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Abstract—Electroencephalogram (EEG) technology is vital
in art design decisions making and has become a prevalent
research trend. However, With the temporal variability in EEG
signals, there is a problem of low model prediction accuracy.
Therefore, We propose an EEG signal recognition algorithm
called the Time-Slicing and Deep Residual Network (TS-DRN).
First, we present the subjects with the patterns of different
styles of designs to capture their EEG signals. Second, we
employ the time-slicing strategy to process the original signal,
enhancing the number of training samples and reducing the
sample features’ dimensionality. Finally, we use the combined
EEG feature maps as inputs to the deep residual network
to obtain the classification results. Our experimental results
demonstrate that this paper’s EEG signal classification accuracy
is 85.8%, demonstrating our method’s effectiveness for EEG
signal classification.

Index Terms—Design Decisions, EEG, Residual Network,
Time-slicing

I. INTRODUCTION

DESIGN decisions are crucial in determining whether a
product can successfully enter the market [1]. How-

ever, this process is subjective and uncertain since design
decisions are often affected by factors such as the decision-
makers’ academic backgrounds and personal preferences
[2]. Many studies have tried various methods to solve this
problem. For example, Antioco et al. [3] combined data
from interviews, questionnaires, and feedback sessions to
narrow the gap between decisions and actual ideas. Zhang
et al. [4] utilized sales data for forecasting customer product
choices. Ireland and Liu [5] proposed a design framework
to help designers make relatively objective decisions by
analyzing online product reviews. Peng et al. [6] built a green
building design decision-making system based on ontology
and case reasoning technology, which significantly improved
the design quality of green buildings by integrating experts’
experiences and case knowledge. Although the above-related
researches have achieved specific results, they have yet to
reveal the neural mechanisms behind design decisions.
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The electroencephalogram (EEG) [7] results from the
synchronous occurrence of postsynaptic potentials in nu-
merous neurons during brain activity. The study [8] has
shown that users’ preferences for product design schemes
can be reflected in EEG signals. The EEG can collect
different EEG signals when the subject makes different
decisions. Therefore, many studies used EEG to record EEG
signals while subjects were making design decisions[9]. By
analyzing the EEG signals of decision makers during the
design decision-making process, researchers can better un-
derstand the psychological state behind the decision makers
[10]. Additionally, the relative objectivity of EEG signals
can neutralize the subjectivity of the decision-making [11].
Thus, various investigations [12] have sought to quantify
design decisions alongside EEG monitoring during subjects’
decision-making.

In our research, we formulate an art design decision-
making framework and enlist participants based on a prior
relevant investigation [13]. Before starting the experiment,
we explain the experimental process and requirements to
the subjects. Then, we wear subjects with the EEG signal
acquisition equipment. Throughout the experiment, the sys-
tem records each subject’s decision-making results and the
EEG signal data. Later, we preprocess the raw EEG signal to
obtain the cleaner signal as the input to the Time-Slicing and
Deep Residual Network (TS-DRN) model. After extensive
training sessions, our model attains an average accuracy in
classification of 85.8%. The performance of our proposed
model surpasses that of comparable studies. The primary
contributions of this paper include the following:

(1) This paper introduces a design decision-making ap-
proach grounded in EEG signals. The method quantifies
subjective decision-making and enhances the reliability and
researchability. It makes the decision-making results more
scientific and objective.

(2) This paper proposes the TS-DRN model to address the
issues of high feature dimensionality and complex feature
extraction in EEG signals. This model increases the quantity
of training instances while decreasing each sample’s fea-
ture dimensionality. Additionally, it autonomously extracts
data features, eliminating the necessity for manual feature
extraction. The findings indicate an enhancement in our
model’s classification accuracy of EEG signals, resulting in
an average accuracy of 85.8%.

The structure of this paper is outlined as follows: Section II
provides an overview of the existing status of EEG research.
Section III outlines the EEG data collection procedure and
the network structure. Section IV delves into the analysis of
the experimental results. Section V reviews and discusses re-
lated studies. Section VI provides a comprehensive summary
of the paper and explores future directions.
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II. RELATED WORK

In recent years, several research results have been achieved
by applying EEG signals to design decisions. Chew et al.
[14] employed EEG to gauge users’ aesthetic inclinations
towards 3D shapes. Lou et al. [15] introduced the Kano
model, which leveraged real-time EEG signals to analyze
subjects’ mental states. This approach empowers designers to
understand subjects’ needs more accurately and nuancedly.
Lou et al. [16] gathered and examined EEG signals from
subjects during elevator rides to assess different elevator
design schemes. Golnar-Nik et al. [17] captured EEG signals
during subjects’ exposure to advertisements for different cell
phone brands, aiming to forecast consumer decision-making
behavior. Kumar et al. [18] proposed a rating prediction
framework that combines product reviews and EEG data to
predict subjects’ ratings for unknown products. Chang et
al. [19] proposed an extended short-term memory network
model to recognize users’ decision-making EEG signals.
Jiao et al. [20] concluded that EEG signals could serve
as evaluation indicators for design decisions by analyzing
decision-makers’ EEG signals related to car front-end styling
preferences.

In recent years, various methods of categorizing EEG
signals have emerged. Bhardwaj et al. [21] employed support
vector machines (SVMs) and linear discriminant analysis
(LDA) algorithms for the classification of EEG signals.
Zhou et al. [22] employed a multilinear regression ap-
proach to classify EEG signals related to motor intention.
Krishnandhika et al. [23] employed an enhanced neural
network based on radial basis functions as the classifier
to identify patterns in EEG data. Geng et al. [24] utilized
wavelet transform for the extraction of EEG characteris-
tics, which were subsequently fed into diverse classification
models within computational intelligence to discern vary-
ing degrees of dizziness. Chen et al. [25] combined EEG,
electromyography (EMG), and electrocardiography (ECG)
signals to evaluate the severity of stroke patients. Although
machine learning has progressed in classifying EEG signals,
researchers must possess extensive practical experience and
prior knowledge, as manual extraction of EEG characteristics
is required. Deep learning has emerged as a powerful tool
capable of autonomously identifying intricate data features,
and an increasing number of investigations have initiated
the integration of deep learning methodologies into the
classification of EEG signals. Chen et al. [26] employed
graph neural networks (GNN) for the categorization of EEG
signals recorded during simulated driving scenarios. Zhang
et al. [27] introduced a convolutional neural network (CNN)
designed to process multiple perspectives in the context of
EEG signal classification. Tripathi et al. [28] utilized deep
convolutional neural networks (DCNN) in their investigations
of binary emotion classification using the DEAP dataset.
Song et al. [29] transformed collected EEG signals during
motor imagery into two-dimensional video-like images, and
they input them into a convolutional neural network-extreme
learning machine model for classification. Although previous
researches have achieved a series of results, the small size
of the EEG dataset can easily lead to overfitting, thereby
reducing the classification accuracy. This paper incorporates
residual blocks [30] into the CNN architecture to overcome

this challenge. This integration helps alleviate overfitting
issues and enhances the model’s capacity to grasp the unique
features inherent in EEG data effectively, consequently
boosting the accuracy of EEG signal classification.

Despite the advancements brought about by deep learning
in enhancing the accuracy of EEG signal classification, chal-
lenges persist, including constraints related to limited sample
sizes and high-dimensional features [31]. These challenges
are exacerbated by the pronounced temporal variability [32]
inherent in EEG signals. Therefore, many studies [33-43]
have used a sliding window to crop the EEG data. They
sliced samples into smaller pieces to increase the sample
quantity and reduce the dimensionality of data features. The
window sizes employed in various studies were not fixed,
which ranged from 1 second to 60 seconds. However, Candra
et al. [43] discovered that the size of the EEG signal segments
is not necessarily better when smaller. They explored the
effect of different window sizes on the classification of EEG
signals. They found that the accuracy in classifying EEG data
when employing a window size ranging from 3 to 12 seconds
surpassed that of the original samples before segmentation.
Besides, merely cutting the EEG data into smaller segments
does not guarantee that the neural network can effectively
learn and extract the correlation features among individual
slices. Thus, we propose the Time-Slicing strategy for slicing
EEG data samples. Instead of using a variable window size,
we set the window size as a constant between 3-12 seconds.
And then, we adjust the move step size to be smaller than
the window size to ensure that the CNN can extract the
associated features of overlapping parts and find the optimal
time-slicing.

Although CNN has been widely applied in classifying
EEG signals, most studies still employ laborious prepro-
cessing techniques and manual feature extraction for EEG
signals. These methods do not reflect the advantage of CNN
in automatically learning EEG signal features. Therefore,
we present an integrated model, the Time-Slicing and Deep
Residual Networks (TS-DRN), tailored explicitly for art
design decision-making. This model consides the advantage
of deep residual networks for automatically extracting EEG
features. Additionally, it uses the Time-Slicing segmenta-
tion to reduce the temporal feature dimensionality, resulting
in improved classification accuracy for EEG signals. Our
model extracts EEG features. It reduces the dependence of
the model on manually extracted features. Furthermore, it
improves the classification accuracy of EEG signals. Overall,
our model has broad application prospects in EEG signal
classification and plays a vital role in the art design decision
field.

III. METHOD

A. Data collection

1) Collecting equipment: We use brain electrodes to cap-
ture EEG signals. This device is from Beijing Jinfa Technol-
ogy Company. It has 32 electrodes. Its sampling frequency is
256Hz. The collected EEG datas are presented in real-time
on the ErgoLAB’s cloud system for synchronizing human-
machine environments.

2) Subjects: There are 16 subjects in this experiment,
including 9 men and 7 women. Their median age is 22. All
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of them have bachelor’s degrees or above. Each subject takes
approximately 10 minutes to complete the experiment.

3) Experimental materials: The Eight Treasures Printing
Clay is one of the three treasures in Zhangzhou, an ancient
city with a rich history and culture. Also, it is one of the
intangible heritage of China. The experimental materials
of this paper are the packaging design schemes of four
kinds of Eight Treasures printing clay, as shown in Fig.
1. The first design scheme, named ”Zhangzhou Daffodil”.
The entire scheme’s primary color palette consists of red
and yellow, complemented by elements of traditional Minnan
architecture, daffodil flowers, and Minnan floral tiles. Its
made of degradable material, aligning with the principles
of sustainable development. The second design option is
called ”Ethnic Minorities”. It uses elements of the She ethnic
minority, which is the most distributed in southern Fujian, as
the main element of the design. The handbag is designed with
ethnic images, and the box uses the surname Lan, one of the
four surnames of the She ethnic group, to form a connec-
tion with the handbag. The entire plan fully demonstrates
the characteristics of the She culture and also reflects the
inclusiveness of multiculturalism. The third design plan is
called ”Minnan Tulou”. It uses the white and dark red as the
main colors, echoing the color of the ink pad. The wooden
window pattern of ancient folk houses in southern Fujian is
the background pattern of the design scheme. The southern
Fujian earth building is its main motifs. The box body uses
a lacquered wood flip cover and a horn hook lock, which
represents the essence and inheritance of traditional Chinese
culture. The entire design scheme shows the unique cultural
charm of southern Fujian, and also reflects the respect and
inheritance of traditional culture. The fourth design scheme
is called ”Chinese Pagoda”. The main elements of its outer
packaging are dragon towers and daffodils. Longwen Pagoda
is a landmark building in Zhangzhou. Narcissus is the city
flower of Zhangzhou and the provincial flower of Fujian,
which means that the eight-treasure ink pad can be as
fragrant as the fragrance of narcissus. The inner packaging
box mainly uses golden yellow as the background color,
supplemented by dragon and phoenix patterns. The golden
color was only used by the royal family in ancient China,
representing the majesty of the royal family, while the dragon
and phoenix patterns represented that the Eight Treasures Ink
Clay was once used by the royal family. Now, the dragon
and phoenix also symbolize the rebirth of the phoenix,
representing the indomitable and strong will of the Chinese
nation. The entire design scheme fully demonstrates the
noble quality and historical and cultural value of Babao ink
pad.

4) Data collection process: Before the experiment, we
ask the subjects to fill out a personal information form and
inform them about the experimental details. Then, we place
electrodes on the subjects’ heads to record their EEG signals
while they decide on four schemes. After completing the
above experimental preparations, we start the experiment.
First, the subjects rest for 60 seconds. Then, the four design
schemes are played on the screen randomly, each lasting
14 seconds with a 3-second interval between each pair of
schemes. Next, the specific rules for making decisions are
displayed on the screen, instructing the subjects to assign
any integer from 0 to 9 (with 9 indicating their favorite)

Fig. 1. Packaging schemes of Eight Treasures printing clay

to each scheme. Finally, the subjects make decisions and
rate them. Based on the scores from high to low, we
label the corresponding EEG signals as 0 to 3. The dataset
we collected is named the ”Art dataset”. The entire data
collection process is illustrated in Fig. 2.

B. TS-DRN model

The overall representation of the TS-DRN model can be
observed in Fig. 3. It consists of three main components: the
EEG data capture, Time-slicing, and deep residual networks.
First, we remove industrial frequency signals from the col-
lected EEG data. Then, we adopt the time-slicing strategy to
segment the collected EEG data. This strategy maintains a
constant size for the sliding window, varying the step size
while keeping its length less than or equal to the window size.
Time slices at different step lengths generate various EEG
signal features. Finally, we input these different features into
our proposed deep residual network to classify them. In the
process of capturing EEG signals, 50 Hz power frequency
noise is introduced due to the interference of power lines,
affecting the quality of the EEG signals. Therefore, we pre-
process the data using a Butterworth filter, which eliminates
the 50 Hz industrial frequency and enhances the signal-to-
noise ratio. Its formula is:

H(u, v) =
1

1 + [ D(u,v)w
D2(u,v)−D2

0
]2n

(1)

where D0 represents the distance between the frequency
point to be blocked and the frequency center, w is the
bandwidth of the Butterworth filter, and n represents the
order of the Butterworth filter.

1) Time-slicing strategy: This work introduces a sample
slicing approach termed the Time-Slicing strategy, illustrated
in Fig. 4. The Time-Slicing strategy sets the time window as
a constant w and the step as a variable s. We make s ≤ w and
divide the data samples into different time sequence slices.
Then, we input these slices to our classifier for classification,
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Fig. 2. EEG data collection process

Fig. 3. TS-DRN model

and we can obtain the optimal time sequence slice with
the highest classification accuracy. Afterward, we select the
optimal time sequence slices as the EEG features and use
them in the subsequent experiments. The strategy uses slices
to solve the problem of the small amount of EEG sample
data. In addition, the step size in the strategy is configured
to be less than the size of the sliding window, ensuring that
adjacent slices exhibit overlapping features. Therefore, our
strategy also resolves the issue of regular sample slicing
methods that overlook the continuity among samples. The
Time-Slicing strategy can divide the original EEG data into
smaller segments for each experimental data sample Xi

based on the given parameter values w and s. The formula
for the Time-Slicing method is as follows:

Oi
t =

{
Xi

1,...t,...,t+w|t = 1, 1 + w, ..., 1 + nw
}

(2)

where n = 1 + (T − s)/w, indicates that the original input
time domain data sequence is cut into n copies.

2) Deep residual network: The classifier in this paper
is a deep residual network based on CNN, as shown in
Fig. 5. The network encompasses six convolutional layers,
two max pooling layers, a flattened layer, and integrates

two fully connected layers. We construct three convolutional
blocks as one residual block where the sum of the first two
convolutional blocks is the input to the third convolutional
block. There are two residual blocks in our network. We use
the properties of Maxout to enhance our model’s expressive
power and fitting ability. Furthermore, we use a central loss
function to strengthen the robustness of the model. Finally,
we use the softmax function as the output function and opti-
mize it using the Adam optimizer. The convolution layer can
extract local features from the input data through convolution
operation. It simplifies the process of EEG feature extraction.
Then, The convolution kernel and the input feature maps
make a convolution operation. Afterwards, we use activation
functions to obtain nonlinear feature factors and increase
the expressive power of the model. The convolution kernel
size of the convolutional layer in this paper is 3×3, and the
stride is 1. The formula for calculating the feature map is as
follows:

OUTlength =
inlength − klength + 2P

stridelength
+ 1 (3)
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Fig. 4. Time-slicing strategy

Fig. 5. Deep residual network

OUTwidth =
inwidth − kwidth + 2P

stridewidth
+ 1 (4)

where OUTlength and OUTwidth are the length and width of
the feature map after convolution of input data, inlength and
inwidth are the longness and wideness of the feature map
input to the convolutional layer, klength and kwidth are the
length and width of the convolutional kernel, P is the number
of edge padding zeros, stridelength and stridewidth are the
horizontal and vertical movement steps of the convolution
kernel.

We employ the maxout function as the activation mech-
anism in the model. It is a relatively common activation
function with high flexibility and generalization ability. In

contrast to conventional activation functions such as the
sigmoid functions, the maxout function has superior adapt-
ability to process diverse data types and intricate model
architectures. The formula for the maxout function is as
follows:

Zij = XT
a W. . . ij + bij ,W ∈ Rd×m×k (5)

Mi(x) = maxZij , j ∈ [1, k] (6)

where Xa is the input data, while the weight coefficients W
has dimensions of (d, m, k), d refers to the number of input
features, m represents the quantity of features in the output
layer, and k denotes the quantity of hidden layers. The bias
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term is defined by bij . zij represents the weight connection
between the i-th input and the j-th output element given the
input x. Mi(x) is the most important feature value that can
be extracted from the i-th element of the input vector in the
process of mapping x to the output vector Mi(x).

We employ the max pooling layer to decrease the pa-
rameter count within the fully connected layer. It conducts
downsampling to diminish the dimensions of the feature
map, effectively removing redundant data and decreasing the
feature dimension. These characters help to speed up the
computation speed. Additionally, for each distinct section
of the input feature grid, the maximum value within that
particular segment is selected as the output. Assume that
the input feature map size is h× w, the pooling window is
kh×kw ,and the step size is sh×sw, then the output feature
map size is ⌊h−kh

sh
⌋+1×⌊w−kw

sw
⌋+1. We consider the input

feature as X, and designate the resulting feature map as Y,
then

Yi,j = maxXx,y, (x, y) ∈ Li,j (7)

where Li,j denotes the pooling window with (i, j) as the
upper left corner.

The Flatten layer transforms multidimensional data into
a singular one-dimensional structure before passing it to
the fully connected layer. Moreover, recognizing the limited
capacity of a single fully-connected layer in addressing
nonlinear problems, we utilize two fully-connected layers to
improve the overall efficacy of the model.

Then, we add a Dropout module to prevent overfitting. It
operates by randomly activating hidden nodes and excluding
them during each training batch, fostering diverse training
networks that are not exclusively dependent on particular
features. Employing such a strategy enhances the model’s
ability to generalize. Besides, the setting of the Dropout
value also affects the experimental results. This paper uses
a Dropout value of 0.5 in convolutional and fully connected
layers.

Dropout is applied in both convolutional and fully con-
nected layers. Unlike dropping out individual element values
in the fully connected layer, the convolutional layer employs
dropout by discarding the entire feature map. Therefore, our
model introduces residual blocks to capture information from
the feature maps that are dropped out by the convolutional
layer. Residual blocks can alleviate the problem of vanishing
gradients. Furthermore, by adjusting the proportion of the
convolutional layer, the residual block can learn more feature
values, thereby improving classification accuracy. In our
model, the outputs of the first and second convolutions are
summed as the input to the third convolution. Likewise,
the fourth and fifth convolutional layers generate combined
outputs and serve as the input to the subsequent sixth
convolutional layer.

The Softmax activation is positioned after the second fully
connected layer in the model. This mechanism can transform
the predicted outcomes using an exponential operation to
ensure positive outputs. Then, it normalizes the results to
present them as probabilities, where the sum of all classifi-
cation probabilities equals 1. The expression of the Softmax
function is as follows:

Softmax =
eZi∑M

m=1 e
Zm

(8)

TABLE I
TS-DRN PARAMETER

Layer Hyper-parameters Output shape
Input - 29×30

Convolution k:(3,3), s(1,1), p:(1,1) 29×30@32
Convolution k:(3,3), s(1,1), p:(1,1) 29×30@32

Concat - 29×30@32
Convolution k:(3,3), s(1,1), p:(1,1) 29×30@64
Max pooling k:(2,2), s(2,2), p:(1,1) 15×15@64
Convolution k:(3,3), s(1,1), p:(1,1) 13×13@64
Convolution k:(3,3), s(1,1), p:(1,1) 13×13@64

Concat - 13×13@64
Convolution k:(3,3), s(1,1), p:(1,1) 13×13@128
Max pooling k:(2,2), s(2,2), p:(1,1) 7×7@128

Flatten - 6272
Fully-connected - 512

where Zi represents the i-th prediction outcome, and m is
the total number of predictions.

To optimize the training process of the model, we add the
Adam function in the last part of the model as the optimizer.
The Adam function dynamically adapts the learning rate
for each parameter throughout the model’s training, enhanc-
ing both convergence speed and the model’s generalization
capability. Simultaneously, the Adam function takes into
account the estimation of both the first-order and second-
order moments of the gradient. It makes the parameter update
of the model smoother and avoids oscillation and instability.
The calculation formula of the Adam function is as follows:

mt = β1mi−1 + (1− β1)gt (9)

vt = β2vi−1 + (1 + β2)g
2
t (10)

m̂i =
mt

1− βt
1

(11)

v̂i =
vt

1− βt
2

(12)

θt = θt−1 − α
m̂t√
v̂t + ε

(13)

where mt and vt denote the gradient first-order and second-
order moment estimates, m̂t and v̂t are the corrected first-
order and second-order moments, and α is the learning rate.
We set α = 10−5, θt is the updated parameter, β1 and
β2 are hyperparameters, and ε serves as a minute constant
implemented to safeguard the denominator from becoming
θ. Table I displays the detailed specifications of the model’s
parameters.

C. Cross-validation

Cross-validation is a widely employed technique for as-
sessing a model’s generalization performance. It can fully use
the samples in the dataset to improve the model performance.
The fundamental concept involves dividing the dataset into
numerous subsets. While one subset serves as the test set,
the rest of the subsets serve as the training set. The iterative
training iteration is conducted multiple times, and the average
is taken as the evaluation metric for the model. K-fold cross-
validation stands out as the prevalent approach in cross-
validation methodologies. K-fold cross-validation partitions
the dataset into K different subsets in a randomized manner.
In each iteration, one subset is designated as the test set,
while the remaining K-1 subsets serve as the training set.

IAENG International Journal of Computer Science

Volume 51, Issue 2, February 2024, Pages 130-142

 
______________________________________________________________________________________ 



We iterate through this procedure K times (Each subset is
used as a test set once and only once.) and compute the
average of the validation results over K iterations as the
model’s performance metric.

IV. RESULTS

A. Evaluation indicator

This article employs metrics such as accuracy, precision,
recall, and F1-score for evaluating performance. Their for-
mulas are as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(14)

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

F1− score =
2× precision× recall

precision+ recall
(17)

where TP represents the count of true positives, TN repre-
sents the count of true negatives, FP represents the count
of false positives, and FN represents the count of false
negatives.

B. Experimental setup

This study implements the model on Windows 10 OS,
IntelCore i7-12700, 2.3GHz CPU, 16GB RAM, and NVIDIA
GeForce RTX 3050 Ti Laptop GPU platform. The program-
ming language is Python, and the deep learning framework
is Tensorflow.

C. Time-Slicing strategy

We perform segmentation due to the elevated dimensional-
ity in the complete EEG signal features during the decision-
making process of subjects. This process aims to mitigate
feature dimensionality while concurrently augmenting the
sample size. Fig. 6 represents the two-dimensional feature
maps formed by slicing the EEG signals during a single
decision-making instance of subject 07. Each input sample
(3480) corresponds to each subject’s EEG signal data col-
lected during a single decision-making instance. After the
slicing operation, this results in the generation of four feature
maps, each with dimensions of 29× 30.

D. Comparing different Time-Slicing method

Different from the previous slicing method, we make the
slicing step size (s) less than or equal to the sliding window
(w). To find the optimal timing slice, we set the window size
as a constant (w = 870) [43], with the step size denoted as
a variable (s). s ≤ w not only allows us to obtain more
slice samples, we can also learn the relevant features of
their overlapping parts. We experiment with the step sizes
of 100, 200, 300, 400, 500, 600, 700, 800, and 870 for
slicing. We input the resulting slices into our classifier and
then analyze the classification outcomes to determine the
most effective sequential slicing approach. When s=w=870,
it is the maximum value of the step size. At this time, the
slices are independent of each other and ensure that the

model extracts all features in the EEG signal. Slicing at
this step size can also be used as a comparison between
previous slicing method and the Time-Slicing strategy of
this article. We employ a 16-fold cross-validation approach,
where each subject’s sequential sample set serves as the
test set in rotation, while the sequential slice sample sets of
the remaining 15 subjects act as the corresponding training
sets. The detailed classification accuracies are presented in
Table II. Based on the information presented in Table II,
we observe that when the sequential s is set to 500, 600,
700, and 800, the classification accuracy is higher than that
with a step size of 870. These results indicate that the Time-
Slicing strategy (s<w) outperforms the previous method
(w=s). Among these step sizes, a step size of 700 achieves the
highest classification accuracy, reaching 85.8%. Furthermore,
when the step sizes are set to 100, 200, 300, and 400, the
classification accuracy is lower than that with a step size
of 870. We speculate this is due to a significant disparity
between the step and window sizes, leading to a high over-
lap between slices. Our model magnifies misclassification
probabilities and correct classification simultaneously during
the classification process, decreasing classification accuracy
overall.

Next, we select representative data (We compare the slice
classification results for Subject 05, Subject 11, Subject 14,
and Subject 15.) and create Fig. 7. It displays the classifica-
tion accuracy of the four subjects under different step sizes,
along with the corresponding training and test loss values.
The bar chart shows that the classification accuracy follows a
distribution closely resembling a normal distribution, with the
highest accuracy achieved at a step size of 700, representing
the optimal time-slicing proposed in this study. The line
chart shows that the test set loss value is slightly higher
than the training set loss value. However, the gap between
them is relatively small, indicating that our model has strong
generalization ability and good fit.

E. Comparison with common classifiers

In our study, we compare various standard classification
models, including Support Vector Machine (SVM), Ran-
dom Forest (RF), Adaptive Boosting (AdaBoost), Recurrent
Neural Network (RNN), and our proposed Time-Slicing
and Deep Residual Network (TS-DRN) model. We utilize
the optimal time-series slices of EEG features acquired in
the preceding sections as inputs for individual classifiers.
The specific classification results are presented in Table III.
Table III shows that RNN and our TS-DRN model exhibit
excellent classification accuracy, significantly outperforming
the other three traditional machine learning classifiers. This
finding indicates that deep learning performs better on our
dataset compared to conventional machine learning meth-
ods, demonstrating superior classification performance. Our
model shows lower classification accuracy compared to RNN
for subject 15, whereas, our model demonstrates superior
overall performance in the realm of classification. To better
represent these results, we select four representative subjects
( Subject 04, Subject 07, Subject 11 and Subject 13.), extract
their classification results, and visualize them in Fig. 8 to
more intuitively present each model’s performance.
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Fig. 6. Visualization of temporal slices of EEG signals during a single design decision in subject 7

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY AT DIFFERENT TIME SERIES SLICES

Subject 100 200 300 400 500 600 700 800 870
S01 0.536 0.765 0.642 0.778 0.721 0.782 0.854 0.792 0.771
S02 0.742 0.654 0.721 0.772 0.778 0.791 0.831 0.781 0.763
S03 0.562 0.533 0.579 0.645 0.741 0.736 0.874 0.724 0.736
S04 0.681 0.742 0.755 0.818 0.759 0.837 0.865 0.773 0.685
S05 0.678 0.697 0.664 0.715 0.723 0.731 0.902 0.741 0.739
S06 0.665 0.546 0.603 0.736 0.729 0.796 0.838 0.790 0.785
S07 0.542 0.681 0.723 0.787 0.775 0.822 0.845 0.795 0.772
S08 0.746 0.749 0.763 0.723 0.745 0.769 0.824 0.764 0.776
S09 0.597 0.643 0.678 0.732 0.765 0.786 0.818 0.792 0.784
S10 0.632 0.675 0.669 0.628 0.673 0.718 0.845 0.701 0.681
S11 0.678 0.717 0.794 0.754 0.737 0.797 0.876 0.772 0.748
S12 0.658 0.664 0.632 0.654 0.689 0.794 0.839 0.763 0.682
S13 0.579 0.631 0.763 0.771 0.778 0.789 0.853 0.798 0.742
S14 0.632 0.648 0.658 0.675 0.703 0.712 0.894 0.715 0.721
S15 0.665 0.668 0.678 0.642 0.689 0.732 0.886 0.742 0.737
S16 0.665 0.668 0.678 0.642 0.689 0.732 0.886 0.742 0.737

Average 0.646 0.672 0.692 0.723 0.735 0.769 0.858 0.764 0.725
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Fig. 7. Time-series slices of subject 04, subject 07, subject 11, and subject 13

Fig. 8. Comparison of EEG data of some subjects in TS-DRN with SVM,
Random Forest, AdaBoost and RNN models

F. Ablation experiment

We employ ablation experiments to investigate the func-
tion of residual blocks within the model. The TS-DRN model
contains two residual blocks, and we investigate their effects
on classification accuracy separately. Therefore, we design
three variants of the TS-DRN model, V1,V2,V3. V1 is a
model variant which removed the first residual block of the
TS-DRN model. V2 is anothor model variant which removed

the second residual block of the TS-DRN model. V3 is the
model variant which removed the two residual blocks of the
TS-DRN model. We explore their contribution to the model
by comparing their classification accuracies of EEG signals.
The classification outcomes of the TS-DRN model and its
three variants are depicted in Table IV and visualized in Fig.
9. Fig. 9 illustrates that the TS-DRN model attains the highest
level of classification accuracy. The model with one residual
block (V1 and V2) removed is inferior to our model. The
model without residual blocks (V3) has the lowest classifica-
tion accuracy. Hence, we draw the conclusion that integrating
residual blocks enhances the model’s performance, with the
optimal EEG signal classification achieved when two residual
blocks are incorporated.

G. Comparison of Subjects with Different Educational Back-
ground

We recruit nine undergraduate students and seven graduate
students as our subjects. Since groups of students at different
learning stages have different educational experiences and
knowledge reserves, we speculate that their EEG signal
are different when making decisions. Therefore, we divide
all subjects into undergraduate group and graduate group.
Subsequently, we investigate the distinctions in EEG sig-
nals between the two groups during decision-making by
assessing and contrasting their classification accuracy. We
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TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACY OF TS-DRN AND

THE THREE VARIANTS

subject V1 V2 V3 TS-DRN
S01 0.756 0.765 0.723 0.854
S02 0.775 0.768 0.722 0.831
S03 0.783 0.778 0.715 0.874
S04 0.796 0.749 0.707 0.865
S05 0.727 0.801 0.743 0.902
S06 0.755 0.772 0.731 0.838
S07 0.768 0.745 0.725 0.845
S08 0.758 0.736 0.716 0.844
S09 0.779 0.784 0.713 0.838
S10 0.764 0.764 0.717 0.845
S11 0.757 0.755 0.720 0.876
S12 0.766 0.771 0.706 0.839
S13 0.772 0.769 0.721 0.853
S14 0.795 0.781 0.738 0.894
S15 0.762 0.769 0.734 0.886
S16 0.743 0.737 0.719 0.837

average 0.766 0.765 0.721 0.858

Fig. 9. Comparison of classification accuracy of TS-DRN and three variants

split the data from both groups into training and testing
datasets, following an 8:2 distribution. Detailed outcomes
of the specific classifications can be found in Table V. The
classification accuracy for undergraduate students is 87.1%,
higher than that of graduate students’ classification accuracy.
This difference in classification accuracy may be attributed
to graduate students receiving more specialized academic
training. Therefore, they exhibit greater cognitive flexibil-
ity regarding brain functionality and may engage in more
comprehensive problem-solving approaches. These elements
potentially lead to more complex brainwave signals, making
the classification task for brainwave recognition algorithms
more challenging.

Next, We plot the classification of EEG data for graduate
students and undergraduate students into confusion matrices,
as shown in Fig. 10. We compute precision, recall, and F1-
score for both groups by analyzing the confusion matrices.
The results for undergraduate students are presented in Table
VI, while the corresponding results for graduate students are
presented in Table VII. Comparing Table VI and Table VII, it
becomes evident that the undergraduate cohort demonstrates
higher precision, recall, and F1-score values. These results
further illustrate that the EEG signals of the graduate student
group are more difficult to identify than the EEG signals of
the undergraduate group.

V. DISCUSSION

In Table VIII, as shown, we compare our approach with
methods from existing literature. The study [27] used a
densely connected convolutional neural network to classify
EEG signals, achieving a maximum classification accuracy
of 75.16%. In the study[44], EEG signals recorded during
game decision-making were collected, and SVM was applied
to classify them based on selected features, achieving a
maximum accuracy of 80%. In the study[45], a model based
on CNN combined with Dempster-Shafer (D-S) was pro-
posed for EEG data classification, achieving a classification
accuracy of 84%. In the study[26], a graph convolutional
neural network was used to identify EEG signals from
drivers during simulated driving, with a maximum binary
classification accuracy of 91.5% and a three-class accu-
racy of 75.26%. However, our model performs a four-class

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY OF SVM, RF, ADABOOST, RNN AND TS-DRN

Subject SVM RF AdaBoost RNN TS-DRN
S01 0.702 0.765 0.609 0.828 0.854
S02 0.783 0.840 0.711 0.719 0.831
S03 0.788 0.789 0.648 0.831 0.874
S04 0.750 0.834 0.591 0.753 0.865
S05 0.729 0.765 0.714 0.871 0.902
S06 0.732 0.789 0.696 0.841 0.838
S07 0.711 0.753 0.720 0.832 0.845
S08 0.741 0.852 0.699 0.782 0.844
S09 0.732 0.822 0.729 0.808 0.838
S10 0.810 0.777 0.642 0.795 0.845
S11 0.763 0.798 0.752 0.867 0.876
S12 0.777 0.807 0.639 0.721 0.839
S13 0.802 0.822 0.744 0.793 0.853
S14 0.783 0.816 0.736 0.848 0.894
S15 0.682 0.755 0.723 0.867 0.886
S16 0.782 0.804 0.780 0.853 0.837

Average 0.754 0.799 0.696 0.813 0.858
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Fig. 10. Graduate and undergraduate students’ confusion matrix. Fig. (a) shows the confusion matrix for seven undergraduate students,Fig. (b) shows
the confusion matrix for nine graduate students

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN

UNDERGRADUATE AND GRADUATE STUDENTS

educational background accuracy
undergraduate 0.871
post graduate 0.832

TABLE VI
PRECISION, RECALL AND F1-SCORE FOR FOUR DECISIONS IN

UNDERGRADUATE POPULATIONS

Evaluation metric 0 1 2 3
precision 0.875 0.874 0.857 0.889

recall 0.860 0.870 0.865 0.861
F1-score 0.868 0.872 0.861 0.875

classification on EEG signals, and outperforms the three-
class model in classification performance. In the study[1],
researchers collected subjects’ eye-tracking and EEG signals
and then used a maximum strategy to classify fused features,
achieving a maximum classification accuracy of 92.45%.
However, if they only used EEG features for classification,
the accuracy was 75.23%.

Based on the above analysis, considering the four classi-
fication results based on EEG signals, our approach demon-
strates greater practicality and feasibility.

TABLE VII
PRECISION, RECALL AND F1-SCORE FOR FOUR DECISIONS IN

GRADUATE POPULATIONS

Evaluation metric 0 1 2 3
precision 0.828 0.798 0.843 0.845

recall 0.828 0.847 0.824 0.815
F1-score 0.828 0.822 0.833 0.830

TABLE VIII
COMPARISON OF EEG SIGNAL CLASSIFICATION ALGORITHMS

Study method accuracy
Zhang et al.[27] SVM 80%

Bo et al.[44] PSD 92.45%
Zhang et al.[45] CNN 75.16%
Chen et al.[26] ETNN 84%
Wang et al.[1] GNN 91.86%

ours TS-DRN 85.8%

Furthermore, compared to other classification methods,
although the TS-DRN model shows certain advantages in
classifying EEG signals, it also has some limitations. These
deficiencies may be because our approach solely relies on the
temporal features of EEG signals for classification, resulting
in a slightly lower classification performance than the mul-
timodal fusion methods in the existing literature. Therefore,
in the future, we will extract features from multiple domains
as inputs to our model to enhance the model’s classification
accuracy further.

VI. CONCLUSION

This paper introduces the TS-DRN (the Time-Slicing and
Deep Residual Network) recognition model for classifying
EEG datas related to art design decisions. We propose a
Time-slicing strategy to extract EEG features which are fed
into our deep residual network. We experiment with different
time-slicing step sizes to find the optimal time-slicing for
achieving the best classification results. Our model attains
an average accuracy rate of 85.8% when classifying EEG
signals, surpassing the performance of typical classification
models. However, this study also has certain limitations.
In the next steps of our research, we plan to address the
following areas: (1) We will analyze both frequency-domain
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and spatial-domain features from our dataset to obtain a more
comprehensive set of EEG characteristics. (2) We will further
optimize our network architecture, fine-tune relevant param-
eters, and explore integrating other deep learning methods,
such as GCN, to enhance classification accuracy further.
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