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Abstract—Representation-based Classification (RC) algorithms  

have been extensively applied in the domain of face recognition. 

This paper introduces a novel approach by incorporating 

arbitrary norms into both the objective and constraint functions 

of conventional RC algorithms, resulting in the development of 

the Generalized RC (GRC) algorithm. The primary goal of this 

enhancement is to fully leverage the unique advantages offered 

by various norms. Within the majorization-minimization 

framework, an iterative procedure was designed to solve the 

optimization problem of GRC. This approach ensures that a 

closed-form solution is obtained in each iteration and a locally 

optimal solution can be found upon convergence. Experimental 

results on four benchmark face databases demonstrated that 

GRC generally outperforms competing RC algorithms in face 

recognition. Data and source code of this study are publicly available 

on the GitHub repository at https://github.com/yuzhounh/GRC. 

 

Index Terms—representation-based classification, sparse, face 

recognition, Lp-norm, majorization-minimization 

 

I. INTRODUCTION 

epresentation-based Classification (RC) algorithms [1, 2] 

have been widely utilized in face recognition. These 

algorithms serve as generalizations of popular classification 

algorithms such as Nearest Neighbor (NN) [3], Nearest 

Feature Line (NFL) [4], and Nearest Subspace (NS) [5]. NN 

represents a test sample by a training sample, NFL represents 

a test sample by a linear combination of a pair of training 

samples in each class, and NS represents a test sample by a 
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linear combination of all training samples in each class. Then 

the test sample is assigned to the class with the smallest 

representation error. The Linear Regression-based 

Classification (LRC) algorithm [6] can be categorized as an 

NS method. Recently, Li et al. [7] proposed a new algorithm 

aimed at selecting an optimal neighborhood size k for k 

Nearest Neighbor (KNN). Wang and Yang [8] proposed a 

Nearest Neighbor with Double Neighborhoods (NNDN) 

algorithm for imbalanced data classification. Impressively, the 

NNDN algorithm achieved superior classification performance 

when compared to the most advanced algorithms within the 

KNN family.  

As the foremost RC algorithm, Sparse Representation-based 

Classification (SRC) [9] incorporates the theory of sparse 

representation and compressed sensing into the realm of face 

recognition. The fundamental concept underlying SRC is to 

represent a test sample by a sparse combination of all training 

samples and assign it to the class with the smallest 

representation error. Due to the great success in face 

recognition, SRC has witnessed widespread adoption across 

various fields, including but not limited to hyperspectral image 

classification [10, 11], motor imagery EEG pattern recognition 

[12, 13], automatic identification of epileptic seizures [14], 

protein-protein interactions prediction [15].  

The importance of sparse representation received 

considerable attention in SRC and related studies [1, 9] while 

the importance of collaborative representation was somewhat 

overlooked. To address this problem, Collaborative 

Representation-based Classification (CRC) [16] was proposed. 

CRC achieves very competitive classification results with 

significantly reduced computational complexity compared to 

SRC [16]. Therefore, it stands as a good alternative to SRC [2, 

16]. Furthermore, these two algorithms can be synergistically 

combined to enhance classification performance [17]. 

The optimization problems of SRC and CRC are very 

similar. They share an identical objective function, with the 

primary distinction being that SRC employs the L1-norm in its 

constraint function, whereas CRC opts for the L2-norm.  

Considering that L1-norm and L2-norm represent two specific 

instances of the more general Lp-norm, it is natural to replace 

them with Lp-norm to leverage the inherent sparsity and 

robustness associated with various norms. Drawing inspiration 

from this idea, we present an innovative RC algorithm termed 

Generalized Representation-based Classification (GRC), In 

GRC, Lp-norm is applied in both the objective function and 

the constraint function of traditional RC algorithms, thereby 

providing a more versatile and adaptable norm-based 

approach. 

Lp-norm has demonstrated its effectiveness in extended 

versions of Penalized Least Squares (PLS) [18], Principal 

Component Analysis (PCA) [19, 20], two-dimensional PCA 

R 
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(2DPCA) [21, 22], Linear Discriminant Analysis (LDA) [23], 

two-dimensional LDA (2DLDA) [24], Common Spatial 

Patterns (CSP) [25, 26], etc. These generalized algorithms 

consistently outperform their traditional counterparts and find 

their applications in various fields such as matrix completion, 

image classification, image reconstruction, brain signal 

classification, etc. Therefore, it is reasonable to anticipate that 

extending classical RC algorithms to GRC can lead to 

performance enhancements. 

Among the existing studies, the research target of the 

Generalized Iterated Shrinkage Algorithm (GISA) [27] is the 

closest to that of GRC. GISA aims to solve a problem known 

as Lp-norm non-convex sparse coding. Except for GISA, 

several alternative algorithms [27] were proposed to solve the 

same problem, including Iteratively Reweighted Least Squares 

(IRLS), Iteratively Reweighted L1-minimization (IRL1), 

Iteratively Thresholding Method (ITM-Lp), and Look-up 

Table (LUT). These algorithms had been successfully applied 

in image classification [28-30] and image inpainting [31, 32]. 

It was demonstrated that GISA is superior to the competing 

algorithms [27]. Nevertheless, these studies primarily focused 

on the Lp-norm minimization problem within the range of 0 ≤
𝑝 < 1. None of them provides a complete solution to the GRC 

problem proposed in this paper.  

The major differences between GISA and GRC exist in 

three aspects. Firstly, GISA exclusively applies Lp-norm in 

the constraint function of the sparse coding problem, whereas 

GRC applies Lp-norm in both the objective function and the 

constraint function of RC algorithms. Secondly, GISA only 

deals with the cases when 0 ≤ 𝑝 < 1 while GRC deals with 

the cases when 0 < 𝑠 ≤ 2 and 0 < 𝑝 ≤ 2. Here, 𝑠 denotes the 

value of the arbitrary norm applied in the objective function. 

Thirdly, GISA designs the solution based on a Generalized 

Soft-thresholding (GST) function and converges to the optimal 

solution only in several special cases while GRC designs the 

solution within the Majorization-Minimization (MM) 

framework [33], which guarantees that the solution always 

converges to a locally optimal one.  

While Lp-norm in the constraint function of RC algorithms 

has been abundantly studied [27], Lp-norm in the objective 

function is yet to be investigated. The most relevant studies 

are the robust extensions of SRC and CRC [34-36], which 

apply L1-norm in the objective function of RC algorithms. 

That is, the parameter 𝑠 is fixed to 1 in the Robust RC (RRC) 

algorithms. These RRC algorithms can be effectively solved 

through methods such as Alternating Direction Method (ADM) 

and IRLS. In this paper, we investigate GRC with 0 < 𝑠 ≤ 2 

and 0 < 𝑝 ≤ 2, which substantially extends RRC.  

In addition to the aforementioned approaches, Majumdar 

and Ward [37] introduced the concept of group lasso [38] into 

sparse coding to promote group sparsity. Huang et al. [39] 

provided an IRLS-based algorithm to solve the group sparse 

coding problem. The group sparsity finds wide-ranging 

applications in tasks like multi-task classification [40] and 

multi-modal classification [41]. Wang et al. [34] introduced a 

correlation regularization technique that is formulated by 

employing the trace norm into RRC to promote adaptive 

sparsity. The correlation regularization effectively strikes a 

balance between the L2-norm and L1-norm regularizations. 

Yang et al. [42] replaced L2-norm with nuclear norm in the 

objective function of CRC to emphasize the low-rank property 

of the residual image. Xiao [43, 44] introduced a L1-L2 blur 

regularization and a double L0-regularization for blind image 

restoration. Ding et al. [45] introduced Schatten-2/3 and 

Schatten-1/2 quasi-norms for low rank tensor completion. The 

variants of norms utilized in these studies significantly differ 

from Lp-norm, which is the major focus of this study.  

The contributions of this study can be summarized in the 

following points: (1) A Generalized Representation-based 

Classification algorithm (GRC) was proposed for face 

recognition by applying arbitrary norms in both the objective 

function and the constraint function of conventional RC 

algorithms. (2) An iterative algorithm was designed to solve 

the optimization problem of GRC within the MM framework. 

(3) The classification performance of GRC was thoroughly 

evaluated on four well-established benchmark face databases. 

Experimental results demonstrated that GRC, when configured 

with optimal parameters, outperforms competing algorithms. 

The remainder of this paper is organized as follows. Section 

II reviews the relevant studies and proposes the GRC 

approach. Section III presents the techniques that will be used 

to solve the GRC problem. Section IV presents the solutions 

derived for GRC. Section V conducts experiments to evaluate 

the classification performance of GRC. Section VI presents 

and analyzes the experimental results. Section VII makes 

discussions on this study and related works. Finally, Section 

VIII presents the conclusions and summarizes the findings.  

II. RELATED WORKS 

The notations in this paper are described as follows. 

Lowercase letters denote scalars, boldface lowercase letters 

denote vectors, boldface uppercase letters denote matrices; 

sign(∙)  denotes the sign function; |∙|  denotes the absolute 

value function; |𝒘|𝑝  denotes the element-wise power of the 

absolute value of a vector; 𝒘(𝑘) denotes a vector in the 𝑘th 

iteration; diag(𝒘)  denotes a square and diagonal matrix 

formed by placing the elements of vector 𝒘  on the main 

diagonal; 𝒘 ∘ 𝒗  denotes the Hadamard product, i.e., the 

element-wise multiplication of two vectors; ‖∙‖1 , ‖∙‖2 , and 
‖∙‖𝑝  denote L1-norm, L2-norm, and Lp-norm, respectively. 

It's important to note that the sign function and the absolute 

value function can be applied either to a scalar or to a vector in 

an element-wise manner.  

We first review two pertinent algorithms, i.e., SRC and 

CRC, in a sequential manner. Then, the proposed GRC 

algorithm is described and its relationships with both SRC and 

CRC are discussed.  

A. SRC 

Suppose there are 𝑛  training image samples for 𝑐  classes 

𝑿 = [𝑿1, 𝑿2, … , 𝑿𝑐] ∈ ℝ𝑑×𝑛  where each column of 𝑿  is a 

training image sample obtained by stacking the columns of an 

image and each row of 𝑿 is a feature. 𝒚 ∈ ℝ𝑑 is a test image 

sample. SRC [9] finds its representation coefficient 𝜶 ∈ ℝ𝑛 by 

solving the following optimization problem:  

min
𝜶

‖𝒚 − 𝑿𝜶‖2
2 + 𝜆‖𝜶‖1 (1) 
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where 𝜆 is a tuning parameter. To enhance clarity, we refer to 

‖𝒚 − 𝑿𝜶‖2
2  the objective function and ‖𝜶‖1  as either the 

constraint function or the regularization term. Several 

representative approaches for solving this L1-norm 

minimization problem are reviewed in [46]. Let 𝜶̂𝑖 denote the 

representation coefficient associated with class 𝑖 . The 

residuals corresponding to different classes are computed as 

follows:  
‖𝒚 − 𝑿𝑖𝜶̂𝑖‖2，𝑖 = 1,2, … , 𝑐. (2) 

Since the L1-norm sparsity ‖𝜶‖1 can augment discriminatory 

information for classification [16], we modified the residuals 

by incorporating the L1-norm sparsity. The modified residuals 

are computed as follows:  

𝑟𝑖 =
‖𝒚 − 𝑿𝑖𝜶̂𝑖‖2

‖𝜶̂𝑖‖1
，𝑖 = 1,2, … , 𝑐. (3) 

This modification can improve the classification performance 

of SRC in practice. After calculating the residuals, the identity 

of the test sample 𝒚 is assigned to arg 𝑚𝑖𝑛𝑖 {𝑟𝑖}. 

B. CRC 

CRC [16] can be formulated by replacing the L1-norm in 

the constraint function of SRC with the L2-norm. That is, 

CRC determines its representation coefficient by solving the 

following optimization problem:  

min
𝜶

‖𝒚 − 𝑿𝜶‖2
2 + 𝜆‖𝜶‖2

2
. (4) 

The solution of GRC can be analytically derived as 

𝜶 = (𝑿𝑇𝑿 + 𝜆𝑰)−1𝑿𝑇𝒚. (5) 

After obtaining the representation coefficient 𝜶 for CRC, the 

residuals are computed as 

𝑟𝑖 =
‖𝒚 − 𝑿𝑖𝜶̂𝑖‖2

‖𝜶̂𝑖‖2
，𝑖 = 1,2, … , 𝑐. (6) 

Then the identity of 𝒚 is assigned to arg 𝑚𝑖𝑛𝑖 {𝑟𝑖}. 

C. GRC 

Inspired by the above two RC algorithms, i.e., SRC and 

CRC, we formulate the optimization problem of GRC by 

applying arbitrary norms in both the objective function and the 

constraint function of conventional RC algorithms as follows: 

min
𝜶

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝜶‖𝑝

𝑝
(7) 

where 0 < 𝑠 ≤ 2  and 0 < 𝑝 ≤ 2 . After obtaining the 

representation coefficient 𝜶  for GRC, the residuals are 

computed as: 

𝑟𝑖 =
‖𝒚 − 𝑿𝑖𝜶̂𝑖‖𝑠

‖𝜶̂𝑖‖𝑝
，𝑖 = 1,2, … , 𝑐. (8) 

Then the identity of 𝒚 is assigned to arg 𝑚𝑖𝑛𝑖 {𝑟𝑖}. 
GRC serves as a natural extension of SRC and CRC. When 

𝑠 = 2 and 𝑝 = 1, GRC reduces to SRC. When 𝑠 = 2 and 𝑝 =
2 , GRC reduces to CRC. Consequently, GRC inherits the 

strengths of both SRC and CRC. Furthermore, GRC can 

leverage diverse norms to explore additional potentialities 

such as sparsity and robustness. As a result, GRC is expected 

to outperform other RC algorithms in terms of classification 

performance.  

III. METHODOLOGY 

Solving the optimization problem of GRC is a nontrivial 

task due to its inherent nonsmooth nature. To address this 

challenge, this paper introduces the MM framework. The MM 

framework effectively transforms a nonsmooth problem into a 

smooth one that is much easier to handle.  

A. MM Framework 

Suppose 𝑓(𝜶)  is the objective function to be minimized. 

Within the MM framework, if there exists a surrogate function 

𝑔(𝜶|𝜶(𝑘)) that satisfies two key conditions: 

𝑓(𝜶(𝑘)) = 𝑔(𝜶(𝑘)|𝜶(𝑘))

𝑓(𝜶) ≤ 𝑔(𝜶|𝜶(𝑘))   for all 𝜶
(9) 

where 𝜶(𝑘) is 𝜶 at the 𝑘th step in the iteration procedure. Then 

𝑓(𝜶)  could be optimized by iteratively minimizing the 

surrogate function 𝑔(𝜶|𝜶(𝑘)) as follows:  

𝜶(𝑘+1) = arg min
𝜶

𝑔(𝜶|𝜶(𝑘)) . (10) 

One could observe that  

𝑓(𝜶(𝑘+1)) = 𝑓(𝜶(𝑘+1)) − 𝑔(𝜶(𝑘+1)|𝜶(𝑘)) + 𝑔(𝜶(𝑘+1)|𝜶(𝑘))

≤ 𝑓(𝜶(𝑘)) − 𝑔(𝜶(𝑘)|𝜶(𝑘)) + 𝑔(𝜶(𝑘+1)|𝜶(𝑘))

≤ 𝑓(𝜶(𝑘)) − 𝑔(𝜶(𝑘)|𝜶(𝑘)) + 𝑔(𝜶(𝑘)|𝜶(𝑘))

= 𝑓(𝜶(𝑘))

(11) 

where the first inequality holds because 𝑓(𝜶) − 𝑔(𝜶|𝜶(𝑘)) 

reaches its maximum at 𝜶 = 𝜶(𝑘) as the result of the two key 

conditions, while the second inequality holds because 

𝑔(𝜶|𝜶(𝑘)) reaches its minimum at 𝜶 = 𝜶(𝑘+1) as a result of 

the update rule. Therefore, the value of the objective function 

monotonically decreases during the iteration procedure and 

will converge to a local optimum.  

B. Inequalities 

A critical point of the MM framework is to find a surrogate 

function that can be optimized directly. This is realized by 

introducing appropriate inequalities. According to [21], we 

have the following two inequalities.  

Lemma 1: Let 𝜶 ∈ ℝ𝑛, 𝜷 ∈ ℝ𝑛, and 0 < 𝑝 < 1, then  

‖𝜶‖𝑝
𝑝

≤ 𝑝[|𝜷|𝑝−1 ∘ sign(𝜷)]𝑇𝜶 + (1 − 𝑝)‖𝜷‖𝑝
𝑝

(12) 

holds and the inequality becomes equality when 𝜶 = 𝜷.  

Lemma 2: Let 𝜶 ∈ ℝ𝑛 , 𝜷 ∈ ℝ𝑛 , 𝜷 has no zero elements, 

and 0 < 𝑝 < 2, then 

‖𝜶‖𝑝
𝑝

≤
𝑝

2
𝜶𝑇diag(|𝜷|𝑝−2)𝜶 + (1 −

𝑝

2
) ‖𝜷‖𝑝

𝑝 (13) 

holds and the inequality becomes equality when 𝜶 = 𝜷. 

Lemma 1 establishes a linear function of 𝜶 as the upper 

bound of ‖𝜶‖𝑝
𝑝

 while Lemma 2 establishes a quadratic 

function of 𝜶  as the upper bound of ‖𝜶‖𝑝
𝑝

. The two 

inequalities will be used to solve the optimization problem of 

GRC. 

C. Linear Optimization Problem with Lp-Norm Constraint 

Another lemma that will be used to solve the GRC problem 

is the solution of a linear optimization problem with Lp-norm 

constraint. 
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Lemma 3: Let 𝜶 ∈ ℝ𝑛, 𝜷 ∈ ℝ𝑛, 𝜷 ≠ 𝟎. Let 𝑝, 𝑞 ∈ [1, ∞] 
be two scalars that satisfies 1/𝑝 + 1/𝑞 = 1. The optimization 

problem 

max
𝜶

𝜷𝑻𝜶 , s. t.   ‖𝒂‖𝑝
𝑝

= 1 (14) 

has a closed-form solution 

𝜶 =
|𝜷|𝑞−1 ∘ sign(𝜷)

‖𝜷‖𝑞
𝑞−1 . (15) 

This lemma is also demonstrated in [21]. 

IV. SOLUTIONS OF GRC 

With the above techniques, we proceed to solve the GRC 

problem. GRC aims to optimize the following problem:  

min
𝜶

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝜶‖𝑝

𝑝
(16) 

where 0 < 𝑠 ≤ 2 and 0 < 𝑝 ≤ 2. Let ‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝜶‖𝑝

𝑝
 be 

denoted as 𝑓(𝜶), where ‖𝒚 − 𝑿𝜶‖𝑠
𝑠 is the objective function 

and ‖𝜶‖𝑝
𝑝

 is the regularization term. We can obtain four 

different solutions for the GRC problem by relaxing 𝑓(𝜶) in 

various ways, depending on the ranges of 𝑠 and 𝑝.  

A. Case 1 

When 0 < 𝑠 < 1 and 1 ≤ 𝑝 ≤ 2, by relaxing the objective 

function in 𝑓(𝜶) according to Lemma 1, we have  

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝜶‖𝑝

𝑝

≤ 𝑠 [|𝒚 − 𝑿𝜶(𝑘)|
𝑠−1

∘ sign(𝒚 − 𝑿𝜶(𝑘))]
𝑇

(𝒚 − 𝑿𝜶)

+(1 − 𝑠)‖𝒚 − 𝑿𝜶(𝑘)‖
𝑠

𝑠
+ 𝜆‖𝜶‖𝑝

𝑝
.

(17) 

Let the relaxed function be denoted as 𝑔(𝜶|𝜶(𝑘)), i.e.,  

𝑔(𝜶|𝜶(𝑘))

= 𝑠 [|𝒚 − 𝑿𝜶(𝑘)|
𝑠−1

∘ sign(𝒚 − 𝑿𝜶(𝑘))]
𝑇

(𝒚 − 𝑿𝜶)

+(1 − 𝑠)‖𝒚 − 𝑿𝜶(𝑘)‖
𝑠

𝑠
+ 𝜆‖𝜶‖𝑝

𝑝
.

(18) 

We have 𝑓(𝜶(𝑘)) = 𝑔(𝜶(𝑘)|𝜶(𝑘))  and 𝑓(𝜶) ≤ 𝑔(𝜶|𝜶(𝑘))  for 

all 𝜶, satisfying the two key conditions of the MM framework. 

Therefore, 𝑔(𝜶|𝜶(𝑘)) is a feasible surrogate function of 𝑓(𝜶). 

According to the MM framework, the GRC problem can be 

turned into iteratively minimizing the surrogate function as 

follows:  

𝜶(𝑘+1) = arg min
𝜶

𝑔(𝜶|𝜶(𝑘)) . (19) 

By ignoring the items irrelevant to 𝜶 , minimizing the 

surrogate function leads to the following problem:  

𝜶(𝑘+1) = arg min
𝜶

−𝑠𝒛𝑇𝜶 + 𝜆‖𝜶‖𝑝
𝑝

(20) 

where 𝒛 = 𝑿𝑇 [|𝒚 − 𝑿𝜶(𝑘)|
𝑠−1

∘ sign(𝒚 − 𝑿𝜶(𝑘))]. According to 

Lemma 3, its solution is 

𝜶(𝑘+1) =
|𝒛|𝑞−1 ∘ sign(𝒛)

‖𝒛‖𝑞
𝑞−1 (21) 

where 𝑞 = 𝑝/(𝑝 − 1). By applying this update rule, we can 

obtain a locally optimal solution for GRC. This completes the 

solution of case 1.  

Note that this solution also can be used to solve GRC with 

0 < 𝑠 < 1  and 𝑝 > 2  because the optimization problem in 

Equation (20) is solved by Lemma 3, which is applicable for 

𝑝 ≥ 1. However, for clarity, we mainly focus on GRC with 

0 < 𝑠 ≤ 2 and 0 < 𝑝 ≤ 2, and neglect the case when 0 < 𝑠 <
1 and 𝑝 > 2. On the other hand, the classification accuracies 

of GRC with 0 < 𝑠 < 1 are very low in practice. Therefore, 

we pay little attention to GRC with 0 < 𝑠 < 1 and 𝑝 > 2 in 

our study.  

B. Case 2 

When 0 < 𝑠 < 1 and 0 < 𝑝 ≤ 2, by relaxing the objective 

function in 𝑓(𝜶)  according to Lemma 1 and relaxing the 

regularization in 𝑓(𝜶) according to Lemma 2, we have  

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝒂‖𝑝

𝑝

≤ 𝑠 [|𝒚 − 𝑿𝜶(𝑘)|
𝑠−1

∘ sign(𝒚 − 𝑿𝜶(𝑘))]
𝑇

(𝒚 − 𝑿𝜶)

+(1 − 𝑠)‖𝒚 − 𝑿𝜶(𝑘)‖
𝑠

𝑠
+ 𝜆

𝑝

2
𝜶𝑇diag (|𝜶(𝑘)|

𝑝−2
) 𝜶

+𝜆 (1 −
𝑝

2
) ‖𝜶(𝑘)‖

𝑝

𝑝
.

    (22) 

Let the relaxed function be denoted as 𝑔(𝜶|𝜶(𝑘)). Again, we 

have 𝑓(𝜶(𝑘)) = 𝑔(𝜶(𝑘)|𝜶(𝑘))  and 𝑓(𝜶) ≤ 𝑔(𝜶|𝜶(𝑘))  for all 

𝜶, satisfying the two key conditions of the MM framework. 

Therefore, 𝑔(𝜶|𝜶(𝑘)) is a feasible surrogate function of 𝑓(𝜶). 

According to the MM framework, the GRC problem can be 

turned into iteratively minimizing the surrogate function. Its 

solution is  

𝜶(𝑘+1) =
𝑠

𝜆𝑝
diag (|𝜶(𝑘)|

2−𝑝
) 𝒛

=
𝑠

𝜆𝑝
(|𝜶(𝑘)|

2−𝑝
∘ 𝒛) .

(23) 

This completes the solution of case 2.  

C. Case 3 

When 0 < 𝑠 ≤ 2 and 0 < 𝑝 < 1, by relaxing the objective 

function in 𝑓(𝜶)  according to Lemma 2 and relaxing the 

regularization in 𝑓(𝜶) according to Lemma 1, we have  

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝒂‖𝑝

𝑝

≤
𝑠

2
(𝒚 − 𝑿𝜶)𝑇diag (|𝒚 − 𝑿𝜶(𝑘)|

𝑠−2
) (𝒚 − 𝑿𝜶)

+ (1 −
𝑠

2
) ‖𝒚 − 𝑿𝜶(𝑘)‖

𝑠

𝑠

+𝜆𝑝 [|𝜶(𝑘)|
𝑝−1

∘ sign(𝜶(𝑘))]
𝑇

𝜶

+𝜆(1 − 𝑝)‖𝜶(𝑘)‖
𝑝

𝑝
.

(24) 

Let the relaxed function be denoted as 𝑔(𝜶|𝜶(𝑘)). Similarly, 

𝑔(𝜶|𝜶(𝑘)) is a feasible surrogate function of 𝑓(𝜶). Therefore, 

the GRC problem can be turned into iteratively minimizing the 

surrogate function. Its solution is  

𝜶(𝑘+1) = 𝑼−1 [𝒗 −
𝜆𝑝

𝑠
|𝜶(𝑘)|

𝑝−1
∘ sign(𝜶(𝑘))] (25) 

where  

𝑼 = 𝑿𝑇diag (|𝒚 − 𝑿𝜶(𝑘)|
𝑠−2

) 𝑿 (26) 

and 

𝒗 = 𝑿𝑻diag (|𝒚 − 𝑿𝜶(𝑘)|
𝑠−2

) 𝒚. (27) 

This completes the solution of case 3.  
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D. Case 4 

When 0 < 𝑠 ≤ 2 and 0 < 𝑝 ≤ 2, by relaxing the objective 

function and the regularization in 𝑓(𝜶) according to Lemma 2, 

we have  

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝒂‖𝑝

𝑝

≤
𝑠

2
(𝒚 − 𝑿𝜶)𝑇diag (|𝒚 − 𝑿𝜶(𝑘)|

𝑠−2
) (𝒚 − 𝑿𝜶)

+ (1 −
𝑠

2
) ‖𝒚 − 𝑿𝜶(𝑘)‖

𝑠

𝑠
+ 𝜆

𝑝

2
𝜶𝑇diag (|𝜶(𝑘)|

𝑝−2
) 𝜶

+𝜆 (1 −
𝑝

2
) ‖𝜶(𝑘)‖

𝑝

𝑝
.

(28) 

Let the relaxed function be denoted as 𝑔(𝜶|𝜶(𝑘)). Similarly, 

𝑔(𝜶|𝜶(𝑘)) is a feasible surrogate function of 𝑓(𝜶). Therefore, 

the GRC problem can be turned into iteratively minimizing the 

surrogate function. Its solution is   

𝜶(𝑘+1) = [𝑼 +
𝜆𝑝

𝑠
diag (|𝜶(𝑘)|

𝑝−2
)]

−1

𝒗. (29) 

This completes the solution of case 4.  

The above completes solving the GRC problem with 0 <
𝑠 ≤ 2 and 0 < 𝑝 ≤ 2. Importantly, in all cases, a closed-form 

solution is obtained in each iteration. The solution avoids 

some common problems in solving Lp-norm-based algorithms 

such as learning rates [20] and zero-finding problems [27]. 

Furthermore, a locally optimal solution can be guaranteed due 

to the MM framework.  

Fig. 1 illustrates the solution domains of the four cases. 

Excluding case 1 with 𝑝 > 2 where the classification 

accuracies tend to be very low in practice, the solution domain 

of case 4 covers those of cases 1 to 3. For simplicity, we apply 

the solution in case 4 to solve the GRC problem, as 

summarized in Algorithm 1. 

 

 

Fig. 1. The solution domains of the four cases.  

Algorithm 1 The Algorithm Procedure of GRC 

Input: 𝑛 training image samples 𝑿 ∈ ℝ𝑑×𝑛 and a test image sample 𝒚 ∈ ℝ𝑑, 

𝑠 ∈ (0, 2], 𝑝 ∈ (0, 2]. 
Output: the representation coefficient 𝜶. 

Initialize 𝜶(0) = (𝑿𝑇𝑿 + 𝜆𝑰 )−𝟏𝑿𝑇𝒚.  
while 𝜶 is not converged or the maximal iteration number is not reached do 

𝑼 = 𝑿𝑇diag (|𝒚 − 𝑿𝜶(𝑘)|
𝑠−2

) 𝑿  

𝒗 = 𝑿𝑻diag (|𝒚 − 𝑿𝜶(𝑘)|
𝑠−2

) 𝒚  

𝜶(𝑘+1) = [𝑼 +
𝜆𝑝

𝑠
diag(|𝜶(𝑘)|

𝑝−2
)]

−1

𝒗  

end while 

V. EXPERIMENTS 

A. Face databases 

Four benchmark face databases, i.e., the AR face database 

[47], the FEI face database [48], the FERET face database 

[49], and the UMIST face database [50] were used in our 

experiments to evaluate the classification performance of 

GRC. 

The AR face database contains 3120 images from 120 

subjects, 26 images per subject. The images were taken with 

different facial expressions and illumination conditions. Some 

of the images are occluded with sunglasses or scarves. All 

images have been cropped and scaled to 50 by 40. This 

database can be downloaded from http://www2.ece.ohio-

state.edu/~aleix/ARdatabase.html. 

The FEI face database contains 2800 images from 200 

subjects, 14 images per subject. The images were taken with 

different view angles, scales, facial expressions, and 

illumination conditions. All images have been cropped and 

scaled to 48 by 64. This database can be downloaded from 

https://fei.edu.br/~cet/facedatabase.html. 

The FERET face database contains 1400 images from 200 

subjects, 7 images per subject. The images were taken with 

different facial expressions and view angles. All images have 

been cropped and scaled to 80 by 80. This database can be 

downloaded from https://www.nist.gov/itl/products-and-

services/color-feret-database.  

The UMIST face database contains 380 images from 20 

subjects, 19 images per subject. The images were taken with 

different view angles. All images have been cropped and 

scaled to 112 by 92. This database can be downloaded from 

http://eprints.lincoln.ac.uk/id/eprint/16081/.  

Fig. 2 shows some sample images from the four face 

databases. Table I shows the statistics of these databases. 

 

 
 

(a) (b) 

 
 

(c) (d) 

Fig. 2. Fourteen sample images from (a) the AR face database, (b) the FEI 

face database, (c) the FERET face database, and (d) The UMIST face 

database.  

TABLE I 

THE STATISTICS OF THE FOUR DATABASES 

Face 

Database 
Image size 

Total 

number of 

images 

Number of 

images per 

subject 

Number of 

subjects 

AR 50*40 3120 26 120 

FEI 48*64 2800 14 200 

FERET 80*80 1400 7 200 

UMIST 112*92 380 19 20 

B. Parameter settings 

To identify the optimal parameter pair (𝑠, 𝑝) for GRC, we 

conducted a search within the range of 𝑠 = [0.1: 0.1: 2.0] and 

𝑝 = [0.1: 0.1: 2.0]. Since GRC reduces to SRC when (𝑠, 𝑝) =

      
      
      

      
      
      

             

      
      

      

       

   

   

 

 

IAENG International Journal of Computer Science

Volume 51, Issue 2, February 2024, Pages 104-114

 
______________________________________________________________________________________ 

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
https://fei.edu.br/~cet/facedatabase.html
https://www.nist.gov/itl/products-and-services/color-feret-database
https://www.nist.gov/itl/products-and-services/color-feret-database
http://eprints.lincoln.ac.uk/id/eprint/16081/


(2, 1)  and reduces to CRC when (𝑠, 𝑝) = (2, 2) , we could 

make a direct comparison between GRC and the two classical 

RC algorithms, i.e., SRC and CRC.  

For the parameter 𝜆, it was reported that SRC and CRC can 

achieve good results when 𝜆 is assigned a small positive value, 

typically ranging from 10−6  to 10−1  [16]. Our experimental 

results showed that this observation holds true for GRC. 

Therefore, we set 𝜆 to 10−3.  

C. Experiment 1 

In the first experiment, we initially extracted principal 

components from the raw face data. Subsequently, we applied 

different representation-based classification algorithms to 

perform face recognition. The optimal parameters of GRC 

were determined in this procedure. Finally, we made a 

comprehensive comparison between GRC and its related 

algorithms.  

For each subject in the FERET face database, we randomly 

chose three images for training and two images for testing. For 

each subject in the remaining three face databases, we 

randomly chose six images for training and four images for 

testing. The training images were normalized by z-score so 

that each feature was centered to have a mean of zero and 

scaled to have a standard deviation of one. Then the testing 

images were normalized by applying the same parameters. 

After that, we applied Principal Component Analysis (PCA) 

[51, 52] to reduce the dimension of the normalized data. 

Suppose there are 𝑛  training image samples. 𝜆1 , 𝜆2 , …, 𝜆𝑚 

represent 𝑚  eigenvalues obtained through eigenvalue 

decomposition of the covariance matrix derived from the 

normalized training data. Without loss of generality, these 

eigenvalues are sorted in descending order. The percentage of 

total variance explained by these principal components is 

defined as 
∑ 𝜆𝑖

𝑚
𝑖=1

∑ 𝜆𝑖
𝑛
𝑖=1

. (30) 

The maximal number of principal components that explain no 

more than 98% of total variance were calculated. Then the 

normalized data were projected by these principal components 

for dimensionality reduction. After that, GRC was employed 

to perform classification. The above procedure was repeated 

ten times and the average classification accuracies were 

calculated to evaluate the performance of GRC. The overall 

procedure of applying GRC in classification is summarized in 

Algorithm 2.  

 
Algorithm 2 The Procedure of Applying GRC in Classification 

Input: 𝑛 training image samples 𝑿 ∈ ℝ𝑑×𝑛 and a test image sample 𝒚 ∈ ℝ𝑑, 

𝑠 ∈ (0, 2], 𝑝 ∈ (0, 2]. 
Output: the identity of 𝒚. 

1. Preprocess 𝑿 and 𝒚 by z-score and PCA in order.  

2. Solve the GRC problem (Algorithm 1):  

min
𝜶

‖𝒚 − 𝑿𝜶‖𝑠
𝑠 + 𝜆‖𝜶‖𝑝

𝑝
 

where 𝜶 is the representation coefficient. 

3. Compute the residuals 

𝑟𝑖 =
‖𝒚 − 𝑿𝑖𝜶̂𝑖‖𝑠

‖𝜶̂𝑖‖𝑝

，𝑖 = 1,2, … , 𝑐 

where 𝜶̂𝑖 is the representation coefficient associated with class 𝑖. 
4. Output the identity of 𝒚 as arg min𝑖 {𝑟𝑖}. 

 

To evaluate the influence of each parameter on the 

classification performance of GRC, we changed one parameter 

at a time while keeping another parameter fixed.  

Fig. 3 shows the classification accuracies of GRC with 𝑠 =
[0.1: 0.1: 2.0] and 𝑝 = 2.0 on the four face databases. When 

𝑠 ≤ 1.0, the classification accuracies are very close to zero. 

When 𝑠 ≥ 1.5 , the classification accuracies approach their 

peak values and remain stable across various 𝑠  values. 

Therefore, to ensure a valid classification result, it is essential 

to configure the parameter 𝑠 with a value no less than 1.5.  

 

 

 
         (a) 

 
         (b) 

 
        (c) 

 
        (d) 

Fig. 3. Classification accuracies of GRC with 𝑠 = [0.1: 0.1: 2.0] and 𝑝 = 2.0 

on (a) the AR face database, (b) the FEI face database, (c) the FERET face 

database, and (d) The UMIST face database. 

To be specific, on the AR face database, the highest 

classification accuracy is 0.9121, obtained when 𝑠=1.9. On the 

FEI face database, the highest classification accuracy is 

0.7739, obtained when 𝑠=1.6. On the FERET face database, 

the highest classification accuracy is 0.5360, obtained when 

𝑠=1.8. On the UMIST face database, the highest classification 

accuracy is 0.9313, obtained when 𝑠=1.5. The optimal 𝑠 value 

falls within the range of 1.5 to 1.9 across the four face 

databases.  

Fig. 4 shows the classification accuracies of GRC with 𝑠 =
2.0 and 𝑝 = [0.1: 0.1: 2.0] on the four face databases. On the 

AR face database, the highest classification accuracy is 

0.9185, obtained when 𝑝=1.6. On the FEI face database, the 

highest classification accuracy is 0.8111, obtained when 𝑝=1.1. 

On the FERET face database, the highest classification 

accuracy is 0.5622, obtained when 𝑝=1.3. On the UMIST face 

database, the highest classification accuracy is 0.9412, 

obtained when 𝑝=1.1. The optimal 𝑝  value falls within the 

range of 1.1 to 1.6 across the four face databases.  

To determine the optimal parameter pair (𝑠, 𝑝) for GRC, we 

simultaneously fine-tuned both parameters. Fig. 5 shows the 

classification accuracies of GRC with 𝑠 = [0.1: 0.1: 2.0] and 

𝑝 = [0.1: 0.1: 2.0]  on the four face databases. When 1.5 ≤
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𝑠 ≤ 2.0  and 0.9 ≤ 𝑝 ≤ 2.0 , the classification accuracies are 

generally higher than the results in other cases. It is worth 

noting that most of these high-performance areas are within 

the solution domain of case 4, as illustrated in Fig. 1. This 

further solidifies our decision to utilize the solution from case 

4 for addressing the GRC problem. Additionally, we had 

conducted experiments with the solutions from cases 1 to 3 

within their applicable solution domains and found that the 

results closely resemble those shown in Fig. 5. 

 

 
        (a) 

 
         (b) 

 
        (c) 

 
        (d) 

Fig. 4. Classification accuracies of GRC with 𝑠 = 2.0 and 𝑝 = [0.1: 0.1: 2.0] 
on (a) the AR face database, (b) the FEI face database, (c) the FERET face 

database, and (d) The UMIST face database. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Classification accuracies of GRC with 𝑠 = [0.1: 0.1: 2.0]  and 𝑝 =
[0.1: 0.1: 2.0] on (a) the AR face database, (b) the FEI face database, (c) the 

FERET face database, and (d) The UMIST face database. 

On the AR face database, the highest classification accuracy 

of GRC is 0.9196, obtained when the parameter pair (𝑠, 𝑝) 

equals (1.7, 1.6). When 𝑠 = 2.0 and 𝑝 = 2.0, GRC reduces to 

CRC, and the corresponding accuracy on this database is 

0.9117. When 𝑠 = 2.0 and 𝑝 = 1.0, GRC reduces to SRC, and 

the corresponding accuracy on this database is 0.9081.  

On the FEI face database, the highest classification 

accuracy of GRC is 0.8116, obtained when (𝑠, 𝑝) equals (1.8, 

1.2). The accuracies of CRC and SRC on this database are 

0.7737 and 0.8053, respectively.  

On the FERET face database, the highest classification 

accuracy of GRC is 0.5627, obtained when (𝑠, 𝑝) equals (1.8, 

1.3). The accuracies of CRC and SRC on this database are 

0.5352 and 0.5402, respectively.  

On the UMIST face database, the highest classification 

accuracy of GRC is 0.9412 obtained when (𝑠, 𝑝) equals (2.0, 

1.1). The accuracies of CRC and SRC on the UMIST face 

database are 0.9287 and 0.9363, respectively.  

Table II lists the classification accuracies obtained by the 

three RC algorithms on the four face databases. The optimal 

parameter pairs for GRC are also presented in the table. In all 

cases, GRC with optimal parameters outperforms the other 

two algorithms. The results demonstrate that applying Lp-

norm in both the objective and constraint functions of the two 

RC algorithms can improve their classification performances.  

TABLE II 

THE CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON 

FOUR FACE DATABASES 

Face database CRC SRC GRC (𝒔, 𝒑) 

AR 0.9117 0.9081 0.9196 (1.7, 1.6) 

FEI 0.7737 0.8053 0.8116 (1.8, 1.2) 

FERET 0.5352 0.5402 0.5627 (1.8, 1.3) 

UMIST 0.9287 0.9363 0.9412 (2.0, 1.1) 

 

To further compare GRC with competing algorithms, we set 

the parameter pair (𝑠, 𝑝)  to the optimal one for each face 

database and changed the dimensionality reduced by PCA. To 

be specific, the optimal parameter pair (𝑠, 𝑝)  for GRC was 

chosen based on Table II. When applying PCA to reduce the 

dimensionality of normalized data, we reserved the principal 

components that explain about 90%, 95%, or 98% of total 

variance. Then, CRC, SRC, and GRC with the optimal 

parameter pair were applied to perform classification. As a 

representative NS approach, LRC [6] was also included for 

comparison. This procedure was repeated only three times. 

Finally, the average classification accuracies were calculated 

to evaluate the classification performances of the four RC 

algorithms.   

Table III shows the classification accuracies of the four RC 

algorithms on the four face databases when principal 

components with different percentages of explained variances 

are extracted. The classification accuracies increase with the 

percentage of explained variance in most cases. On the FEI 

face database, when the principal components that explain 

90% of total variance are extracted, LRC achieves the highest 

classification accuracy among the four competing algorithms. 

Similarly, on the FERET face database, when the principal 

components that explain 90% of total variance are extracted, 

SRC achieves the highest classification accuracy among the 
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four competing algorithms. Except for the two cases, GRC 

outperforms the other three algorithms. These results provide 

further evidence that introducing Lp-norm to the two RC 

algorithms improves their classification performances.  

TABLE III 

THE CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON 

FOUR FACE DATABASES  

Face 

database 

Percentage 

of explained 

variance 

LRC CRC SRC GRC 

 90% 0.6742 0.8131 0.8650 0.8665 

AR 95% 0.7027 0.9050 0.9156 0.9173 

 98% 0.7163 0.9215 0.9160 0.9260 

 90% 0.7291 0.4809 0.6932 0.6924 

FEI 95% 0.7325 0.6441 0.7529 0.7679 

 98% 0.7420 0.7431 0.7985 0.8135 

 90% 0.2838 0.2767 0.3440 0.3180 

FERET 95% 0.3505 0.4422 0.4962 0.4968 

 98% 0.3652 0.4968 0.5212 0.5353 

 90% 0.9300 0.9013 0.9288 0.9325 

UMIST 95% 0.9275 0.9213 0.9325 0.9425 

 98% 0.9300 0.9325 0.9263 0.9400 

 

It is worth noting that the optimal parameter pairs listed in 

Table II may not necessarily be optimal for the experiments in 

Table III. This indicates that there is still room for improving 

the classification performance of GRC. However, it should be 

acknowledged that tuning the parameters for GRC is a time-

consuming process, particularly when striving to identify the 

optimal parameter pair through nested cross-validation. This 

represents a major limitation of GRC when contrasted with 

competing algorithms.  

D. Experiment 2 

To further demonstrate the superiority of GRC, we fixed the 

number of principal components and applied various RC 

algorithms to perform classification on the AR and FERET 

face databases.   

For each subject in the AR face database, we randomly 

chose six images for training and four images for testing. 

Following this, we normalized the images by z-score and 

applied PCA on the normalized data to reduce its dimension to 

54, 120, 200, and 300, as previously done in [16]. Finally, 

GRC with 𝑠 = [0.1: 0.1: 2.0]  and 𝑝 = [0.1: 0.1: 2.0]  was 

applied to perform classification. The procedure was repeated 

three times and the average classification accuracies were 

calculated to assess the performance of GRC.  

Fig. 6 shows the classification accuracies across various 

parameter settings and numbers of principal components. 

When 1.5 ≤ 𝑠 ≤ 2.0  and 0.9 ≤ 𝑝 ≤ 2.0 , the classification 

accuracies are significantly higher than those in other cases. 

The patterns appeared in Fig. 6 are consistent with those in 

Fig. 5. 

Table IV lists the classification accuracies of the four 

algorithms on the AR face database when the dimension of 

images is reduced to 54, 120, 200, and 300. For GRC, only the 

highest classification accuracies are reported. Again, GRC 

greatly outperforms the other three algorithms. The optimal 
(𝑠, 𝑝) pairs are (1.9, 1.1), (1.9, 1.2), (1.9, 1.4), and (1.8, 1.3) 

when the image dimensions are 54, 120, 200, and 300, 

respectively.  

TABLE IV 

THE CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON 

THE AR FACE DATABASE 

Dimension 54 120 200 300 

LRC 0.6597 0.6854 0.6917 0.6951 

CRC 0.8035 0.9028 0.9188 0.9160 

SRC 0.8632 0.9139 0.9278 0.9139 

GRC 0.8701 0.9236 0.9313 0.9257 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Classification accuracies of GRC with 𝑠  = [0.1:0.1:2.0] and 𝑝  = 

[0.1:0.1:2.0] on the AR face database. The four subfigures correspond to the 

results when the dimension of images is reduced to (a) 54, (b) 120, (c) 200, 

and (d) 300 by PCA in order. 

Fig. 7 shows the classification accuracies of the four 

algorithms when the parameter pair (𝑠, 𝑝) is set to (1.8, 1.2) 

for GRC and the image dimension varies from 10 to 300. GRC 

and SRC generally outperform CRC. LRC obtains the worst 

classification performance among the four algorithms. When 

comparing GRC and SRC, GRC is slightly better. Since the 

optimal parameter pair for GRC varies with the dimension of 

images, changing the (𝑠, 𝑝) values may yield better accuracy 

results on this database. In summary, introducing Lp-norm 

into existing RC algorithms improves their classification 

performances. 

Then we proceeded to conduct a similar experiment on the 

FERET face database. For each subject in the FERET face 

database, we randomly chose four images for training and use 

the remaining three images for testing. The training images 

were normalized by z-score so that each feature was centered 

to have a mean of zero and scaled to have a standard deviation 

of one. Then the testing images were normalized by applying 

the same parameters. Following this, we applied PCA to 

reduce the dimension of normalized data to 54, 120, 200, and 

300. Finally, GRC with 𝑠 = [0.1: 0.1: 2.0]  and 𝑝 =
[0.1: 0.1: 2.0]  was applied to perform classification. This 

procedure was repeated three times and the average 

classification accuracies were calculated to assess the 

performance of GRC.  
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Fig. 7. Classification accuracies of the four algorithms on the AR face 

database when the parameter pair (𝑠, 𝑝) is set to (1.8, 1.2) for GRC and the 

dimension of images varies from 10 to 300. 

Fig. 8 shows the classification accuracies across various 

parameter settings and numbers of principal components. 

When 1.5 ≤ 𝑠 ≤ 2.0  and 0.9 ≤ 𝑝 ≤ 2.0 , the classification 

accuracies are significantly higher than those in other cases. 

These results closely resemble the results obtained on the AR 

face database, as shown in Fig. 6. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Classification accuracies of GRC with 𝑠  = [0.1:0.1:2.0] and 𝑝  = 

[0.1:0.1:2.0] on the FERET face database. The four subfigures correspond to 

the results when the dimension of images is reduced to (a) 54, (b) 120, (c) 

200, and (d) 300 by PCA in order. 

Table V lists the classification accuracies of the four 

algorithms on the FERET face database when the dimension 

of images is reduced to 54, 120, 200, and 300. For GRC, only 

the highest classification accuracies are reported. GRC 

consistently outperforms the other three algorithms. The 

optimal (𝑠, 𝑝) pairs are (1.8, 1.2) in all four cases.  

TABLE V 

THE CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON 

THE FERET FACE DATABASE 

Dimension 54 120 200 300 

LRC 0.3828 0.4122 0.4211 0.4217 

CRC 0.4411 0.5356 0.5467 0.5294 

SRC 0.5289 0.5889 0.5767 0.5606 

GRC 0.5428 0.6083 0.5989 0.5778 

 

Fig. 9 shows the classification accuracies of the four 

algorithms when the parameter pair (𝑠, 𝑝) of GRC is set to 

(1.8, 1.2) and the image dimension varies from 10 to 300. 

GRC generally outperforms the other three algorithms. SRC is 

slightly worse than GRC. Both GRC and SRC outperform 

CRC. LRC obtains the worst classification performance 

among the four algorithms. The results further demonstrate 

that introducing Lp-norm into the RC algorithms improves 

their classification performances.  

 

 

Fig. 9. Classification accuracies of the four algorithms on the FERET face 

database when the parameter pair (𝑠, 𝑝) is set to (1.8, 1.2) for GRC and the 

dimension of images varies from 10 to 300. 

    Data and source code of this study are publicly available on 

the GitHub repository at https://github.com/yuzhounh/GRC. 

VI. DISCUSSION 

The proposed algorithm offers a novel solution for the well-

known L1-norm minimization problem [9], which is different 

from existing solutions [46] such as interior-point methods, 

homotopy methods, the Fast Iterative Soft-thresholding 

algorithm (FISTA), proximal-point methods, Parallel 

Coordinate Descent (PCD), Approximate Message Passing 

(AMP), Templates for Convex Cone Solvers (TFOCS), etc. 

Furthermore, the scope of the Lp-norm minimization problem 

addressed in this paper is more extensive than that of the L1-

norm minimization problem, thus carrying substantial 

theoretical significance. 

Two major aspects of this study remain uncertain. Firstly, 

an unresolved challenge is to design a solution for GRC 

beyond the solution domains illustrated in Fig. 1. Secondly, 

how to determine the theoretically optimal (𝑠, 𝑝) pair remains 

unclear. In practice, the optimal parameter settings vary with 
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the specific face database and image dimension. Moreover, the 

computational resources required for identifying the optimal 

parameter pair through nested cross-validation are notably 

intensive. Hence, it is imperative to develop a method that can 

theoretically determine the optimal parameters for GRC in the 

future work.  

VII. CONCLUSION 

This paper proposes the Generalized Representation-based 

Classification (GRC) algorithm, which extends traditional RC 

algorithms by incorporating Lp-norm in both the objective 

function and the constraint function. To solve the optimization 

problem of GRC, an iterative procedure was designed within 

the MM framework, ensuring that a closed-form solution is 

obtained in each iteration and a locally optimal solution can be 

achieved upon convergence. To assess the effectiveness of 

GRC, we compared it with other prevalent RC algorithms on 

four benchmark face databases. The experimental results 

consistently demonstrated that GRC with optimal parameters 

outperforms competing algorithms. Therefore, incorporating 

Lp-norm into traditional RC algorithms can improve their 

classification performances. 
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