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Abstract—Fast traffic anomaly detection is vital to traffic
management, which is required to make a timely response
decisions for anomalous events. However, real-time anomaly
detection becomes challenging with the ongoing traffic volume
growth. Current studies rely on subspace-based methods, such
as PCA, by projecting the original data onto the residual
subspace. However, this process is very time-consuming and
computationally intensive when dealing with huge datasets.
Therefore, this paper proposes an anomaly detection method
based on a sequential bi-iteration SVD algorithm (S-BiSVD) to
improve detection efficiency. S-BiSVD is a streaming algorithm
that quickly learns the subspace of traffic for real-time anomaly
detection by handling the newly updated data column instead of
the entire data matrix. The experimental results show that the
detection efficiency of the proposed approach is much higher
than the baseline regarding online traffic data updating, and
our method’s detection accuracy is at the same level as the
baseline.

Index Terms—Anomaly detection, Adaptive algorithm, Slid-
ing window, Traffic data

I. INTRODUCTION

DETECTING traffic anomalies, which is the premise of
analyzing the root causes of unusual phenomena and

taking a response is an important task for traffic management
[1]. For instance, anomalies in urban road networks, such as
widespread traffic jams, necessitate swift detection to enable
authorities to promptly address these issues, thereby reducing
road congestion duration and enhancing traffic efficiency to
some extent. Furthermore, anomalies in data obtained from
sensor networks play a vital role in pinpointing malfunction-
ing sensors [2]. Anomalous traffic patterns in a computer
network could indicate a compromised system transmitting
sensitive data to an unauthorized destination. In this case,
network monitoring techniques, including MAC spoofing,
IP spoofing, TCP/UDP fanout, detection of duplicate IP
and MAC addresses, virus detection, bandwidth anomaly
detection, and connection rate detection, help detect threats
from various network infrastructure elements. Additionally,
anomaly detection helps track the profiles of every system,
application, or network [3]. However, traffic anomaly de-
tection is facing increasing challenges regarding processing
efficiency as the volume of traffic datasets is experiencing
explosive growth [4]. The rapid growth of various emerging
technologies, such as sensors, connected devices, smart home
appliances, smart cities, 5G communication media, smart-
phones, mobile cloud, healthcare applications, multimedia,
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virtual reality, and autonomous automobiles, contribute to the
huge accumulation of real-time data flowing in a network [5].
Networks generate an estimated 2.5 exabytes of data daily
through rapid, extensive, and diverse traffic [6]. Similarly, the
expanding road network and the growing number of vehicles
produce a significant volume of real-time data in road traffic.
In the realm of the Contemporary Internet of Things (IoT),
diverse connected and mobile devices engage in machine-
to-machine communication, generating extensive sensor data
every second [3]. This data needs real-time monitoring,
collection, and analysis to detect anomalous behaviors. More-
over, the collected sensor network may encompass various
data types, including binary, discrete, continuous, audio, and
video, contributing to the realm of big data. As reported in
[7], 2.3 zettabytes of Internet Protocol (IP) traffic traversed
the Internet in 2020, signifying an increase of 879 exabytes
from 2015. This surge in data contributes to a delay in real-
time anomaly detection [3].

The subspace-based signal analysis involves splitting the
observations into a set of desired and disturbing components,
which can be viewed in the signal and noise subspaces. The
basic intuition of the subspace-based approach in anomaly
detection is that a sample can be considered anomalous if
it has a high component after projecting it into the noise
subspace. This approach has been widely studied in previous
research. However, in the context of massive online data
being updated quickly, real-time detection does not work
perfectly because the subspace-based method must process
the entire data matrix, which is bulky and time-consuming
to realize dimensionality reduction in each step.

This paper proposes a new real-time traffic anomaly de-
tection method using big data. A streaming algorithm uses
a sliding window to learn the traffic subspace rapidly. It
differs from the subspace tracking methods mentioned above
as it only processes the newly updated column data instead
of the entire data matrix. The proposed approach is much
more efficient than the baseline, achieving the same detection
accuracy. The primary value of the proposed approach is
its high-speed operation, which facilitates real-time traffic
anomaly detection under big data. This finding is expected to
help timely detect traffic anomalies, reduce the costs caused
by these anomalies, and improve the efficiency of traffic
systems.

The remainder of this paper is organized as follows.
Section 2 reviews the literature relating to anomaly detection
in traffic networks. Section 3 discusses the theory related to
the proposed approach and provides a concise example for
detecting anomalies. Section 4 introduces the experimental
procedure and discusses the experimental results. Finally,
section 5 summarizes and concludes this work and provides
future research directions.
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II. RESEARCH BACKGROUND

A. Anomaly Detection in a Road Network

Recent studies applied a spatiotemporal model based on
tensors for anomaly detection in a road network. This method
decomposes tensors through sliding windows and measures
the deviations of diverse spatiotemporal patterns to identify
different types of anomalies [8] [9]. In [10], GPS data
from vehicles have been used to detect traffic congestion.
Additionally, Pan et al. comprehensively considered the
drivers’ behavior and social media to identify anomalous
events according to traveling behavior. Then, they mined
representative words from social media to depict the captured
anomalous events [11]. In [12] and [13], the authors adapted
the likelihood ratio test to detect anomalies in GPS data
rapidly. In order to solve the widespread data sparsity in
the real world, a data fusion method based on probability
and utilizing datasets from different domains was proposed
[14]. Zheng et al. used taxi trajectories to detect flaws
in road network planning [15], and Liu et al. constructed
causality trees to reveal the interaction among spatial and
temporal anomalies and the potential defects in road network
design [16]. Xu et al. used a ranking algorithm based on
taxi trajectories to find the key nodes in a road network,
which can be considered a special type of anomaly since
their failure would result in sharp drops in traffic efficiency
[17]. Additionally, PCA is often used in anomaly detection.
Indeed, considering taxi trajectories, Chawla et al. used
PCA to detect anomalies and then applied an optimization
technique to infer anomalous paths by solving the L1 inverse
problem [18].

B. Anomaly Detection in Other Networks

Traffic anomaly detection is also widely studied in IP,
power, and sensor networks. In the network-wide anomaly
detection algorithm [19], local monitors measure the total
traffic volume (in bytes) on each network link and periodi-
cally centralize the data by pushing all recent measurements
to a coordinator. Then, the coordinator performs PCA on an
assembled matrix to detect anomalies. An anomaly detection
method based on PCA and random matrix perturbation
analysis was developed by Huang et al., and its accuracy
was validated in the Abilene network. This Internet2 high-
performance backbone network interconnects many univer-
sities and other research institutes [20]. Adrian Taylor et
al. proposed an anomaly detector scheme based on a long
short-term memory neural network to detect the controller
area network bus attacks [21]. Livani et al. used distributed
PCA and fixed-width clustering to establish a global normal
profile and detect anomalies [22], while Xie et al. ex-
plored the distance-based anomaly detection method through
PCA as a feature reduction technique [23]. Subspace-based
methods have been widely studied in anomaly detection.
However, most traditional detection methods suffer from
low processing speed when dealing with big datasets. In
contrast to the abovementioned work, the proposed approach
significantly improves the detection speed and guarantees
detection accuracy.

Given the features of streaming data, Ding et al. [24]
introduced an online ensemble learning anomaly detection
algorithm based on the IForest algorithm. However, the

approach updates the anomaly detector by discarding the
oldest isolation trees, potentially eliminating well-performing
isolation trees and deteriorating the overall anomaly detection
performance. Wang et al. [25] devised a streaming DBSCAN
clustering algorithm on the spark platform for swift anomaly
detection in large-scale electricity consumption data streams.
Nevertheless, the constructed model demonstrates consider-
able complexity. Tin et al. [26] introduced an approach that
utilizes ensemble learning techniques to address concept drift
and incorporates an adaptive window mechanism to adapt to
varying data distributions effectively. The adaptive window
dynamically adjusts its size based on the characteristics of
the data stream and specific application requirements, leading
to improved performance and accuracy.

III. METHODOLOGY

A. Bi-Orthogonal Iteration SVD Algorithm

The bi-orthogonal iteration algorithm has been widely
investigated by Strobach, who proposed various subspace
tracking algorithms designed for exponential forgetting win-
dows [27], [28]. This iterative algorithm computes the dom-
inant singular values and vectors of a data matrix X ∈
RL×T . The SVD of X is the factorization X = UΣV T ,
where U and V are orthonormal matrices, and Σ is a non-
negative diagonal matrix: Σ = diag (σ1, σ2, . . . , σr), where
σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 and r = min(L, T ). Thus, the γ
dominant singular values are {σ1, σ2, . . . , σγ}, with γ ≤ r,
the dominant left γ singular vectors are the γ first columns
of the matrix U and the dominant right γ singular vectors
are the γ first columns of the matrix V . In each iteration,
this algorithm generates two auxiliary matrices to assist
the next iteration, and unit matrices are considered initial
auxiliary matrices in the first iteration. The bi-orthogonal
iteration SVD can be adapted into a pattern for streaming
data called sequential bi-iteration SVD, in which the U , Σ
and V T of its previous-step outputs and the currently updated
data matrix are used as inputs. This strategy reproduces the
decomposition results of this step.

B. Sequential Bi-Iteration SVD Algorithm

Many adaptive techniques are only applied to signals that
change slowly [29]. In contrast, a few subspace trackers
are based on sliding windows, which typically require more
computation but provide a faster tracking response to sudden
signal changes [30], [31].

S-BiSVD evolved from the classic sequential bi-iteration
SVD algorithm and uses a sliding window. Data in the sliding
window are denoted as:

X(T ) = [x(t)x(t− 1) · · ·x(t− L+ 1)]T (1)

where x(t) is the N -dimensional data vector at time t, and L
is the window length. The details of S-BiSVD are reported in
Table I. In each step, S-BiSVD only uses the newly updated
data x(t) as input. During the “Initialize” stage, Ir is the
unit matrix, where r = min(L,N). In the first iteration of
each step, B(t) comprises the first L rows of B′(t), U(t)
and B∗(t) in this step are the results of B(t) after QR
factorization. In the second iteration of each step u1(t), is
the column vector obtained by transposing the first row of
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U(t), V (t) and S(t) in this step are the results of A(t) after
QR factorization. After two iterations in a step, the U(t),
S(t) and V (t) at time t are output.

TABLE I
DETAILS OF S-BISVD.

Initialize: V (0) =

[
Ir
0

]
;U(0) =

[
Ir
0

]
;S(0) = [Ir] ;

For each time interval do:
Input: x(t)
First Iteration:
h(t) = V (t− 1)T x(t)

B′(t) =

[
x(t)T

(t− 1)S(t− 1)T

]
Take the first L rows of B′(t) to obtain B(t)
B(t) = U(t)B∗(t)
Second Iteration:
x⊥(t) = x(t)− V (t− 1)h(t)
A(t) = V (t− 1)B∗(t)T + x⊥(t)u1(t)T

A(t) = V (t)S(t)

The S-BiSVD algorithm has the following advantages:
(1) Some subspace-based estimation methods require cal-

culating a standard orthogonal subspace basis at each step,
as has been proved in music signals [32].

(2) Fast-tracking response to abrupt signal changes by a
sliding window.

(3) Tracking the entire singular value decomposition
(SVD), which may be useful for rank estimation and tracking
purposes [28], [33].

(4) It relies on an approximate data matrix with fewer
constraints than the classic projection method, leading to
better tracking results [30]. This tracking algorithm has been
tested to cope with transients and proven robust and fast.

C. Subspace-based Method in Anomaly Detection

Subspace-based methods, such as PCA, have been widely
used for dimensionality reduction and lossy compression in
data mining [34], [35]. PCA exploits the observation that in
most explicitly high-dimensional data sets, there is a high
implicit correlation between many dimensions, which can
be inferred by carrying out an eigendecomposition of the
data covariance matrix. This method selects a new dependent
basis for the data, called the principal components. They
are the eigenvectors of the covariance matrix of the data,
which is always symmetric and positively definite. It has
been noted that for most real data sets, most variance exists
in a small fraction of the higher principal components. Thus,
by projecting the data into the first few principal components,
most of the variance in the data can be preserved.

SVD is typically used to implement PCA. When the matrix
is decomposed into three matrices U , Σ and V T , the dimen-
sionality can be reduced by multiplying the original matrix
with some components of these matrices. When V T is used
for column vectors, SVD achieves the same results as PCA.
Intuitively, U and V T can be regarded as rotation operations
for the original matrix, and Σ as scaling operations.

The advantage of this dimensionality reduction method
is that the spatio-temporal correlation can be simultane-
ously captured by properly specifying the covariance matrix
structure. However, its main disadvantage is that separating
subspaces spanned by higher principal components from

those spanned by lower principal components is usually
arbitrary, and the results are sensitive to the decision [36].

D. Procedures for Traffic Anomaly Detection Based on S-
BiSVD

This work proposes a method based on the S-BiSVD
algorithm to quickly detect anomalies in traffic networks
and reduce the time spent on dimensionality reduction when
processing real-time updated data.

Previous studies on subspace-based methods have con-
cluded that S-BiSVD has high accuracy in anomaly detection
and achieves continuous subspace tracking by monitoring
and updating new data. However, taking the covariance
matrix suffers from low speed.

Unlike the traditional subspace-based methods, the pro-
posed method significantly improves the processing speed
when executing dimensionality reduction. This is because
it exploits the dimensionality reduction results of historical
data and does not need a complex matrix multiplication to
compute the covariance matrix, achieving fast and accurate
dimensionality reduction every time the data is updated.

Some important notations and descriptions that will be
used in this paper are reported in Table II. In this paper, the
rows of the data matrix represent the nodes, and the columns
are the time bins. The proposed methodology for anomaly
detection is as follows:

(1) Select the values of parameter r, k, γ and θ. The size
of a sliding window r is the number of time points contained
in a sliding window. The step size of a sliding window k is
related to how many time points are updated in each step.
The dimension of the principal components γ is decided by
the number of changing traffic flow patterns in the whole
network. The threshold θ represents the upper limit of the
L2 norm of each node, used to tell anomalies and normal
points. The choice of θ is highly subjective, often based
on the performance of normal points and also influenced
by the value of r. Samples that exceed this threshold are
defined as anomalies. When the threshold is set too high,
some anomalous samples may go undetected, increasing false
negatives detections. However, minor local anomalies may be
incorrectly identified as significant when the threshold is too
low, resulting in false positives. In such cases, the accuracy
of S-BiSVD decreases.

(2) Perform S-BiSVD on the original data spanning time
range r after centralizing each column data, and then obtain
the three auxiliary matrices U , Σ and V T . If it is the first
step of the whole process, the bi-orthogonal iteration SVD
algorithm should be used.

(3) Use the decomposed matrices, in which the first
γ dimensions are deleted, to project original data on the
residual subspace and then reconstruct them to the original
space. S-BiSVD can reduce the dimensionality of a row,
column or the whole matrix. Here we operated only the
columns of the matrix, i.e., the time dimension of the dataset.

(4) Calculate the difference between the original and
reconstructed data, and calculate the L2 norm of each row.
If the L2 norm of a point exceeds θ, this point is considered
as a candidate anomalous point.

(5) Repeat steps (2)-(4) to make the window matrix slide
automatically with continuously updated data.
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TABLE II
IMPORTANT NOTATION THAT WILL BE USED IN THIS PAPER

Notation Description
ln A node number where n ∈ N
tn A time point where n ∈ N
L(t) All the data collected until time t where t ∈ tn
k Step size of a sliding window
r Size of a sliding window
Γ Dimension of principal components
θ A threshold to distinguish anomalies and normal points
Lt(t) Data matrix to be processed in a sliding window at time t where t ∈ tn
U(t),Σ(t) and V T (t) Three output auxiliary matrices at time t where t ∈ tn
V

′T (t)r×(r−γ) and V
′
(t)r−γ × r The matrices used for reconstruction and the latter is the transposition of the former

Lt′(t) Data projected on the residual subspace at time t where t ∈ tn
σ(t) L2 norm of difference between Lt(t) and Lt′(t) calculated by row
Xi A data sample
µ Symbolizes the mean of all samples
N Denotes the total number of samples, and the constant
λ A significant impact on the selection of candidate anomalies

The proposed method involves two parameters that have
strong influences on anomaly detection. Indeed, γ determines
the division of the normal and anomalous space, and θ affects
the recognition of candidate anomalous points.

Example of the proposed approach: Next, we demonstrate
the efficiency of the proposed S-BiSVD-based method for
anomaly detection. Suppose matrix L(t) contains all data
until time t. Each row in the matrix represents the traffic
counts of a certain node over time, and each column rep-
resents the traffic counts of different nodes over a specific
period. So, the number of columns in L(t) is increasing
over time. Meanwhile, choosing a longer time interval would
reduce the frequency of anomaly detection, but it might
result in slower notifications when anomalies occur. On the
other hand, opting for a very short interval would lead to
unnecessary wastage of computational resources due to the
limited traffic variations within a short duration.

For example, the L(8) presented in Table III contains 5
nodes and 8 time points, highlighting an anomalous behavior
from t6, since compared with their past counts, the traffic
counts of l2 drop suddenly and that of l3 rapidly increase.
The data describes a scenario: Node l2 has a traffic accident
at t6, resulting in a long-term road closure. Node l3 is around
and close to node l2, and it carries many cars which should
have been on l2 if there were no road closures on l2.

TABLE III
THE CONTENT OF L(8)

t1 t2 t3 t4 t5 t6 t7 t8
l1 0 5 15 5 0 5 15 5
l2 6 11 18 12 5 0 0 0
l3 3 7 14 6 2 17 25 18
l4 0 5 9 4 2 6 11 7
l5 9 12 15 10 7 10 14 11

Step 1: For this example, we have the parameters r =5,
k =1, γ=1 and θ=4.

Step 2: S-BiSVD is used for matrix factorization. Note
that when processing streaming data, each step in the whole
process must depend on the three matrices produced in the
previous step. However, we do not have these matrices as
input in the first step, so we use bi-orthogonal iteration SVD
to generate an initial set of matrices that serve as the S-
BiSVD launcher. Then S-BiSVD can be used in later steps.

Suppose we are at t6 the bi-orthogonal iteration SVD
algorithm has already generated U(5), Σ(5) and V T (5) at
t5. We can easily use these three matrices and the sliding
window data at t6(Lt(6)) as inputs to perform S-BiSVD.
Note that centralization of data is necessary. The output
matrices are shown as U(6), Σ(6) and V T (6).

U(6) =


0.37 0.29 −0.62 0.47 −0.44
0.43 0.75 0.44 −0.23 −0.06
−0.53 0.56 −0.45 −0.18 0.43
0.15 0.06 0.23 0.74 0.62
0.63 −0.21 −0.40 −0.39 0.49


(2)

Σ(6) =


−11.71 1.04 0.22 −0.11 0.09

0 4.94 −0.24 0.23 −0.21
0 0 3.62 −0.65 0.55
0 0 0 −1.27 0.89
0 0 0 0 0.53


(3)

V T (6) =


0.53 0.40 0.49 0.56 0.07
−0.41 −0.03 0.53 0.04 −0.74
0.08 −0.63 0.62 −0.22 0.41
−0.18 −0.55 −0.25 0.78 0
0.71 −0.38 −0.20 −0.17 −0.53


(4)

Step 3: Now we reduce the dimensionality of the original
data Lt(6) by projecting it on the subspace spanned by the
lowest r − γ principal components.

The relationship among the reconstructed data matrix
t′(6), the original data matrix Lt(6), and the matrices U(6),
Σ(6) and V T (6) is presented below. Since r − γ = 4, the
shape of V ′T (6) is 5×4 and V ′T (6) comprises the last 4
columns of V T (6) .

Lt′(6)5×5 = Lt(6)5×5 × V ′T (6)5×4 × V ′(6)4×5 (5)

Step 4: It calculates the difference between the original and
reconstructed data and the L2 norm of each row. δ(6) shows
that the second and third nodes have very high L2 norms,
higher than θ we set before. Thus, the technique correctly
identifies node 2 and node 3 as anomalies at t6.

δ(6) =
∥∥Lt(6)− Lt′(6)

∥∥ =
[
3.57 4.61 6.19 0.84 2.84

]
(6)
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Step 5: Steps (2)-(4) have already completed the anomaly
detection at t6, and this step is mainly to realize the sliding
of the window. At t7, after the new data is updated, the
new sliding window data Lt(7) is produced. With the update
of traffic flow data, steps (2)-(5) are repeated continuously.
Real-time anomaly detection is achieved due to the fast
matrix decomposition of S-BiSVD.

Fig. 1 depicts all detection results of data L(8), where the
dotted line shows the threshold θ. Since the L2 norm of l3 is
higher than θ, we can confirm that an anomaly appears from
t6.
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Fig. 1. The L2 norm of the reconstruction error for each node.

IV. SIMULATION EXPERIMENTS

This section conducts simulation experiments to evaluate
our proposed method. All methods are implemented in
Python3.8 and executed on a server with an Intel Xeon(R)
Platinum 8370 CPU and RTX 3090 24G GPU.

(a) (b) (c)

Fig. 2. The simulated road network of different scales in Shenyang. (a)
Network A with 176 segments. (b) Network B with 1004 segments. (c)
Network C with 9840 segments.

A. Datasets

Based on the map of Shenyang, we constructed three
different scale road networks using SUMO [37], named
Network A, Network B, and Network C. The road network A,
B, and C comprises 176, 1004, and 9840 road segments and
58, 377, and 3980 intersections, respectively, as illustrated
in Fig. 2. The dataset is generated as follows. First, through
video surveillance, we collected traffic data on the arterial
roads of this area. Next, we inferred the OD demands within
the region using TransCAD based on the traffic data. Then,
these OD demands were employed to configure the simulated

road network and further simulate the traffic flows. Finally,
we injected anomalous traffic situations. Specifically, we
randomly cut off a small number of arterial road segments
in some intervals by reducing their traffic capacity to 10%,
which resulted in a sharp traffic drop in these segments and a
rise in their alternatives, as depicted in Fig. 3. The proportion
of anomalous segments in each network is 20%.

The time interval is set to 15 minutes, and we investigate
the performance variation of our method for different sliding
window sizes r.

B. Evaluation Metrics

The effectiveness of S-BiSVD is evaluated based on the
following performance metrics.

(1) Precision, which measures the probability of authentic
anomalies in the samples detected as anomalies.

(2) Recall, which is the probability that the sample anoma-
lies are accurately detected.

(3) F1-score, which is the combination or balance point of
precision and recall. It is often used as a comprehensive per-
formance metric. The performance metrics presented above
are mathematically defined as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − score =
2× Precision × Recall

Precision + Recall
(9)

C. Baseline

Considering their effectiveness and efficiency, S-BiSVD
is challenged against the following baseline methods for
anomaly detection. The rationale for choosing these algo-
rithms as baselines is that they belong to unsupervised
learning categories like S-BiSVD.

(1) PCA [20]: PCA is used similarly to S-BiSVD. We first
use PCA to reduce the dimensionality and then reconstruct
the data. Anomaly detection is performed by calculating the
difference between the original and reconstructed data to
identify samples that are difficult to reconstruct.

(2) I-Forest [38]: It is a fast outlier detection method based
on ensemble, which has linear time complexity and high
accuracy.

(3) LOF [39]: This is a density-based outlier detection
methods.

(4) KMeans [40]: This is a method of discovering sample
outliers through clustering.

(5) SOS [41]: This is an anomaly detection method
that measures the degree of correlation between observation
points and other points.

(6) COF [42]: It is a variant of LOF.
(7) OCSVM [43]: It is anomaly detection algorithm based

on SVM.

D. Impact of Parameter Threshold

Appropriately setting the threshold parameter is impor-
tant for anomaly detection. This works adopt the following
threshold:
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Fig. 3. Traffic flow over time for two segments. (a) segment #7 has an anomaly at interval 2100. (b) segment #8 has an anomaly at interval 5250.
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Fig. 4. The impact of coefficient lamda on performance metrics. (a) Network A. (b) Network B. (c) Network C.

θ = µ+ λ

√∑N
i=1 (Xi − µ)2

N
(10)

where Xi represents a data sample, µ denotes the mean of
all samples, N denotes the total number of samples, and
the coefficient λ has a significant impact on the selection
of candidate anomalies. Any sample with a large component
projected on the anomaly subspace can be considered as an
anomaly. The experimental results are presented in Fig. 4,
where we gradually increased the coefficient λ from 1 to
9. The results indicate that as the coefficient increases, the
precision of S-BiSVD shows an uptrend and the recall rate
downtrend. Considering these indicators, a threshold of 3 is
most suitable for S-BiSVD.

E. Efficiency

We compare the proposed method against PCA, I-Forest,
LOF, KMeans, SOS, COF, and the OCSVM algorithms. We
compare the runing time of S-BiSVD with the baseline,
and the corresponding results are reported in the Table
IV. According to Table IV, S-BiSVD demonstrates superior

TABLE IV
COMPARISON OF EXECUTION TIMES OF THE DIFFERENT METHODS FOR

THREE DATASETS

Network A Network B Network C
S-BiSVD 0.0323 0.1931 78.5621

PCA 0.0969 0.6356 234.6549
I-Forest 0.3913 6.6446 246.2561

LOF 0.2558 5.4518 529.5984
KMeans 0.5864 8.3514 365.2357

SOS 0.5745 8.2398 364.5864
COF 0.2213 5.2521 528.3568

OCSVM 0.5927 8.5102 421.1547

detection efficiency, achieving an average improvement of
3, 30, 40 and 43 times compared to the PCA, I-Forest,
LOF, KMeans, SOS, COF, and the OCSVM, respectively.
When dealing with large-scale networks, the improvement in
efficiency is more significant. The results demonstrate that S-
BiSVD is very efficient in processing large-scale streaming
data.

F. Performance Analysis of Anomaly Detection

This section compares S-BiSVD with the baselines to
evaluate its effectiveness in anomaly detection. The cor-
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Fig. 5. The original traffic data and the traffic data reconstructed by S-BiSVD for #3 and #4 road segment.

responding results are reported in Table V, revealing that
the precision of S-BiSVD is 85.47%, 82.68%, and 79.23%,
respectively, and its performance is comparable to PCA in the
three datasets. Taking Network C as an example, S-BiSVD
outperforms I-Forest, LOF, KMeans, SOS, COF, and the
OCSVM. Compared with recall, S-BiSVD is the best, afford-
ing 89.21%, and its precision of 79.23% is the best among
all methods. Regarding the F1-score, S-BiSVD outperforms
all competitor approaches significantly. Fig. 5 compares the
original traffic data with the traffic data reconstructed by
S-BiSVD for two representative segments. For an anomaly,
there is a large deviation between the original value and its
reconstructed value.

TABLE V
RESULTS OF COMPARATIVE EXPERIMENTS

S-BiSVD PCA I-Forest LOF

Network A
Precision(%) 85.47 86.34 71.96 75.15
Recall(%) 93.25 94.12 81.64 84.34
F1-score(%) 89.19 90.06 76.49 79.48

Network B
Precision(%) 82.68 82.70 64.16 63.82
Recall(%) 90.88 90.92 75.18 91.33
F1-score(%) 86.59 86.62 69.23 75.14

Network C
Precision(%) 79.23 79.46 61.11 60.96
Recall(%) 89.21 90.00 74.18 80.48
F1-score(%) 83.92 84.40 67.01 69.37

KMeans SOS COF OCSVM

Network A
Precision(%) 72.56 71.54 76.00 72.43
Recall(%) 83.95 83.12 84.79 82.12
F1-score(%) 77.84 76.90 80.15 76.97

Network B
Precision(%) 67.10 68.17 63.90 66.70
Recall(%) 80.00 79.34 92.00 79.89
F1-score(%) 72.98 73.33 75.42 72.70

Network C
Precision(%) 60.56 61.24 61.21 61.75
Recall(%) 78.98 78.32 78.36 77.90
F1-score(%) 68.55 68.73 68.73 68.89

Next, to further evaluate the performance of S-BiSVD, we
adjusted the proportion of injected anomalies. Specifically,

we set the proportion of anomalous segments in Network
C to 10%, 20%, and 30%, respectively, to simulate the
uncertainty of the road network.

Fig. 6 depicts the results of anomaly detection using
different methods in datasets with different proportions of
anomalous segments. It can be seen that S-BiSVD and
PCA perform similarly and significantly better than the
other methods. As the proportion of anomalies increases,
the performance of all methods decreases. However, the
decreases of S-BiSVD and PCA are relatively small.

G. Sensitivity Analysis of the Window Size

We tested the effect of different window sizes on S-
BiSVD. Fig. 7 shows the performance of S-BiSVD and its
variants on all datasets. As the window decreases, long time
correlation information is lost, resulting in lower recall and
F1-scores. On the contrary, as the window size increases,
the model takes into account longer temporal correlation
information and ignores local patterns, resulting in a slight
decrease in precision and F1-score. In our experiments, when
the window size is set to 12, F1-score reaches its highest
value.

V. CONCLUSION

This paper proposes an anomaly detection method based
on the sequence bi-iteration SVD algorithm (S-BiSVD), a
streaming algorithm that can quickly learn the subspace of
traffic and be used for real-time anomaly detection. Our
method captures anomalies effectively by processing newly
added data columns instead of operating on the entire data
matrix. We have conducted extensive experimental compar-
isons of our proposed method with the baseline method in
terms of detection speed and accuracy, and the results show
that our method is highly efficient in anomaly detection, and
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also provides a significant improvement over the baseline
method in processing streaming data.

In future work, the proposed method will be applied to
other networks with massive real-time data streams, such as
IP networks and sensor networks.
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