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Abstract—In the past decades, the artificial bee colony (ABC)

algorithm has gained significant concern and has become an
important metaheuristic algorithm. Despite the extensive
research on various ABC variant algorithms, achieving a
balance between exploratory and exploitative abilities, as well
as escaping from local optimal positions, remains a major
challenge. In this article, an empirical balanced artificial bee
colony (EBABC) algorithm is proposed. Firstly, we utilize the
information of randomly selected individual and the global
optimal individual at present in a new searching equation to
guide individuals towards favorable positions. Additionally, we
introduce the diversity of the colony into another searching
equation, allowing for the dynamic adjustment of the
algorithm's exploratory and exploitative abilities. Furthermore,
we design a mechanism for dynamically selecting equations to
balance the exploratory and exploitative abilities of the
algorithm. Lastly, we introduce a dynamic disturbance
strategy for the optimal individual at present to prevent it from
getting trapped in local optima. We conduct numerical
experiments on 27 benchmark functions and 5 Non-negative
Linear Least Squares Problems (NLLS). The results
demonstrate the feasibility, effectiveness, and robustness of the
proposed algorithm.

Index Terms—Artificial bee colony algorithm, optimization
problems, empirical balance strategy, dynamic random search

I. INTRODUCTION

LONG with the development of world economy and
advance in science and technology, a growing body of

real world problems are complex optimization problems. To
address these problems well, lots of researches have been
done and numerous algorithms have been designed for
different problems. All these algorithms can generally be
classified into two main kinds: the traditional algorithm that
the searching process relies on the gradient information of
the problem, and the intelligent algorithm that the searching
process imitates certain natural phenomena. As the problems
getting complex, the traditional algorithm turns to be
overstretched. More and more researchers shifted their
sights to the intelligent algorithm due to its excellent optimal
performance. Until now many intelligent algorithms have
been designed for complex optimization problems, such as
genetic algorithms (GAs)[1], particle swarm optimization
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(PSO)[2-5], ant colony optimization (ACO)[6], differential
evolution (DE)[7], artificial bee colony algorithm (ABC)[8]
and firefly algorithm (FA)[9,10] et al..

Among these algorithms, ABC algorithm excels other
swarm intelligent algorithms due to its simple structure and
high efficiency[11]. Since coming out, it has been attracted
widespread attentions and applied in many areas. Although
ABC was widely used and its performance had advantages
over some state-of-art algorithm, there still had many
modifications on the algorithm to adaptive the
characteristics of different problems. In the original ABC,
all the searching processes and searching equation shows the
great exploratory ability of the algorithm which can
efficiently prevent local convergence. However, the
drawback is poor in exploitative ability, which also means
the lower convergence speed. Therefore, most modifications
of the ABC variants are focusing on the searching strategies.
In [12], a Gbest-guided ABC algorithm is studied inspired
by the searching equation of PSO, in which the current
global optimal solution is considered into the searching
equation to guide the searching direction. The experiment
results indicate the GABC excels the original ABC in most
test functions. In [13], a new solution generating method is
designed by combining the current best solution and the
fitness value of it, and used the adjustable search radius to
enhance the population diversity. Gao et al. proposed
several ABC variants, such as designed two different
searching equations for artificial bees [14]; studied a MABC
algorithm to balance the exploratory and exploitative
abilities[15]; proposed a novel search equation inspired by
GA[16]; combined three methods to enhance the
performance, which are the orthogonal method, the
opposition based learning technique and the chaotic
strategy[17], and so on. Xue et al. given a SABC-GB by
introducing the current global best solution in searching
equations based on different strategies[18]. Cui et al.
combined the depth first search method and a modified
searching equation to obtain the better results[19]. Karaboga
et al. proposed the qABC algorithm by using the best
individual in searching equation at onlooker bee phase[20].
Wang et al. employed three kinds of approaches in the
searching stages, the best solution set is designed and used
for searching[21]. Wang et al. designed an improved ABC
by experience guiding, in which the experience of individual
improvement is collected for improving quality of the
individuals[22].

Although, these ABC variant algorithms produce many
successful results, there still exists improvement room to
boost the optimal performance of the algorithm. Balancing
the exploratory and exploitative abilities is the most
important purpose for the algorithm modification. Moreover,
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easily trapped into local optimization at the latter stages in
the searching process is also a crucial task for algorithm
modification. To conquer these issues, the well designed
strategies should be considered.

In this paper, we would like to propose an empirical
balanced artificial bee colony (EBABC) algorithm to
overcome the issues mentioned above. The main
contributions of this paper are as below. (a) A new searching
equation is presented, in which the information of randomly
selected individual and current global optimal individual are
used. (b) Based on the diversity, another searching equation
is designed, in which the exploratory and exploitative
abilities are adaptive balanced. (c) A dynamically equation
selection mechanism is given, which can help choose
searching equation better in the artificial bees searching
process. (d) A dynamic disturbance strategy is added to
avoid the algorithm trapped into the local optimization
earlier.

The rest of the paper is organized as follows. In Section 2,
the ABC is illustrated in detail . In Section 3, the proposed
EBABC is given. In Section 4, numerical experiments are
given, and the results are discussed. The conclusion is
presented in Section V.

II. OVERVIEW OF BASIC ARTIFICIAL BEE COLONY
ALGORITHM

On the basis of the real bees foraging behavior,
Karaboga[8] designed a new metaheuristic algorithm named
artificial bee colony algorithm (ABC) for unconstrained
optimizations, in which the artificial bees simulated the
searching behavior of food sources of real bee colony. In
ABC, the artificial bees in colony can be separated into three
kinds, i.e. employed bees, onlooker bees and scout bees.
Each kind of artificial bees correspond to a stage of the
algorithm. In the initialization, all artificial bees are
randomly set in the domain based on the following equation:

 min max min
ix x rand x x    , 1,...,i n , (1)

where ix is the i th feasible solution in the algorithm,
maxx and minx represent the upper bound and lower bound

of the domain. For the employed bees, each bee explores the
domain to find the food source and exploits it by

( )ij ij ij ij kjv x x x   , 1,...,i n , (2)
where {1,2,..., }j D is randomly selected, {1,2,..., }k n

and k i . Then the employed bees send the food source
information to the onlooker bees by waggle dance, which in
the algorithm can be formulated as the roulette wheel
selection of the food source to exploit. The selection
probability can be defined as:

1

i
i n

i
i

fit
p

fit




 , 1,...,i n , (3)

where ifit represents the fitness value of the i th feasible
solution calculated below for the minimum optimization
problems:

1 , 0,
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  

1,...,i n , (3)

where if is the objective function value of the the i th
food source. After the selection of the food source, the
onlooker bees will exploit the food source by equation (2). If
a solution cannot be updated enough times, it will become a
abandoned food source. And the scout bee will generate a
new one randomly by equation (1).

III. EMPIRICAL BALANCED ARTIFICIAL BEE COLONY
ALGORITHM

In ABC, the search equation of individuals tends to boost
the exploratory ability of searching process, because of the
randomly selected individual in the equation. This feature
ensures the searching process will not fall into local optimal
easily, but it will affect the exploitative ability of the
algorithm, consequently lower the convergent speed. So as
to boost the exploitative ability, the current global best
individual ( bestx ) has been employed into the searching
equation of the ABC algorithm in [12]. The information of
bestx will help to guide the individual towards to the better

individual, and the information of the randomly selected
individual ( kx ) will keep the diversity of colony. However,
the influence degree of bestx and kx on the new individual
is not distinguished in Zhu’s searching equation. If the
influence degree of bestx and kx are considered, it will be
more good for the individual’s searching. Furthermore, as
we all know that adaptive adjusting the convergence and
diversity along with the searching process is an crucial
aspect of the metaheuristic algorithm. Therefore, in this
paper the dynamically adjusting of exploratory ability and
exploitative ability is designed and a new ABC variant
(EBABC) is proposed. The details of the proposed algorithm
are below.

A. Best individual learning strategy
From the above analysis, if the influence degree of bestx

and kx is considered in the search process, it will be more
directional for the individual searching. To achieve this goal,
we will define tow metrics to represent the influence degrees,
that is:

1
k

gbest k

fit
fit fit

 
 ,

and

2
gbest

gbest k

fit
fit fit

 


,

where kfit and gbestfit are the fitness value of kx and

bestx calculated by equation (3) respectively. Therefore, an
artificial bee can search the domain by

1 2( ) ( )i i i k i i best iv x x x x x          , (4)

where [ 1,1]i   , [0, ]i C  , {1,2,..., }k n and k i .
Apparently, the influence degree of kx and bestx are

considered into the individual searching equation by
introducing 1 and 2 .

B. Empirical balanced strategy
For the adaptive adjusting the exploratory ability and

exploitative ability of EBABC, we introduce the diversity
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TABLE I
BENCHMARK FUNCTIONS.

Functions Name D C Range

2 2 2 3 2
1 1 1 2 1 1 2 1 1 2(1.5 ) (2.25 ) (2.625 )f x x x x x x x x x         Beale 2 UN [-4.5,4.5]

2 2
2 1 2 1 22 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x x      Bohachevsky 2 MS [-100,100]

2 2
3 1 2 1 2( 2 7) (2 5)f x x x x      Booth 2 MS [-10,10]

2
2

4 2 1 1 12
5.1 5 16 10 1 cos 10
4 8

f x x x x
  

            
   

Branin 2 MS
[-5,10]

[0,15]

2 2 2 2
5 1 2 1 3

2 2 2 2
3 4 2 4

100( ) ( 1) ( 1)

     90( ) 10.1(( 1) ( 1) )

f x x x x

x x x x

     

     
Colville 4 UN [-10,10]

2 2
6 1 2 1 2cos cos exp( ( ) ( ) )f x x x x       Easom 2 UN [-100,100]

2
1 2

7 2 2
1 1 2 1 2 2

2
1 2

2 2
1 1 2 1 2 2

1 ( 1)

(19 14 3 14 6 3 )

30 (2 3 )
       

(18 32 12 48 36 27 )

x x
f

x x x x x x

x x

x x x x x x

   
  

      
  
  

      

GoldStein-
Price

2 MN [-2,2]

4 3 2
8 1 1

exp ( )i ij j iji j
f c a x p

 
       ,  1.0,1.2,3.0,3.2c  ,

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

T

a

 
 
 
 
 
 

,

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

T

p

 
 
 
 
 
 

Hartman3 3 MN [0,1]

2 4 6 2 4
9 1 1 1 1 2 2 2

14 2.1 4 4
3

f x x x x x x x     
Six Hump

Camel Back
2 MN [-5,5]

2 2
10 1 2 1 20.26( ) 0.48f x x x x   Matyas 2 UN [-10,10]

/ 2 2
11 4 3 4 2 4 1 41

4 4
4 2 4 1 4 3 4

( 10 ) 5( 10 )

( 10 ) 10( 10 )

n k
i i i ii

i i i i

f x x x x

x x x x
  

  

   

   

 Powell 4 UN [-4,5]

24
12 1 1

( )n k
i kk i

f x b
 
     ;  8,18, 44,114b  PowerSum 24 MN [0,D]

14
2

13 1
1

( )m
i ij ij

i

f x a c





 
    

 
  ,

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

a

 
 
 
 
 
 

,

 1 1,2,2,4,4,6,3,7,5,5
10

Tc 

Shekel 4 MN [0,10]

   5 5
14 1 21 1

cos(( 1) ) cos(( 1) )
i i

f i i x i i i x i
 

       Shubert 2 MN [-10,10]

2
15 11 2

( 1)n n
i i ii i

f x x x  
    Trid6 6 UN [-36,36]

D = Dimension; C = Characteristic; U = Unimodal; M = Multimodal; S = Separable; N = Non-Separable.

degree into the searching equation. Firstly, we define the
diversity degree as

2

1 1

1 ( )
n D

ij j
i j

x x
n u l


 

 
    ,

where n is the colony size, D is the problem’s

dimension, l and u are the lower bound and upper bound
of the search domain respectively. x denote the mean
value of all individuals. Thus, the searching equation with
diversity information can be formulated as

( ) ((1 ) )i i i k i i best iv x x x x x           , (5)

where exp( )   .
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TABLE II
BENCHMARK FUNCTIONS.

Functions Name C Range

2
16 1 1

1 120exp 0.2 exp cos(2 ) 20n n
i ii i

f x x e
n n


 

               
  Ackley MN [-32,32]

2 2 2
17 1 12

( 1) (2 )n
i ii

f x i x x 
    Dixon-Price UN [-10,10]

2
18 1 1

1 cos 1
4000

nn i
ii i

xf x
i 

    
 

  Griewank MN [-600,600]

12 2 2
19 1 1

2 2

sin ( ) ( 1) (1 10sin ( 1))

        ( 1) (1 10sin (2 ))

n
i ii

n n

f y y y

y y

 






      

  



11 , 1, ,
4
i

i
xy i n

    .

Levy MN [-10,10]

    22
20 1

sin sin
mn

i ii
f x ix 


  , 10m  Michalewicz MS [0,π]

22
21 1 1

( 0.5)(( ) 1)n k k
ik i

f i x i
 
      Perm MN [- D , D ]

2
22 1

10cos(2 ) 10n
i ii

f x x

     Rastrigin MS [-5.12,5.12]

1 2 2 2
23 11

[100( ) ( 1) ]n
i i ii

f x x x


    Rosenbrock UN [-30,30]

 24 1
sinn
i ii

f x x


  Schwefel MS [-500,500]

2
25 1

n
ii

f x


 Sphere US [-100,100]

2
26 1

n
ii

f ix


 SumSquares US [-10,10]

   2 4
2

27 1 1 1
0.5 0.5n n n

i i ii i i
f x ix ix

  
     Zakharov UN [-5,10]

D = Dimension; C = Characteristic; U = Unimodal; M = Multimodal; S = Separable; N = Non-Separable.

From the above equation (5), it shows that the lager  is,
the smaller  is, which means the bestx has a bigger
impact on the searching process boosting the exploitative
ability of the algorithm.

Along with the changes of the colony’s diversity, the
whole searching process will adaptive balance the
exploratory and exploitative by equation (5).

C. New search mechanism
In the above sections, tow searching equations are

designed for different purposes. By equation (4) the main
purpose is to distinct the impact of kx and bestx on the
new individual iv ; while by equation (5) the main purpose
is to adaptive adjust the exploratory ability and the
exploitative ability of the algorithm . Generally, it is hoped
that the information of current global optimal individual can
be learned to accelerate the searching speed at the early
stage of the searching process, and the information of the
colony diversity can be considered to avert the algorithm
trapped into the local optimal individual at the latter stage of
the searching process. Therefore, the new searching
mechanism is designed by dynamically selecting equation (4)
and equation (5). Specifically, we introduce a selection
index, i.e. exp( / )iter Maxiter   , where iter is the
current iteration and Maxiter is the total iteration. If a
random number on [0,1] is less than  , the equation (4) is
used for the artificial bees searching, otherwise the equation
(5) is used.

D. Best-so-far individual improvement
To avoid the algorithm stuck in local optimum too early,

the disturbance of optimal individual is introduced, which is

' (1 )best bestx x TS      , (6)

where ( )TS l rand u l    and 1Maxiter iter
Maxiter

  
 .

From equation (6), as the iteration increasing, 

decrease, and the difference between '
bestx and bestx is

getting small.
According to the above discussion, the procedure of

EBABC is given in Algorithm 1.
Algorithm 1. Procedure of EBABC
Step 1: Initialization. Set all the parameters. And initialize

the colony by equation (1).
Step 2: Employed bee stage. If a random number on [0,1]

is less than  , the equation (4) is used for the
artificial bees searching, otherwise the equation (5)
is used. Update the individual by greedy selection.

Step 3: Onlooker bee stage. According to equation (3),
calculate the probability and select a solution for
onlooker bee. If a random number on [0,1] is less
than  , the equation (4) is used for the artificial
bees searching, otherwise the equation (5) is used.
Update the individual by greedy selection.

Step 4: Scout bee stage. If there is an abandoned food
source, the scout bee will generate a new one by
equation (1) to replace it.

Step 5: Global best individual update. Generate a new
individual by equation (6), and update the global best
individual by greedy selection.

Step 6: If termination criteria is satisfied, stop the procedure
and output the results; otherwise, switch to Step 2.

E. Computational time complexity
The time complexity of the original ABC algorithm is
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TABLE III
EXPERIMENT RESULTS OBTAINED BY EBABC AND OTHER FOUR ABC VARIANT ALGORITHMS.

Function ABC GABC EABC MeanABC EBABC

f1

min 1.45E-10 1.22E-08 1.40E-12 4.22E-06 1.84E-06

mean 1.53E-07 1.40E-05 4.21E-03 1.01E-03 1.53E-04

std. 4.50E-07 2.30E-05 6.31E-03 1.09E-03 1.38E-04

t-test - - + +

rank 1 2 5 4 3

f2

min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

mean 0.00E+00 0.00E+00 3.64E-07 0.00E+00 0.00E+00

std. 0.00E+00 0.00E+00 1.41E-06 0.00E+00 0.00E+00

t-test = = + =

rank 1 1 5 1 1

f3

min 3.87E-19 2.44E-19 7.69E-20 2.30E-06 3.52E-06

mean 1.55E-17 1.36E-16 1.34E-05 3.43E-04 7.00E-05

std. 1.67E-17 6.59E-16 4.58E-05 2.92E-04 7.31E-05

t-test - - - +

rank 1 2 3 5 4

f4

min 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

std. 0.00E+00 0.00E+00 4.80E-09 1.04E-04 1.75E-05

t-test = = = =

rank 1 1 1 1 1

f5

min -6.13E+06 -1.09E+10 -1.85E+156 -3.75E+09 -4.72E+258

mean -1.52E+06 -7.40E+08 -6.19E+154 -3.77E+08 -1.57E+257

std. 1.47E+06 2.10E+09 #NUM! 9.46E+08 #NUM!

t-test + + + +

rank 5 3 2 4 1

f6

min -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

mean -9.99E-01 -9.98E-01 -1.00E+00 -9.88E-01 -1.00E+00

std. 9.46E-04 4.80E-03 1.73E-04 1.36E-02 3.84E-04

t-test + + = +

rank 3 4 1 5 1

f7

min 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

std. 1.09E-03 2.53E-15 1.71E-12 9.18E-04 8.69E-06

t-test = = = =

rank 1 1 1 1 1

f8

min -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

std. 2.27E-15 2.36E-15 1.07E-09 2.27E-04 4.65E-05

t-test = = = =

rank 1 1 1 1 1

 O maxGen SN D  , where D is the problem
dimension, maxGen is the maximum number of iterations,
and SN is the number of food sources. Compared with
the original ABC algorithm, the time complexity of
initialization for EABC is  O SN D . At the employed
bee stage with the new search mechanism, the time
complexity is  O maxGen SN D  , and so is the time

complexity of onlooker bee stage. Moreover, the time
complexity of global best individual update is  O 1 .
Therefore, the total time complexity can be calculated as
 O SN D maxGen SN D maxGen SN D 1        . To

sum up, the total computational time complexity of EABC
is  O maxGen SN D  , same as the original ABC
algorithm.
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TABLE IV
EXPERIMENT RESULTS OBTAINED BY EBABC AND OTHER FOUR ABC VARIANT ALGORITHMS.

Function ABC GABC EABC MeanABC EBABC

f9

min 4.65E-08 4.65E-08 4.65E-08 5.19E-08 7.76E-08

mean 4.65E-08 4.65E-08 4.66E-08 1.59E-06 6.12E-07

std. 0.00E+00 9.55E-17 3.66E-10 1.60E-06 6.94E-07

t-test - - - +

rank 1 1 1 5 4

f10

min 5.94E-17 2.92E-07 5.52E-18 5.20E-09 4.47E-10

mean 1.00E-09 1.48E-05 1.11E-05 4.69E-06 3.21E-08

std. 3.76E-09 1.46E-05 5.31E-05 8.85E-06 5.52E-08

t-test - + + +

rank 1 4 3 5 2

f11

min 1.90E-07 1.40E-07 1.48E-10 2.19E-07 4.76E-09

mean 2.93E-05 2.68E-05 3.52E-04 7.01E-06 2.52E-07

std. 1.89E-05 4.19E-05 7.28E-04 7.36E-06 3.76E-07

t-test + + + +

rank 4 3 5 2 1

f12

min 5.17E-04 2.44E-04 4.15E-04 5.92E-03 1.45E-03

mean 1.29E-02 1.27E-02 1.13E-02 3.50E-02 1.57E-02

std. 1.28E-02 9.74E-03 1.11E-02 2.58E-02 1.60E-02

t-test - - - +

rank 3 2 1 5 4

f13

min -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01

mean -1.05E+01 -1.05E+01 -1.05E+01 -1.02E+01 -1.05E+01

std. 3.18E-05 1.65E-15 5.42E-04 1.57E-01 5.21E-04

t-test = = = +

rank 1 1 1 5 1

f14

min -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02

mean -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02

std. 3.84E-14 3.54E-14 1.79E-11 1.25E-02 3.38E-03

t-test = = = =

rank 1 1 1 1 1

f15

min -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01 -5.00E+01

mean -5.00E+01 -5.00E+01 -4.99E+01 -4.96E+01 -5.00E+01

std. 1.79E-10 6.72E-10 2.73E-01 3.21E-01 5.78E-02

t-test = = + +

rank 1 1 3 4 1

IV. NUMERICAL EXPERIMENTS

So as to test the performance of EBABC algorithm, the
experiments are executed on 27 benchmark functions and 5
Non-negative Linear Least Squares Problems (NLLS). The
performance of EBABC is contrasted with other four ABC
variant algorithms, which are original ABC[8], GABC[12],
EABC[17] and MeanABC[23].

In the experiments, the parameters setting are: colony size
n is 40, the maximum number of iteration is 2000, so the
FEs is 80000. All experiments are run 30 times
independently.

A. Benchmark functions
The 27 benchmark functions, which have different

characteristics, are selected to verify the capability of
EBABC in different environments. The details of test
functions are provided in Table I and II. In Table I, all test
functions are given dimensions of their own. And the
dimensions of test functions in Table II are all set 30D  .

B. Experiment results
The experiment results are given in Tables III-V. In these

tables, min, mean and std. represent the best, mean and
standard derivation of the function value over 30 times
repeats. The results of Wilcoxons Signed-Ranked-Test
(WSRT) over the function values of EBABC and other four
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TABLE V
EXPERIMENT RESULTS OBTAINED BY EBABC AND OTHER FOUR ABC VARIANT ALGORITHMS.

Function ABC GABC EABC MeanABC EBABC

f16

min 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
mean 9.89E-15 1.01E-15 2.93E-08 8.88E-16 8.88E-16
std. 1.40E-14 6.49E-16 1.50E-07 0.00E+00 0.00E+00
t-test + + + =
rank 4 3 5 1 1

f17

min 4.96E-05 1.04E-03 4.77E-05 3.08E-01 1.00E-02
mean 7.58E-04 4.48E-01 4.59E-01 6.54E-01 1.49E-01
std. 1.14E-03 3.31E-01 1.02E+00 6.56E-02 1.23E-01
t-test - + + +
rank 1 3 4 5 2

f18

min 0.00E+00 3.33E-16 0.00E+00 0.00E+00 0.00E+00
mean 2.22E-03 1.14E-03 1.08E-03 4.44E-17 4.77E-12
std. 5.77E-03 3.55E-03 4.36E-03 5.53E-17 2.61E-11
t-test + + + -
rank 5 4 3 1 2

f19

min 3.10E-16 4.57E-16 1.60E-16 3.39E-02 6.01E-08
mean 5.49E-16 5.97E-16 2.83E-16 7.09E-02 2.08E-04
std. 9.47E-17 1.09E-16 5.47E-17 2.33E-02 3.10E-04
t-test - - - +
rank 2 3 1 5 4

f20

min -2.95E+01 -2.95E+01 -2.96E+01 -2.57E+01 -2.71E+01
mean -2.94E+01 -2.94E+01 -2.94E+01 -2.41E+01 -2.65E+01
std. 4.90E-02 4.87E-02 1.54E-01 6.45E-01 3.77E-01
t-test - - - +
rank 1 1 1 5 4

f21

min 9.43E+78 3.69E+79 4.24E+76 7.04E+77 7.62E+77
mean 1.77E+83 1.37E+83 1.80E+81 2.09E+82 8.28E+81
std. 3.59E+83 6.87E+83 4.06E+81 4.62E+82 1.75E+82
t-test + + - +
rank 5 4 1 3 2

f22

min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
mean 4.74E-14 7.96E-14 1.66E-01 0.00E+00 0.00E+00
std. 5.80E-14 1.06E-13 4.59E-01 0.00E+00 0.00E+00
t-test + + + =
rank 3 4 5 1 1

f23

min 5.37E-04 1.28E-03 1.14E-02 1.97E+01 5.03E-05
mean 3.44E-01 7.79E+00 4.04E+00 2.51E+01 2.03E-01
std. 7.73E-01 1.83E+01 1.33E+01 1.65E+00 7.78E-01
t-test - + + +
rank 1 4 3 5 2

f24

min 3.82E-04 3.82E-04 3.82E-04 1.58E+02 3.82E-04
mean 1.97E+01 5.11E+01 2.49E+01 2.46E+02 9.54E-03
std. 4.49E+01 8.68E+01 8.04E+01 5.74E+01 1.83E-02
t-test + + + +
rank 2 4 3 5 1

f25

min 3.15E-16 5.14E-16 1.39E-16 3.15E-16 2.61E-16
mean 5.84E-16 6.69E-16 2.80E-16 4.37E-16 3.97E-16
std. 1.08E-16 9.03E-17 9.96E-17 7.60E-17 8.04E-17
t-test + + - +
rank 4 5 1 3 2

f26

min 4.02E-16 2.22E-16 1.61E-16 2.96E-16 2.82E-16
mean 5.71E-16 5.75E-16 1.41E-11 4.35E-16 3.64E-16
std. 9.25E-17 1.33E-16 7.75E-11 5.89E-17 6.73E-17
t-test + + + +
rank 3 4 5 2 1

f27

min 1.66E+02 2.75E+02 1.21E+02 1.73E+02 1.53E-03
mean 2.46E+02 3.31E+02 2.52E+02 2.57E+02 2.62E+00
std. 3.60E+01 3.32E+01 5.51E+01 3.34E+01 5.12E+00
t-test + + + +
rank 5 4 2 3 1

Final Rank 62 71 68 88 50
Total Rank 2 4 3 5 1
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Fig. 1. Some convergence curves of EBABC and other four ABC variant algorithms.

ABC variant algorithms are also given in Tables III-V. The
WSRT is executed at 0.05 confidence level, which can
further compare the optimal performance between EBABC
and other four ABC variant algorithms. The marks ‘+’,
‘−’ and ‘=’ represent the EBABC statistically better
than, worse than and not different from the other compared
algorithm, respectively.

From Table III-V, we can easily know that EBABC has
the better or at least the same performance on almost all test
functions compared with the other four algorithms.
Moreover, in Table V the total rank of ABC, GABC,
EABC, MeanABC and EBABC are 2, 4, 3, 5 and 1
respectively. According to the last two rows in Table V, the
total rank and the final rank both indicate that EBABC has
the best optimal capability over the other listed variant

algorithms.
Furthermore, some convergence curves are given in Fig.

1 and Fig. 2, and the boxplots are drawn in Fig. 3 and Fig. 4
to illustrate the performance of EBABC more visually.
From Fig. 1 and Fig. 2, we can see that for most functions
EBABC can find a better solution in fewer iterations,
especially for 2f and 22f . From Fig. 3 and Fig. 4, the
box-plots show that the stability of EBABC is far better
than other four variant algorithms.

C. Experiments on Non-negative Linear Least Squares
Problems

With rapid progress of science and technology,
Non-negative Linear Least Squares Problem (NLLS) has
been widely used in forecasting, systems engineering,
economic, biological engineering and other fields.

IAENG International Journal of Computer Science

Volume 51, Issue 2, February 2024, Pages 91-103

 
______________________________________________________________________________________ 



Fig. 2. Some convergence curves of EBABC and other four ABC variant algorithms.

Fig. 3: Some boxplots of EBABC and other four ABC variant algorithms.
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Fig. 4: Some boxplots of EBABC and other four ABC variant algorithms.

TABLE VI
EXPERIMENT RESULTS OBTAINED BY EBABC AND OTHER FOUR ABC VARIANT ALGORITHMS FOR NLLS PROBLEMS.

Problems ABC GABC EABC MeanABC EBABC

NLLS1

min 4.90E-17 6.60E-19 2.69E-16 2.78E-04 1.33E-05

mean 3.42E-16 6.07E-16 3.44E-04 4.83E-03 4.76E-04

std. 2.41E-16 2.13E-15 8.61E-04 4.41E-03 6.67E-04

t-test - - - +

rank 2 1 3 5 4

NLLS2

min 1.14E+01 1.18E+02 6.13E-03 7.65E+05 1.81E-01

mean 2.15E+01 9.89E+02 7.87E-01 1.26E+06 3.13E+02

std. 7.21E+00 8.73E+02 3.81E+00 2.28E+05 4.25E+02

t-test + + - +

rank 3 4 1 5 2

NLLS3

min 4.41E+02 6.27E+04 1.43E+03 1.05E+05 1.05E-03

mean 3.71E+03 1.45E+05 5.35E+03 4.28E+05 2.31E+01

std. 1.17E+04 4.11E+04 4.79E+03 1.34E+05 5.60E+01

t-test + + + +

rank 2 4 3 5 1

NLLS4

min 1.56E+01 3.30E+02 2.73E+01 2.22E+02 7.56E-06

mean 2.88E+01 4.72E+02 6.55E+01 5.70E+02 1.35E+00

std. 8.95E+00 6.56E+01 2.89E+01 1.69E+02 2.93E+00

t-test + + + +

rank 2 5 3 4 1

NLLS5

min 7.89E+03 7.85E+05 8.81E+04 5.63E+05 5.64E-01

mean 4.56E+04 9.69E+05 1.82E+05 1.09E+06 6.40E+02

std. 7.73E+04 1.19E+05 5.92E+04 1.90E+05 1.35E+03

t-test + + + +

rank 2 5 3 4 1

Final Rank 11 19 13 23 9

Total Rank 2 4 3 5 1
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Fig. 5. Convergence curves of EBABC and other four ABC variant algorithms for NLLS problems.

The solution methods for NLLS are gradually
established and developed. However, the traditional
algorithms for solving NLLS relies heavily on the initial
values, which often leads to the unsatisfactory results. As
the intelligent algorithms are put forward, it became the
effective method for solving NLLS. Generally, the NLLS
problems can be defined as follows.

2

0

1 1min (x) || || ( ) ( )
2 2

T

x
f Ax b Ax b Ax b


    

,

where m mA R  , m n , ( )rank A n , mb R .
For testing the effectiveness of EABC, we conducts

experimental comparison by solving 5 NLLS problems in
literature [24]. And the experimental results are shown in
Table VI.

From Table VI, contrast with the other listed variant
ABC algorithms, EBABC has the better optimal capability

on NLLS 3 - NLLS 5. Moreover, in Table VI the total rank
of ABC, GABC, EABC, MeanABC and EBABC are 2, 4, 3,
5 and 1 respectively. According to the last two rows in
Table VI, the total rank and the final rank both indicate that
EBABC has the best optimal capability over the other four
algorithms.

Furthermore, in Fig. 5 and Fig. 6 the convergence curves
and the boxplots are given to illustrate the performance of
EBABC more visually. All these figures show that EBABC
can find a better solution in fewer iterations, and more
stable than other four variant algorithms.

V. CONCLUSION

To enhance the optimal searching capability of
metaheuristic algorithms, achieving the balance between
exploratory and exploitative abilities is crucial. This paper
presented the empirical balanced artificial bee colony
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Fig. 6: Boxplots of EBABC and other four ABC variant algorithms for NLLS problems.

(EBABC) algorithm as a solution to this challenge. In
EBABC, two searching equations were designed with
different purposes and were adaptive selected throughout all
searching stages. Additionally, the algorithm utilized the
information of both a randomly selected individual and the
global optimal individual at present to strike a balance
between exploratory and exploitative abilities. Furthermore,
a disturbance strategy for the global optimal individual at
present was introduced to enhance the algorithm's diversity.
Experimental results demonstrated that EBABC is superior
to the other four ABC variants in terms of optimal
performance.
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