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Abstract—The local resolving dominating set studied in this
paper is a notion that combines two concepts in graph theory,
the local metric dimension and dominations in graphs. Let G
and H be connected graphs of orders n and m, respectively; and
x a vertex in H hereafter referred to as a linkage vertex. The
comb product of G and H denoted by G.H , is a graph obtained
by taking one copy of G and n copies of H and attaching the
i-th copy of H at the vertex x to the i-th vertex of G. In
this paper, we determine the local resolving dominating set of
the comb products G . Sn with two different linkage vertices,
G .Kn, G .Km,n and G . Cm graphs.

Index Terms—local resolving set, domination, comb product,
metric dimension

I. INTRODUCTION

SEVERAL authors have worked on combining the
notion of metric dimension with other graph theoretical

concepts to generate a new concept, amongst others
are local metric dimension [1], [2], adjacency metric
dimension [3], and strong metric dimension [4]. For an
ordered set W = {w1, w2, . . . , wk} of k distinct vertices
in a nontrivial connected graph G, the representation
of a vertex v of G with respect to W is the k-vector
r(v|W ) = {d(v, w1), d(v, w2), . . . , d(v, wk)} where
d(v, wi) is the distance between v and wi for 1 ≤ i ≤ k.
The minimum number of positive integer k is called the
metric dimension of G, denoted by dim(G). For every pair
of adjacent vertices uv ∈ E(G), W is said to be a local
resolving set of G if r(v|W ) = r(u|W ). The minimum k
for which G has a local resolving set is the local dimension
of G, denoted by diml(G).
Many applications of the metric dimension can be found in
the literature. For example, Khuller et al. in [5] used the
concept of metric dimension to study the concept of robot
navigation in Euclidean space, Wahyudi [6] made use of
metric dimension to obtain the minimum placement of fire
sensor installation, and Saifudin et. al. [7] applied it to the
study of automatic aircraft navigation in fire protected forest
areas.
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The notion of domination is one that is very relevant
to date, and it is still being studied in various forms. A
dominating set S is defined as a subset of V (G) in which
every vertex of G not in S is connected and has a distance of
one to S. The lowest cardinality among all dominating sets
in G is called the domination number of graph G, denoted
by γ(G).

Some of the varieties of domination that have been studied
include total dominator edge chromatic number [9], power
domination [10], independent domination [11], k-distance
domination [17], and paired domination [12]. The concep-
tualization of domination in graphs has been widely applied
to the study of many real-life situations. Most recently,
Saifudin and Umilasari studied the application of connected
dominations in graphs in determining the ideal placement for
an ATM machine in a community [13], the best position for
a security post of a zoo [14], and in the establishment of
bulog regional sub-division in east java [15]. The concept
of a resolving dominating set introduced by Brigham [16],
is one that combines the notion of metric dimension and
dominating set. This terminology was also called the metric
locating dominating set by Henning and Oellermann [18].

The resolving dominating set is a set of vertices that
satisfies the definition of both dominating set and resolving
set. A lowest cardinality of the resolving dominating set
is referred to as the resolving dominating number. The
combination of metric dimension and the dominating set
was done by L. Susilowati et al. in [19] and [20], and it
is referred to as the dominant metric dimension, while R.
Umilasari et al. in [21] combined the local metric dimension
and dominating set. In other words, resolving dominating
set and dominant metric dimension is the same concept
that can be used interchangeably. Informally, let G be a
connected graph. An ordered set W ⊆ V (G) is said to
be a dominant resolving set of G if W is a resolving
set and a dominating set of G. The dominant resolving
set with lowest cardinality is named a dominant basis of
G, while the cardinality of a dominant basis is called the
dominant metric dimension of G, denoted by Ddim(G) [19].

The dominant local metric dimension which will be dis-
cussed in this paper is a combination of the two concepts in
graph theory: the local metric dimension and dominating set.
Formally, the definition of the dominant local metric dimen-
sion is presented in Definition 1. In addition, some existing
results related to the dominant local metric dimension are
also presented below.

Definition 1.1: [22] Given a connected graph G. An or-
dered set Wl = {w1, w2, . . . , wn} ⊆ V (G) is called a
dominant local resolving set if Wl is a local resolving set
and a dominating set of G. The dominant local resolving
set with lowest cardinality is called a dominant local basis.
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Fig. 1. Comb product graph of S6 . C4.

The number of vertices in a dominant local basis of G is
named the dominant local metric dimension and is denoted
by Ddiml(G).

Lemma 1.2: [22] Let G be a connected graph and Wl ⊆
V (G) be an ordered set. For every vi, vj ∈Wl, r(vi|Wl) 6=
r(vj |Wl), for i 6= j.

Lemma 1.3: [23] Let G be a connected graph. If there is
no local dominant resolving set with cardinality p, then every
S ⊆ V (G) with |S| < p is not a local dominant resolving set.

Theorem 1.4: [22]
1) If n ≥ 4, then Ddiml(Cn) = γ(Cn).
2) Ddiml(G) = 1 if and only if G ≡ Sn, n ≥ 3
3) Let G be a connected graph of order n ≥ 2,

Ddiml(G) = n− 1 if and only ifG ≡ Kn, n ≥ 2.
4) Let Km,n be a complete bipartite graph of order

m,n ≥ 2. The dominant local metric dimension of
Km,n is Ddiml(Km,n) = γ(Km,n).

Graphs studied in this research are G . Sn with two
linkage vertex differences, G . Kn, G . Km,n and G . Cm

graphs. Formally, the definition of comb product of two
graphs is defined as follows.

Definition 1.5: [24] Let G and H be connected graphs
and x is a vertex of V (H) hereafter referred as linkage
vertex. The comb product of G and H denoted by G.H is
a graph obtained by taking one copy of G and n copies of
H and attaching vertex x from the i-th copy of graph H at
the i-th vertex from the graph G, n be the order of G. This
definition can be denoted as follows:

V (G . H) = {(a, v)|a ∈ V (G); v ∈ V (H)} and
(a, v)(b, w) ∈ E(G . H) if a = b and v, w ∈ E(H) or

ab ∈ E(G) and v = w = x.
An example of a comb product graph between the Star graph
S6 with cycle graph C4 Figure is shown in 1.

II. SOME ILLUSTRATIONS

This section shows the steps to determine the local re-
solving dominating set or dominant local metric dimension
of graphs.

1) Select the comb product of any two graphs (say, G.H).
2) Observe the local metric dimension (Wl) and dominat-

ing number [γ(G.H)] of the graph. Either of the two
can be obtained first. That is, we obtain either (Wl) or
(γ(G . H)) first. However, in this paper, we decided

Fig. 2. Illustration to select the dominant local metric dimension of graph

to determine the local metric dimension first, and then
proceeded to the third step.

3) Choose the elements of the local resolving set of the
graphs with lowest cardinality (that is the local basis
of the graphs).

4) If every two adjacent vertices of the graph have dif-
ferent representations to the local resolving set, it is
easy to see that the local resolving set can be selected
as the minimum dominating set of the graphs. Then,
there are two possibilities as follows:
a. If yes, it means Wl is a dominant local resolving

set. Then, Ddiml(G . H) = |Wl|.
b. If not, we revert back to the second step by

changing or adding the element of Wl.
Figure 2 gives an illustration of how to select the dominant
local metric dimension of a graph. The figure shows an
example of a path graph (P4) which has the cardinality
of dominant local basis of two by choosing v2 and v3.
This is because selecting Wl = {v1} will fail, since v1
cannot dominate v3 and v4. This is same if we select the
Wl = {v1, v2} because v4 cannot be dominated by v1 or v2.
Therefore, Wl = {v2, v3} is the dominant local basis of P4

or Ddiml(P4) = 2.

III. THE LOCAL RESOLVING DOMINATING SET

For this part, we show the dominant local metric dimen-
sion of comb product graphs, the studied graphs are G . Sn

with two linkage vertex differences, G .Kn, G .Km,n and
G . Cm.

Theorem 3.1: Let G be a non-trivial connected graph. If
Sn is a star graph with n ≥ 2, then

Ddiml(G . Sn) = |V (G)| ×Ddiml(Sn).

Proof. Let G be a non-trivial connected graph with V (G) =
{ui|i = 1, 2, 3, . . . ,m}. Let Sn be a star graph with
V (Sn) = {a} ∪ {bj |j = 1, 2, 3, . . . , n − 1} and E(Sn) =
{abj |j = 1, 2, 3, . . . , n− 1} for n ≥ 2. Let (Sn)i be the i-th
copy of Sn for i = 1, 2, 3, . . . ,m. The dominant local metric
dimension of G.Sn is divided into the following two ways
of proof.

a. Case 1: a is a linkage vertex
The vertex set of G . Sn is V (G . Sn) = {a0i|i =
1, 2, 3, . . . ,m} ∪ {bij |i = 1, 2, 3, . . . ,m, j =
1, 2, 3, . . . , n − 1}. Since a is a linkage vertex,
by Theorem (1.4), B = {a} is a dominant local basis
of Sn and Bi = {a0i} is a dominant local basis of
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(Sn)i, for every i = 1, 2, 3, . . . ,m with |Bi| = |B|.
Choose Wl =

⋃m
i=1Bi = {a0i|i = 1, 2, 3, . . . ,m} so

that |Wl| = m. We show below that the representation
of every adjacent vertex of G . Sn is different.

i Based on Lemma (1.2), r(a0i|Wl) 6= r(a0k|Wl) for
every a0i, a0k ∈Wl with i 6= k.

ii Since a0i ∈ Bi, an element 0 is present in the
r(a0i|Bi), whereas d(bij , a0i) = 1 and bij /∈ Bi so
an element 0 is absent in the r(bij |Bi). Therefore,
r(a0i|Bi) 6= r(bij |Bi). Furthermore, since Bi ⊆
Wl we have r(bij |Wl) 6= r(a0i|Wl).

b. Case 2: a is not a linkage vertex
The vertex set of G . Sn is V (G . Sn) =
{u0i|i = 1, 2, 3, . . . ,m, ui ∈ V (G)} ∪ {a1i|i =
1, 2, 3, . . . ,m, a ∈ V (Sn)} ∪ {bij |i =
1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n − 2}. Let
bn−1 ∈ V (Sn) be a linkage vertex or a vertex
that is attached to every vertex in V (G) and denoted
by u0i for every i = 1, 2, 3, . . . ,m in the V (G). By
Theorem (1.4), B = {a} is a dominant local basis of
Sn and Bi = {a0i} is a dominant local basis of (Sn)i,
for every i = 1, 2, 3, . . . ,m, implying |Bi| = |B|.
Choose Wl =

⋃m
i=1Bi = {a1i|i = 1, 2, 3, . . . ,m} so

that|Wl| = m. We show below that representation of
every adjacent vertex of G . Sn is different.

i for u0i, u0k ∈ V (G . Sn)\Wl with i 6= k.
Since G is a connected graph satisfying d(u0k, a) =
d(u0k, u0i) + d(u0i, a) for every a ∈ Bi, then
d(a, u0i) 6= d(a, u0k) implies r(u0i|Bi) 6=
r(u0k|Bi). Thus since Bi ⊆Wl, then r(u0i|Wl) 6=
r(u0k|Wl).

ii u0i with a1i ∈ Bi.
Since a1i ∈ Bi, an element 0 exists in the r(a1i|Bi)
whereas d(u0i, a1i) = 1 and u0i /∈ Bi then the
element 0 is also absent in the r(u0i|Bi). Therefore,
r(a1i|Bi) /∈ r(u0i|Bi).

iii bij with a1i ∈ Bi.
Since a1i ∈ Bi, the element 0 exists in r(a1i|Bi)
whereas d(bij , a1i) = 1 and bij /∈ Bi. Thus
the element 0 is not in the r(bij |Bi). Therefore
r(a1i|Bi) 6= r(bij |Bi).

Both cases 1 and 2, it can be concluded that Wl is a
local resolving set of G . Sn. Further, because every vertex
a0i ∈Wl is adjacent to every vertex u0i and bij ∈ V (G.Sn)
for i = 1, 2, 3, . . . ,m, so Wl is a dominating set. Therefore,
Wl = {a0i|i = 1, 2, 3, . . . ,m} is a dominant local resolving
set of G.Sn. Next, take any S ⊆ V (G.Sn) with |S| < |Wl|.
Let |S| = |Wl| − 1, so i is present such that |Bi| = 0 for a
(Sn)i, so there is a vertex in the (Sn)i which is not adjacent
to S. Therefore, S is not a dominant local resolving set of
G.Sn. Based on Lemma 1.3, any set T with |T | < |S| is not
a dominant local resolving set of G . Sn. Therefore, Wl =⋃m

i=1Bi is a dominant local basis of G.Sn. Further, since Bi

is a dominant local basis of (Sn)i with |Bi| = Ddiml(Sn),
then Ddiml(G . Sn) = |Wl| = |V (G)| × Ddiml(Sn) for
n ≥ 2 if the linkage vertex is dominant vertex in the Sn or
not.

Figure III (a) showed a graph C6 . S4 where the linkage
vertex is a dominant vertex of S3 whereas Figure III (b)

Fig. 3. (a.) Graph C6 . S4, (b.) Graph C6 . S5

showed an example of C6 . S5 with a linkage vertex that is
not a dominant vertex of S4. In both figures, the elements
of the dominant local resolving set are represented by some
vertices with a square box.

We present the proof for the dominant local metric dimen-
sion of the graph G . Kn. It is important to note that since
the complete graph Kn is a graph that is (n−1)-regular, the
selection of the linkage vertex can be chosen from any of its
vertices.

Theorem 3.2: Let G be a non-trivial connected graph. If
n ≥ 3, then

Ddiml(G .Kn) = |V (G)| × (Ddiml(Kn)− 1).

Proof. Let G be a non-trivial connected graph with
V (G) = {ui|i = 1, 2, 3, dots,m} and Kn a complete graph
with V (Kn) = {vj |j = 1, 2, 3, . . . , n} and E(Kn) =
{vivj |i, j = 1, 2, 3, . . . , n, i 6= j} for n ≥ 3. Let (Kn)i be
the i-th copies of Kn for i = 1, 2, 3, . . . ,m. The vertex set of
G.Kn is V (G.Kn) = {v0i|i = 1, 2, 3, . . . ,m, ui ∈ V (G)}
∪{vij |i = 1, 2, 3, . . . ,m, j = 2, 3, . . . , n}. Without loss
of generality, let v1 be a linkage vertex of Kn. Then,
B = {vj |j = 2, 3, 4, . . . , n} is a dominant local basis
of Kn as described in Theorem (1.4), and Bi is a domi-
nant basis of (Kn)i so that for every i = 1, 2, 3, . . . ,m,

IAENG International Journal of Computer Science

Volume 51, Issue 2, February 2024, Pages 115-120

 
______________________________________________________________________________________ 



|Bi| = |B|. Choose Wl =
⋃m

i=1{Bi − {vin}} so that
|Wl| = m((n − 1) − 1). By Lemma (1.2), r(vij |Wl) 6=
r(vlk|Wl) for every vij , vlk ∈ Wl with ij 6= lk and so
V (G . Kn)Wl = {v0i, vin|i = 1, 2, 3, . . . ,m}. Take any 2
adjacent vertices in V (G.Kn)Wl. Based on each possibility,
we showed that the representation of every 2 adjacent vertices
is different.

i For v0i, v0j ∈ V (G .Kn)\Wl with i 6= j.
Since d(v0j , v) = d(v0j , v0i) + d(v0i, v) for every v ∈
Bi, d(v, v0i) 6= d(v, u0j) and r(v0i|Bi) 6= r(v0j |Bi).
Thus, Bi ⊆Wl implies r(v0i|Wl) 6= r(v0j |Wl).

ii For v0i, v0j ∈ V (G .Kn)\Wl with vij ∈ Bi.
Since vij ∈ Bi, there exists element 0 in r(vij |Bi),
whereas d(v0i, vij) = 1 and v0i /∈ Bi. Then the element
0 is not in r(v0i|Bi). Therefore, r(vij |Bi) /∈ r(v0i|Bi)
and since Bi ⊆ Wl, it follows that r(v0i|Wl) 6=
r(vij |Wl).

iii For v0i, vin ∈ V (G .Kn)\Wl.
Since for i 6= j, d(v0i, v0j) 6= d(vin, v0j), then every
v ∈ Bj − {vjn} leads to d(v, v0i) 6= d(v, vin) so that
r(v0iBj − {vjn}) 6= r(vin|Bj − {vjn}). Thus Bj −
{vjn} ⊆Wl yields that r(v0i|Wl) 6= r(vin|Wl).

Fig. 4. Ddiml(P5 . K5) = 15

Therefore Wl is a local resolving set of G . Kn. Now
every vertex vij ∈ Wl is adjacent to every vertex v0i and
vin ∈ V (G . Kn) for i = 1, 2, 3, . . . ,m. Then Wl is a
dominating set implying Wl = {vij |i = 1, 2, 3, . . . ,m} is
a dominant local resolving set of G . Kn. Next, take any
S ⊆ V (G . Kn) with |S| < |Wl|. Let |S| = |Wl| − 1,
so i is such that S contains |Bi| − 2 elements of (Kn)i.
As a result, there are 2 vertices in the (Kn)i having
the same representation as S, and so S is not a local
resolving set of G . Kn. By Lemma (1.3), any set T
with |T | < |S| is not a dominant local resolving set
of G . Kn. Therefore, W =

⋃m
i=1{Bi − {vin}} is a

dominant local basis of G . Kn. Furthermore, since Bi is
a dominant local basis of (Kn)i with |Bi| = Ddiml(Kn),
Ddiml(G . Kn) = |Wl| = |V (G)| × (Ddiml(Kn)− 1) for
n ≥ 3.

To clarify the result in Theorem (3.2), Figure 4 is an
example of P5 . K5 where Ddiml(P5 . K5) = 15. The
elements of the dominant local basis are indicated by some

vertices with a square box. Next, we observe the dominant
local metric dimension of G .Km,n.

Theorem 3.3: Let G be a non-trivial connected graph. If
m,n ≥ 2, then

Ddiml(G .Km,n) = |V (G)| ×Ddiml(Km,n).

Proof. Let G be a non-trivial connected graph, the vertex
set is V (G) = {uk|k = 1, 2, 3, . . . , p} for p ≥ 2 and Km,n is
a complete bipartite graph with the vertex set is V (Km,n) =
{ai|i = 1, 2, 3, . . . ,m} ∪{bj |j = 1, 2, 3, . . . , n} and the
edge set is E(Km,n) = {aibj |i = 1, 2, 3, . . . ,m; j =
1, 2, 3, . . . , n} for m ≥ 2 and n ≥ 2. Without reducing the
generality of the proof, let a1 is a linkage vertex graph Km,n.
The k-th copy of Km,n with k = 1, 2, 3, . . . , p is referred as
(Km,n)k with V ((Km,n)k) = {aki|i = 1, 2, 3, . . . ,m} ∪
{bkj |j = 1, 2, . . . , n}, for every k = 1, 2, 3, . . . , p. The
vertex set of graph G.Km,n is V (G.Km,n) = {aki, bkj |k =
1, 2, 3, . . . , p, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n}, and
edge set there of E(G . Km,n) = {ak1al1|ukul ∈
E(G)} ∪ {akibkj |aibj ∈ E(Km,n), k = 1, 2, 3, . . . , p, i =
1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n}. Let B = {a1, b1} is a
dominant local basis of Km,n as described in the Theorem
1.4 [22], and Bk is a dominant local basis of (Km,n)k
so that for every k = 1, 2, 3, . . . , p occur |Bk| = |B|.
Choose Wl =

⋃m
i=1Bi with Bk = {ak1, bk1} for every

k = 1, 2, 3, . . . , p, so |Wl| = p×2. By Lemma (1.2), obtained
that r(ak1|Wl) 6= r(bk1|Wl) for every ak1, bk1 ∈ Wl, k =
1, 2, 3, . . . , p with ak1 6= bk1. Further, take any 2 adjacent
vertices of V (G.Kn)Wl. on each possibility, it is shown that
the representation of every 2 adjacent vertices are different.

i For ak1al1 ∈ Wl with k 6= l. Since G was a con-
nected graph then d(al1, v) = d(al1, ak1) + d(ak1, v)
for every v ∈ Bk so d(v, ak1) 6= d(v, al1) caused
r(ak1|B0k) 6= r(al1|Bk). Since Bk ⊆ Wl then
r(ak1|Wl) 6= r(al1|Wl).

ii For aki, bkj ∈ V (G . Km,n)\Wl, akibkj ∈ E(Km,n)k
for k = 1, 2, . . . , p. Since Bk = {ak1, bk1} is a local
basis of the (Km,n)k then (aki|Bk) = (2, 1) and
r(bkj |Bk) = (1, 2) for every i = 2, 3, . . . ,m, j =
2, 3, . . . , n, so r(aki|Bi) 6= r(bkj |Bk). Further, since
Bk ⊆Wl then r(aki|Wl) 6= r(bkj |Wl).

Therefore Wl is a local resolving set of G . Km,n.
Further, since for every k = 1, 2, 3, . . . , p the vertex
ak1 ∈ Wl is adjacent to every vertex bkj and bk1 ∈ Wl

is adjacent to every vertex aki ∈ V (G . Km,n) for every
i = 2, 3, . . . ,m, j = 2, 3, . . . , n, so Wl is a dominating set.
Therefore, Wl = {ak1, bk1} for every k = 1, 2, 3, . . . , p is a
dominant local resolving set of G . Km,n. Next, take any
S ⊆ V (G . Km,n) with |S| < |Wl|. Let |S| = |Wl| − 1,
so k is present such that S contained |Bk| − 1 element of
(Kn)k. As a result, there is a vertex in (Km,n)k which is not
connected to S, and so S is not a dominating set of G.Km,n.
By Lemma (1.3), any set T with |T | < |S| is not a dominant
local resolving set of G.Km,n. Therefore, Wl = {ak1, bk1}
is a dominant local basis of G.Kn. Moreover, since Bi is a
dominant local basis of (Km,n)i with |Bi| = Ddiml(Km,n),
Ddiml(G .Km,n) = |Wl| = |V (G)| × (Ddiml(Km,n)) for
m,n ≥ 2.

Figure 5 is an example of the graph P3 . K3,3 with
Ddiml(Km,n) which has dominant local metric dimensions

IAENG International Journal of Computer Science

Volume 51, Issue 2, February 2024, Pages 115-120

 
______________________________________________________________________________________ 



Fig. 5. Ddiml(P3 . K3,3) = 6

equal six.

In the next theorem for Ddiml(G . Cm), we use a
similar proof to that of the dominant local metric dimension
of G . Kn. This is because the cycle graph (Cm) is also a
regular graph and the selection of the linkage vertex can be
chosen from any vertex in the cycle graph.

Theorem 3.4: Let G be a non-trivial connected graph. If
n ≥ 3, then

Ddiml(G . Cm) = |V (G)| ×Ddiml(Cm).

Proof. Let G be a non-trivial connected graph with
V (G) = {vi|i = 1, 2, 3, . . . , n}. The vertex set of the cycle
graph is given as V (Cm) = {uj |j = 1, 2, 3, . . . ,m} and
the edge set is E(Cm) = {ujuj+1|j = 1, 2, 3, . . . ,m −
1} ∪{u1um}. We represent the i-th copy of Cm with
i = 1, 2, 3, . . . , n as (Cm)i where V ((Cm)i) = {vij |j =
2, 3, . . . ,m} for every i = 1, 2, 3, . . . , n. The vertex set
of G . Cn is denoted as V (G . Cm) = {vij |i =
1, 2, 3, . . . n, j = 2, 3, . . . ,m}, and the edge set as E(G .
Cm) = {vi1vj1|uiuj ∈ E(G), i = 1, 2, 3, . . . n , j =
2, 3, . . . ,m}∪ {vijvij+1|vivj ∈ E(G)}∪{v1jv1m}. Without
loss of generality, let v1 be a linkage vertex of Cm, B be a
dominant basis of Cm and Bi be a dominant basis of (Cm)i.
Accordingly, for every i = 1, 2, 3, . . . , n, occur |Bi| = |B|.
Choose Wl =

⋃n
i=1{Bi} by considering the following cases

of m.
a. For m 6= 0(mod3),

Choose Wl = {vi1, vi4, vi7, vi10, . . . , vi(3j−2), vim}, so
that |Wl| = n× dm3 e.

b. For m ≡ 0(mod3),
Choose Wl = {vi1, vi4, vi7, vi10, . . . , vi(3j−2)}, so that
|Wl| = n× dm3 e.

By Lemma 1.2, r(u|Wl) 6= r(v|Wl) for every u, v ∈ Wl

with u 6= v. Next, we take any 2 adjacent vertices of V (G.
Cm)Wl and show that the representation of every 2 adjacent
vertices is different from Wl.

i. For vi1, vj1 ∈Wl with i 6= j.
Since d(vj1, v) = d(vj1, vi1) + d(vi1, v) for every v ∈
Bi, d(v, vi1) 6= d(v, vj1) and r(vi1|Bi) 6= r(vj1|Bi).
Since Bi ⊆Wl, r(vi1|Wl) 6= r(vj1|Wl).

ii. For vij , vik ∈ V (G . Cm) with j 6= k.
Since Bi is a dominant local basis of (Cm)i, it is clear
that r(vij |Bi) 6= r(vik|Bi). Thus Bi ⊆ Wl, and so
r(vij |Wl) 6= r(vik|Wl).

Based on the above descriptions, Wl is a local
resolving set of G . Cm. Moreover, since E(G . Cm) =
{vi1vj1|uiuj ∈ E(G), i = 1, 2, 3, . . . n, j = 2, 3, . . . ,m}
{vijvij+1|vivj ∈ E(G)} ∪ {v1jv1m}, vi(3j−1) is adjacent to
vi(3j−2) and vi(3j) is adjacent to vi(3(j+1)−2). Then Wl is
a dominating set of Gm. Therefore, Wl is a dominant local

Fig. 6. Ddiml(S4 . C6) = 8

resolving set of G . Cm. By taking any S ⊆ V (G . Cm)
with |S| < |Wl|, let |S| = |Wl| − 1, so i is present such
that S contains |Bi| − 1 elements of (Cm)i. Since Bi is
a dominant basis of (Cm)i, S is not a local resolving set
or S is not a dominating set. Thus S is not a dominant
local resolving set of G . Cm. By Lemma (1.3), any set
T with |T | < |S| is not a dominant local resolving set
of G . Cm. Therefore, Wl =

⋃m
i=1{Bi} is a dominant

local basis of G . Cm. In addition, Bi is a dominant
local basis of (Cm)i with |Bi| = Ddiml(Cm) and so
Ddiml(G . Cm) = |Wl| = |V (G)| ×Ddiml(Cm).

Figure 6 shows an example of the graph S4 . C6. By
Theorem 3.4, the graph has Ddiml(S4 . C6) = 8, and the
elements of the dominant local basis are indicated by some
vertices with a square box.

IV. CONCLUSION AND PROSPECTS

After observe and analyze some graphs, we have obtained
results on the dominant local metric dimension involving the
comb product of 2 connected graphs, say G and H . For H ,
we have considered the star graph, complete graph, complete
bipartite graph, and cycle graph. For these graphs, we have
shown that the local resolving dominating set of G . H
depends on the selection of the linkage vertices, which in turn
determines the value of Ddiml(H). For the next research,
we can find the computer algorithm to determine the local
resolving set of any graph. Besides that, we can also apply
this theory into some real life problems.
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