCT Image Database (OCTID) is used for 

the study [20]. In the spectrum domain, the small database 

has about 250 volumetric OCT images. The two different 

groups, normal and age-related macular degeneration 

(AMD), are carefully segregated for analytical reasons. 

There are two categories: 21.07% AMD and 78.93% 

Normal. 206 out of 261 instances in OCTID belong to the 

Normal group, while 55 belong to the AMD category as 

shown below in Fig. 4. 

 

           
(a) Normal     (b) Dry AMD    (c) % for 2 classes 

Fig. 4. OCTID in a row for (a) normal, (b) drusen or dry AMD, and (c) % 

for 2 classes. 

 

Data Preprocessing 

The proposed method retrieves OCT images from a 

database, selecting and saving them in .jpeg format during 

processing. Grayscale OCT images encode reflectance data, 

with each pixel's intensity and luminosity represented by a 

single value. These images distinguish luminance levels 

through encoded bytes or words assigned to each pixel. The 

OCT image dataset has 261 images from 2 classes. The 

dataset image is scaled to 100x100 for each image. 

 

Feature Extraction 

In medical image analysis research, Optical Coherence 

Tomography (OCT) image extraction of specific features is 

essential. The system computes several aspects, including 

texturing qualities and fundamental statistical values, by 

using certain algorithms. In particular, the Neighborhood 

Gray Tone Difference Matrix (NGTDM), the Gray Level 

Run Length Matrix (GLRLM), the Gray Level Co-

occurrence Matrix (GLCM), and the first-order statistics are 

illustrative of these features. Both classes possess a 

combined total of 33 features shown in Table I. The next 

step is to carefully examine the OCT images in the assigned 

files, extracting and classifying the relevant characteristics 

for the study. 

 

Feature Selection 

SelectKBest method utilizing ANOVA F values via 

f_classif ranks features by target prediction significance. A 

data frame orders feature by importance for machine 

learning improvements. The analysis of prediction models is 

significantly enhanced using this method. OCT retinal 
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images were separated using the train test split algorithm 

into 20% testing and 80% training across two categories. 

After processing the training data, an SVM classifier 

classified images as AMD or Normal. Training and 

evaluating the dataset for image classification was made 

simpler using this method. 

D. Evaluation Metrics 

Accuracy: Measures the classifier's ability to accurately 

predict classifying AMD and Normal instances with OCT 

images to establish the accurate prediction ratio of the 

dataset sample size. 

Recall: Represents the proportion of positive predictions 

(e.g., AMD cases) that are correctly identified as positive, 

crucial for accurate diagnosis in medical imaging, 

particularly for detecting AMD in OCT images. 

Precision: Reflects the proportion of true positive and true 

negative cases (both Normal and AMD) correctly classified 

as positive, providing insight into the classifier's 

performance on accurately identifying positive cases. 

F1-Score: Evaluates the classifier's effectiveness in 

categorizing normal and AMD cases in OCT images by 

computing accuracy and recall as a harmonic mean.

 

TABLE I 
 DESCRIPTION OF THE OCTID FOR 33 FEATURES 

Description Features Dataset Summary 

FOS 

1. Mean Intensity, 2. Standard Deviation 

3. Median, 4. Mean Absolute Deviation 

5. Relative Mean Absolute Deviation 

6. Root Mean Square, 7. Variance 

8. Minimum, 9. Maximum, 10. Skewness 

11. Kurtosis, 12. Entropy, 13. Interquartile Range 

No. of Features: 13 

No. of Instances: 261 

No. of Classes: 2 

Missing Values: No missing values 

Feature Type: Numeric 

GLCM 

1. Contrast, 2. Dissimilarity, 3. Homogeneity 

4. Energy, 5. Correlation 

6. Angular Second Moment 

7. Texture Entropy, 8. Maximum Probability 

No. of Features: 8 

No. of Instances: 261 

No. of Classes: 2 

Missing Values: No missing values 

Feature Type: Numeric 

GLRLM 

1. Short Run Emphasis, 2. Long Run Emphasis 

3. Gray Level Non-Uniformity 

4. Run Length Non-Uniformity, 5. Run Percentage 

6. Low Gray Level Run Emphasis 

7. High Gray Level Run Emphasis 

No. of Features: 7 

No. of Instances: 261 

No. of Classes: 2 

Missing Values: No missing values 

Feature Type: Numeric 

NGTDM 

1. Coarseness, 2. Contrast 

3. Busyness, 4. Complexity 

5. Strength 

No. of Features: 5 

No. of Instances: 261 

No. of Classes: 2 

Missing Values: No missing values 

Feature Type: Numeric 

 

E. Experimental Setup 

Four Support Vector Machine (SVM) models were tested 

under different preprocessing and validation conditions. The 

models comprised sigmoid, polynomial, linear, and RBF 

SVMs. Raw data (without preprocessing or validation), 

scaled data, scaled and regularized data, and CV scaled and 

regularized data were the four experimental scenarios. Each 

model was evaluated using training accuracy, testing 

accuracy, best score, F1 score, accuracy, recall, and ROC 

AUC. Data scaling normalizes feature values, whereas 

regularization prevents overfitting. In cross-validation, the 

dataset was folded five times. The model was trained on 

four folds and verified on five. It was averaged over all five 

folds. The studies employed Python, Scikit-learn for 

machine learning, Pandas for data processing, Matplotlib, 

and Seaborn for visualization [21]. This setup enabled SVM 

model comparisons and revealed how preprocessing and 

validation affect model performance. 

IV. RESULTS AND DISCUSSION 

AUC, Precision, Sensitivity, Accuracy, and the Confusion 

Matrix were used to compare how well the models did on 

OCT images as part of the study. The True Positives, 

Negatives, and False groups in the Confusion Matrix 

showed the link between the expected and true classes. The 

best OCT image-based AMD detection method was found in 

this work, revealing novel machine-learning applications in 

OCT. 

Table II compares the performance of support vector 

machines (SVMs) with and without scaling and cross-

validation. Linear SVM achieves optimal test accuracy and 

metrics. The RBF SVM model has high accuracy but low 

specificity. Although the sigmoid SVM has lower accuracy 

due to large misclassification rates and poor specificity, the 

polynomial SVM demonstrates excellent performance. 

Regularization and scaling are compared with SVM 

performance in Table III. Linear SVM is 100% accurate 

when the best value is set to 1.0. The RBF and polynomial 

SVMs show excellent test accuracy with C = 10, gamma = 

0.1, and (C = 0.1, degree = 2), respectively. Additionally, 

sigmoid SVM performs exceptionally well when C = 100 

and gamma = auto. This analysis evaluates SVM models 

with various kernels and hyperparameters. It includes 

heatmaps showing accuracy for RBF kernels across C and 

gamma and for polynomial kernels across C, gamma, and 

degree. The optimal parameters and performance metrics are 

reported. Fig. 5 shows accuracy across different SVM 

kernels: (a) linear SVM with C; (b) RBF SVM with C and 

gamma; (c) polynomial SVM with C, gamma, and degree; 

(d) sigmoid SVM with C. 
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TABLE II 
 COMPARISON OF SVM MODEL PERFORMANCE WITHOUT CROSS-VALIDATION: SCALED  

Model 
Linear /  

Nonlinear 

Train 

Accuracy 

Test 

Accuracy 

Sensitivity / 

TPR 

Specificity 

/ TNR 

Misclassify 

rate 

FPR / 

Fall-Out 

FNR/ 

Miss Rate 

Linear SVM 

(LSVM) 
Linear 0.9760 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RBF SVM 
(RSVM) 

Nonlinear 0.9760 0.9623 0.9756 0.9167 0.0377 0.0833 0.0244 

Polynomial 

SVM (PSVM) 
Nonlinear 0.9904 0.9811 0.9756 1.0000 0.0189 0.0000 0.0244 

Sigmoid SVM 
(SSVM) 

Nonlinear 0.7933 0.7736 1.0000 0.0000 0.2264 1.0000 0.0000 

 
TABLE III 

 COMPARISON OF SVM MODEL PERFORMANCE WITHOUT CROSS-VALIDATION: SCALED & REGULARIZATION 

Model 
Linear /  

Nonlinear 
Best 

Parameters 
Train 

Accuracy 
Test 

Accuracy 
Sensitivity 

/ TPR 

Specificity 

/ TNR 

Misclassify 

rate 

FPR / 

Fall-Out 

FNR/ 

Miss Rate 

Linear SVM  Linear C: 1.0 0.9760 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

RBF SVM  Nonlinear 
C: 100,  

Gamma:0.1 
0.9760 0.9811 1.0000 0.9167 0.0189 0.0833 0.0000 

Polynomial SVM  Nonlinear 
C: 0.1, 

Degree: 2 
0.9760 0.9811 1.0000 0.9167 0.0189 0.0833 0.0000 

Sigmoid SVM  Nonlinear 
C: 100, 

Gamma: auto 
0.9760 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

 

TABLE IV 

COMPARISON OF SVM MODEL PERFORMANCE WITH CROSS-VALIDATION: SCALED & REGULARIZATION 

Model 
Linear /  

Nonlinear 

Best 

Parameters 

Best 

Score 

Train 

Accuracy 

Test 

Accuracy 

Sensitivity 

/ TPR 

Specificity 

/ TNR 

Misclassify 

rate 

FPR / 

Fall-Out 

FNR/ 

Miss Rate 

Linear 

SVM  
Linear C: 100 0.976 0.9904 1 1.0000 1.0000 0.0000 0.0000 0.0000 

RBF SVM  Nonlinear 
C: 1000, 

Gamma: 0.01 
0.9806 0.9904 0.9811 0.9756 1.0000 0.0189 0.0000 0.0244 

Polynomial 

SVM  
Nonlinear 

C: 0.1, 

Degree: 5 
0.976 0.976 0.9434 0.9512 0.9167 0.0566 0.0833 0.0488 

Sigmoid 

SVM  
Nonlinear 

C: 10, 
Gamma: 

'auto' 

0.9758 0.976 0.9811 1.0000 0.9167 0.0189 0.0833 0.0000 

 

    
(a) Accuracy vs C value for linear SVM          (b) Accuracy vs C value vs gamma value for RBF SVM 
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(c) Accuracy for polynomial SVM: C, gamma, and degree Values 

 

 
(d) Accuracy vs C value for sigmoid SVM 

Fig. 5. Accuracy heatmap for various SVM kernels across hyperparameter values 
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(a) Metric comparison across SVM models 

 

 
(b)Heatmap: SVM Models 

Fig. 6. SVM Model Performance with CV (Scaled & Regularized) 

 

The effectiveness of several Support Vector Machine 

(SVM) models is shown in the visualizations in Table IV. 

The first representation utilizes a bar chart to compare the 

training accuracy, testing accuracy, best score, F1 score, 

accuracy, recall, and ROC AUC of linear, RBF, polynomial, 

and sigmoid SVMs in Fig.6(a). The second plot is a heatmap 

illustrating the metrics for each model, highlighting their 

comparative strengths in Fig.6(b). 
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TABLE V 
COMPARISON OF THE SVM MODEL’S ACCURACY PERFORMANCE FOR DIFFERENT CONDITIONS 

Model 
Data 

Scaling 

Regularization Cross 

Validation 

Linear 

SVM 

RBF   

SVM 

Polynomial 

SVM 

Sigmoid 

SVM 

Raw No No No 
0.7736 0.7736 0.7736 0.7736 

Scaled Yes No No 
1.0000 0.9623 0.9811 0.7736 

Scaled & Regularized Yes Yes No 
1.0000 0.9811 0.9811 1.0000 

CV, Scaled & Regularized Yes Yes Yes 
1.0000 0.9811 0.9434 0.9811 

 

 
Fig. 7. SVM model’s accuracy performance for different conditions 

 

Accuracy results for several SVM kernels for various 

conditions are shown in Table V. By using scaling and 

regularization techniques, both linear and RBF SVMs 

achieve optimal accuracy are displayed in Fig. 7. 

Polynomial SVM has high accuracy but experiences a small 

decrease in performance during cross-validation. Scaling 

and regularization enable sigmoid support vector machines 

to closely resemble linear and RBF SVMs. 

This study evaluated the precision of OCTID features 

using various SVM kernels under different preprocessing 

conditions are shown in Table VI. The linear SVM 

consistently achieved perfect accuracy (1.0) with scaled, 

regularized features and cross-validation (CV). The RBF 

SVM reached near-perfect accuracy (0.9762) with scaling 

and regularization, improving to 1.0 with CV. The sigmoid 

SVM peaked at 1.0 after scaling and regularization but 

decreased to 0.9762 with CV. Despite some inconsistency, 

the polynomial SVM maintained high accuracy across most 

scenarios. 

This study analyzed the recall of OCTID features using 

various SVM kernels across several preprocessing settings. 

Both the linear and sigmoid SVMs always got a recall rate 

of 1.0, which means they worked perfectly in all situations, 

including raw, scaled, scaled with regularization, and used 

with cross-validation (CV) are shown in Table VII. When 

the features were in their original form and scaled using 

regularization, the RBF SVM showed a recall rate of 100%. 

The recall rate was reduced to 0.9756 after cross-validation 

and feature scaling. Except for cross-validation, the 

polynomial SVM achieved a flawless recall. Applying 

cross-validation further reduced the recall to 0.9512. 

 
TABLE VI 

OCTID FEATURES PRECISION USING VARIOUS SVM KERNELS 

Model / 

Conditions 
Raw Scaled 

Scaled & 

Regularized 

CV, Scaled & 

Regularized 

Linear SVM  0.7736 1.0000 1.0000 1.0000 

RBF SVM  0.7736 0.9756 0.9762 1.0000 

Polynomial SVM 0.7736 1.0000 0.9762 0.9750 

Sigmoid SVM 0.7736 0.7736 1.0000 0.9762 

 
TABLE VII 

OCTID FEATURES RECALL USING VARIOUS SVM KERNELS 
Model / 

Conditions 
Raw Scaled 

Scaled & 

Regularized 

CV, Scaled & 

Regularized 

Linear SVM  1.0000 1.0000 1.0000 1.0000 

RBF SVM  1.0000 0.9756 1.0000 0.9756 

Polynomial SVM 1.0000 0.9756 1.0000 0.9512 

Sigmoid SVM 1.0000 1.0000 1.0000 1.0000 

 
TABLE VIII 

OCTID FEATURES F1 SCORE USING VARIOUS SVM KERNELS 
Model / 

Conditions 
Raw Scaled 

Scaled & 

Regularized 

CV, Scaled & 

Regularized 

Linear SVM  0.8723 1.0000 1.0000 1.0000 

RBF SVM  0.8723 0.9756 0.9880 0.9877 

Polynomial SVM 0.8723 0.9877 0.9880 0.9630 

Sigmoid SVM 0.8723 0.8723 1.0000 0.9880 
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TABLE IX 
OCTID FEATURES ROC-AUC USING VARIOUS SVM KERNELS 

Model / 

Conditions 
Raw Scaled 

Scaled & 

Regularized 

CV, Scaled & 

Regularized 

Linear SVM  1.0000 0.9959 1.0000 1.0000 

RBF SVM  0.9959 0.9959 1.0000 1.0000 

Polynomial SVM 1.0000 0.9959 1.0000 0.9939 

Sigmoid SVM 0.6382 0.9959 1.0000 0.9980 

 

F1 scores of OCTID features utilizing multiple SVM 

kernels across various preprocessing conditions were 

investigated in this work and are displayed in Table VIII. 

The linear Support Vector Machine (SVM) attained flawless 

F1 scores (1.0) while using scaled and regularized features, 

together with cross-validation (CV). The RBF SVM and 

polynomial SVM demonstrated strong F1 scores, 

particularly after adjusting for size and regularization, and 

these scores only slightly decreased with the use of cross-

validation. After using scaling and regularization 

techniques, the sigmoid Support Vector Machine (SVM) 

achieved a perfect F1 score but saw a minor reduction when 

performing cross-validation. 

The ROC-AUC of OCTID features was determined using 

various SVM kernels and preprocessing conditions are 

displayed in Table IX. The linear, RBF, and polynomial 

SVMs achieved near-perfect or perfect ROC-AUC scores, 

particularly after scaling, regularization, and cross-

validation (CV). The sigmoid SVM got much better after 

being scaled and regularized, going from a lower ROC-AUC 

(0.6382) to almost perfect scores after CV, with a small drop 

to 0.9980 after scaling. 

Utilizing optical coherence tomography (OCT) images, 

diagnostic criteria for AMD include the following: True 

Positive (TP) when AMD is correctly identified, False 

Positive (FP) when normal images are mistakenly identified 

as AMD, True Negative (TN) when normal conditions are 

correctly identified, and False Negative (FN) when AMD 

cases are missed or misclassified as normal. 

The linear SVM model achieved 100% accuracy, as it had 

no errors, with zero false negatives (FN) and zero false 

positives (FP). The RBF SVM model had a slight decrease 

in accuracy due to a single false positive. The polynomial 

SVM had a total of three errors, consisting of one false 

negative and two false positives, resulting in lower accuracy 

compared to the linear SVM. The sigmoid SVM had one 

error, specifically one false negative. This performance 

indicates better accuracy compared to the polynomial SVM 

but slightly lower than the linear SVM, as seen in Fig. 8. 

 

     
(a) Linear SVM                     (b) RBF SVM 

     
(c) Polynomial SVM                     (d) Sigmoid SVM 

Fig. 8. Confusion matrix of the SVM models 
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(a) Linear SVM                     (b) RBF SVM 

 

     
(c) Polynomial SVM                      (d) Sigmoid SVM 

Fig. 9. AUC ROC curve of the SVM model 
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(a) Linear SVM                     (b) RBF SVM 

 

     
(c) Polynomial SVM                     (d) Sigmoid SVM 

Fig. 10. Learning curve of the SVM models 

 

   
(a) Linear SVM                      (b) RBF SVM 
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(c) Polynomial SVM                     (d) Sigmoid SVM 

Fig. 11. Precision recall curve of the SVM models 

 

The linear SVM and RBF SVM models classified OCT 

images with a perfect AUC of 1.0, indicating the best 

performance for distinguishing between AMD and normal 

classes. The polynomial SVM also performed well, with a 

slightly lower AUC of 0.99. The sigmoid SVM showed 

strong performance as well, with an AUC of 1.0, though 

slightly lower than the RBF SVM, as illustrated in Fig. 9. 

In OCTID binary classification, the SVM learning curve 

illustrates model performance as training data increases, 

highlighting potential overfitting or underfitting. The linear 

SVM (LSVM) shows excellent accuracy, with 99.04% on 

training and 100.00% on testing, indicating strong 

generalization. The Radial Basis Function SVM (RBF 

SVM) also performs well, with 99.04% train accuracy and 

98.11% test accuracy. The polynomial SVM (PSVM) 

demonstrates decent performance, with 97.60% train 

accuracy and 94.34% test accuracy. The sigmoid SVM 

(SSVM), while achieving 97.60% train accuracy, slightly 

improves in testing with 98.11% accuracy, contrary to 

earlier expectations of poor performance. Overall, LSVM is 

the most accurate and robust, with PSVM performing well, 

while SSVM shows better generalization than initially 

anticipated, as shown in Fig. 10. 

The linear SVM predicts consistently and accurately 

across all recall levels, achieving perfect precision (1.0) and 

recall (1.0). The sigmoid SVM also demonstrates strong 

performance with high precision (0.9762) and perfect recall 

(1.0). However, the polynomial SVM shows slightly lower 

precision (0.9750) and recall (0.9512), indicating a tradeoff 

between these metrics. The RBF SVM maintains perfect 

precision (1.0) but experiences a slight drop in recall 

(0.9756), as illustrated in Fig. 11. 

 
Fig. 12. Comparing the optimization method with the related works. 
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TABLE X 

OCTID ACCURACY COMPARED WITH RELATED WORKS. 

Literature Classifier Accuracy 

Optimization Method 

Linear: LSVM 

Nonlinear: RBFSVM 

Nonlinear: PSVM 
Nonlinear: SSVM 

100% 
98.11% 94.34% 

98.11% 

Harshini et al. [9] Voting Classifier 98.79% 

Esraa Hassan et al. [11] Random Forest 95.10% 

Amin Alqudah [12] 
Linear SVM,  

RBF SVM 
97.28%, 98.56% 

Rajinikanth et al. [14] RBF SVM 93.67% 

Geetha Pavani [15] ELM Classifier 98% 

 

The linear SVM predicts consistently and accurately 

across all recall levels, achieving perfect precision (1.0) and 

recall (1.0). The sigmoid SVM also demonstrates strong 

performance with high precision (0.9762) and perfect recall 

(1.0). However, the polynomial SVM shows slightly lower 

precision (0.9750) and recall (0.9512), indicating a tradeoff 

between these metrics. The RBF SVM maintains perfect 

precision (1.0) but experiences a slight drop in recall 

(0.9756), as illustrated in Fig. 11. 

The study compares SVM classifiers for diagnosing Age-

related Macular Degeneration (AMD) using Optical 

Coherence Tomography images. The linear SVM achieved 

100% accuracy across all preprocessing conditions, 

including scaling, regularization, and cross-validation. The 

RBF SVM performed well with a test accuracy of 98.11%, 

while the polynomial SVM achieved 94.34% accuracy. The 

Sigmoid SVM showed varying results, with improvements 

to 100% accuracy under scaling and regularization but 

dropping slightly to 98.11% with cross-validation. These 

findings highlight the crucial role of data preprocessing and 

model tuning in enhancing SVM performance for AMD 

classification. Table X compares the accuracy of OCTID to 

that of related models. 

Comparatively, Harshini et al. used a voting classifier 

achieving 98.79% accuracy, while Esraa Hassan et al. 

reported 95.10% accuracy using a random forest classifier. 

Amin Alqudah's research found an accuracy of 97.28% for 

linear SVM and 98.56% for RBF SVM, proving SVM-based 

techniques work. Rajinikanth et al. used an RBF SVM and 

obtained 93.67% accuracy, slightly lower than other studies. 

Geetha Pavani's Extreme Learning Machine (ELM) 

classifier achieved 98% accuracy. Overall, the comparison 

in Fig. 12. shows that SVM models, especially RBF SVM, 

are highly effective for diagnosing AMD using OCT 

images. These findings support the use of SVM-based 

optimization methods in assisting ophthalmologists with 

AMD diagnosis. 

V. CONCLUSION 

VI. The current research intended to determine whether 

multiple Support Vector Machine (SVM) kernels performed 

in the normal and AMD retinal OCT classification of 

images. In the study on retinal OCT image classification, the 

Linear SVM (LSVM) achieved perfect accuracy (1.0) after 

data scaling and regularization, up from 0.7736, showcasing 

its effectiveness for linearly separable data. RBF and 

polynomial SVMs also performed well, with 0.9811 

accuracy post-scaling and regularization, though they 

required careful parameter tuning. The sigmoid SVM 

improved from 0.7736 to 1.0 with regularization. These 

findings highlight the importance of data preparation and 

model adjustment, as optimal scaling, regularization, and 

cross-validation significantly enhance SVM performance 

across all kernels, especially in classifying complex medical 

images. 
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