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Abstract—This paper introduces a novel particle swarm
optimization algorithm called Mean Prediction Particle Swarm
Optimization (MPSO). In MPSO, a potential position is pre-
dicted firstly by using the mean value of the population, and
then the new movement equation is derived from the difference
between the current position and the potential position. In
addition, to improve the accuracy of MPSO, a chaos-based
local search strategy is adopted. To evaluate the effectiveness
of MPSO, we conducted experiments on various benchmark
functions and compared its performance with some other
existing PSO algorithms. The experimental results demonstrate
that MPSO not only achieves better convergence performance
but also exhibits higher accuracy.

Index Terms—Particle swarm optimization; Optimization;
Swarm intelligence; Mean-based prediction

I. INTRODUCTION

S IMILAR to other swarm intelligence algorithms [1],
particle swarm optimization (PSO) was presented in

1995 [2] based on the collective behavior of birds and
fish. Since then, it has become a powerful optimization
algorithm that finds extensive applications in many fields,
including engineering problems [3-5], wireless networks [6],
cloud computing [7], image processing [8], and medical care
problems [9], and so on.

PSO is an algorithm that guides a population of particles
through a search space to find the optimal solution. Each
particle adjusts its position based on its own experience and
that of its neighbors. Although PSO has made significant
progress since it was introduced, it still has some limitations.
One major drawback is it converges too early to a suboptimal
solution, failing to identify the global optimum. To overcome
this limitation, researchers have proposed various improve-
ment measures to enhance the performance of PSO.

For example, Wang et al. proposed a hierarchical particle
swarm optimization based on the mean value (mHPSO) [10].
Chen et al. aimed to enhance the search ability of PSO by
using two different crossover operations to breed promising
exemplars that guide the particles [11]. Wang and Song
introduced an improved PSO (CNPSO) based on two new
formulas [12]. Additionally, some scholars have suggested
using neighborhood topologies to enhance the exploration
and exploitation abilities of PSO.
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In this paper, we propose a novel particle swarm algorithm
MPSO. The main idea behind MPSO is to utilize the mean
method to predict the optimal solution’s location for the next
population. This prediction is based on the optimal solutions
of the population from the past three generations.

Furthermore, we introduce a new movement equation by
taking into account the difference between the predicted
optimal position and the current position. This equation
guides the particles to search for the optimal solution.

To compare the convergence and accuracy of MPSO, it is
compared with several other PSOs based on a set of well-
known test functions.

The structure of the paper is as follows. In Section II,
we provide a brief review of the algorithm PSO. Section
III gives the details of the algorithm MPSO , including
the process of mean prediction and the derivation of the
movement equations. Section IV presents the comparison
results between MPSO and several other PSOs.

II. BASIC PSO ALGORITHM

In PSO, particles move through the search space to find
the optimal solution. Each particle adjusts its position based
on its own experience and the experience of the whole
population.

Assume that the dimension of the search space is D,
and the swarm size is ps. In PSO, the initial population is
generated in the search space in a random manner firstly.
Then, each particle evaluates its fitness value based on the
objective function, and updates its position and velocity
according to the following equations:

vt+1
i = wvti + c1r1(pbesti − xt

i) + c2r2(gbest− xt
i), (1)

xt+1
i = xt

i + vt+1
i , (2)

where vti and xt
i represent the velocity and position of particle

i at time t, respectively; pbesti is the historical optimal po-
sition of particle i, and gbest is the current optimal position
of the entire population. c1, c2, and w are the acceleration
coefficients, and r1 and r2 are random numbers between 0
and 1. In this paper, ω adopts a nonlinear decreased way,
which is defined as the following formula:

ω = ωmin + (ωmax − ωmin)e
−0.6t (3)

where the parameters ωmin and ωmax denote the minimum
and maximum inertia weight, respectively.

To provide a clear illustration of the iterative process of
PSO, the pseudo-code and the flowchart of PSO are given in
Algorithm 1 and Fig. 1, respectively.
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Algorithm 1: Pseudo-code of PSO
01:Initialize the population size ps, the maximum number of iterations ItMax, c1

and c2. For each particle i, initialize the position xi, and velocity vi; the minimum
inertia weight ωmin and the maximum inertia weight ωmax; the minimum velocity
vmin and the maximum velocity vmax.

02: Set pbesti = xi(i = 1, · · · , ps) and find gbest, the iteration counter it = 1.
03: While it < ItMax do
04: For i = 1 to ps do
05: By (1) and (2), update the velocity and the position of each particle.
06: If f(xi) < f(pbesti)
07: pbesti = xi;
08: End if
09: If f(xi) < f(gbest)
10: set gbest = xi,
11: End if
12: End for
13: it = it + 1
14: By (3), update the inertia weight ω.
15: End while
16: Output the final result.

N 
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While  

By (1) and (2), update the velocity 

and position for each particle  

Update   and  

= + 1 

End 

Fig. 1 Flowchart of PSO

The flowchart illustrates the iterative process of PSO,
where the population of particles is updated until the ter-
mination condition is met.

III. IMPROVED PSO BASED ON MEAN PREDICTION
(MPSO)

Although the basic PSO has been proven to be effective in
solving various problems, it does have some limitations that
can hinder its performance. One of the major shortcomings
is that it fails to fully utilize the information contained in the
population, and leads to slow convergence speed.

The aim of MPSO is to improve PSO by integrating the
collective experience of the previous population into the
movement equation for each particle. This integration can
guide each particle to search the promising regions.

A. Mean-based prediction method

The mean prediction method is a simple technique used
in data analysis and prediction, which aims to estimate or
predict future values by utilizing the mean value of different
iterations. The process of mean prediction can be described
as follows.

Let gbest(t − 2), gbest(t − 1), gbest(t) be the current
optimal positions of the whole population at times t − 2,
t− 1, and t, respectively. Define ĝ as follows:

ĝ =
1

3
(gbest(t− 2) + gbest(t− 1) + gbest(t)), (4)

which is a prediction value of the global optimal value at
iteration t+ 1.

Based on ĝ, we construct a new movement equation as
follows:

vt+1
i = wvti+c1r1(pbesti−xt

i)+c2r2(gbest−xt
i)+c3r3(ĝ−xt

i),
(5)

xt+1
i = xt

i + vt+1
i . (6)

To reduce computational time, MPSO uses the mean-based
prediction method only after a certain number of iterations.

Algorithm 2: Pseudo-code of MPSO
01:Initialize the population size ps, the maximum number of iterations ItMax, c1

and c2. For each particle i, initialize the position xi, and velocity vi; the minimum
inertia weight ωmin and the maximum inertia weight ωmax; the minimum velocity
vmin and the maximum velocity vmax; the number K of chaos search near gbest.

02: Set pbesti = xi(i = 1, · · · , ps) and find gbest, the iteration counter it = 1.
03: While it < ItMax do
04: If mod(it, 200) == 0
05: For i = 1 to ps do
06: By (4)-(6), update the velocity and the position of each particle.
07: If f(xi) < f(pbesti)
08: pbesti = xi;
09: End if
10: If f(xi) < f(gbest)
11: set gbest = xi,
12: End if
13: End for
14:Else 15: For i = 1 to ps do
16: By (1)-(2), update the velocity and the position of each particle.
17: If f(xi) < f(pbesti)
18: pbesti = xi;
19: End if
20: If f(xi) < f(gbest)
21: set gbest = xi,
22: End if
23: End for
24: End if
25: By (7)-(9), generate K candidate solutions, and update gbest by the greedy rule.
26: By (3), update the inertia weight ω.
27: it = it + 1
28: End while
29: Output the final result.

B. Chaos-based local search strategy

Generally speaking, the current optimal solution represents
a location with significant potential, so strengthening the
search around it can improve the accuracy of the solution.
Additionally, to avoid premature convergence, the algorithm
should be able to escape from local optima. To achieve
these goals, MPSO incorporates K iterations of a chaos-
based local search mechanism at the current best solution.
The specific process is given as follows:

ch(1) = rand,

ch(k + 1) = α
4 × sin(π × ch(k − 1)),

(7)
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Fig. 2 Flowchart of MPSO

where ch(k) is the kth chaotic number, K is the iteration
counter, and it is set to 5 in this paper. In addition, α is set to
4, which means the chaotic search is in a complete chaotic
state.

Mapping the above chaotic numbers to the search space
as follows:

Ch(k) = l + ch(k)× (u− l). (8)

where l and u represent the lower and upper bounds of
variables, respectively.

Then, a local search is carried out near the current best
individual to improve the precision:

g′best = (1− ξ)× gbest + ξ × Ch(k), (9)

where ξ = ItMax−t+1
ItMax . The pseudo-code of MPSO is given

in Algorithm 2.
The flowchart of MPSO algorithm is given in Fig. 2:

IV. NUMERICAL EXPERIMENTS

To verify the performance of MPSO, it is compared
with and four PSO variants: PSO [2], GPSO [11], HFPSO
[13], and CSPSO [14] on 17 benchmark functions. The
experiments are executed on a computer with an Intel (R)
Core (TM) i7-6500U CPU @ 2.50 GHz, 16 GB memory,
Windows 10 system, and the experiments are written in
Matlab 2017a.

A. Benchmark functions

Table I shows the 17 benchmark functions. In Table I, D,
range and optimal value are used to represent dimensions,
bounds of the search space and global minimum values of
these functions, respectively. Among these benchmark func-
tions, f1-f10 are unimodal functions, f11-f15 are multimodal
functions, f16-f17 are two shifted functions.

For fair comparison, each algorithm runs independently
30 times on each function, and the population size is set
to 50. The maximum number of iterations is set to 3000,
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Fig. 3 The convergence curves of different algorithms
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TABLE I: Benchmark test functions

Functions Range D Optimal value

f1 =
D∑

i=1

x2
i [-100,100] 30 0

f2 =
D∑

i=1

| xi | +
D∏

i=1

| xi | [-10,10] 30 0

f3 =
D∑

i=1

(
i∑

j=1

xj)
2 [-100,100] 0 0

f4 =
D∑

i=1
ix2

i [-10,10] 30 0

f5 =
D∑

i=1
ix4

i [-1.28,1.28] 30 0

f6 =
D∑

i=1

| xi |(i+1) [-1,1] 30 0

f7 =
D∑

i=1

(106)
i−1
D−1 x2

i [-100,100] 30 0

f8 =
D∑

i=1

(⌊xi + 0.5⌋)2 [-1.28,1.28] 30 0

f9 =
D∑

i=1

ix4
i + random[0, 1) [-1.28,1.28] 30 0

f10 = max{|xi|, 1 ≤ i ≤ n} [-100,100] 30 0

f11 = 1
D

D∑
i=1

(x4
i − 16x2

i + 5xi) [-5,5] 30 -78.332

f12 =
D∑

i=1

|xisin(xi) + 0.1xi| [-10,10] 30 0

f13 =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10) [-5.12,5.12] 30 0

f14 = −20 exp(−0.2

√
D∑

i=1

x2
i /D) − exp( 1

D

D∑
i=1

cos(2πxi)) + 20 + e [-32,32] 30 0

f15 = 0.5 +

sin(

√√√√ D∑
i=1

x2
i
)2−0.5)

(1+0.001
D∑

i=1
x2
i
)2

[-100,100] 30 0

f16 = −20 exp(−0.2

√
D∑

i=1
z2
i /D) − exp(

D∑
i=1

cos(2πzi/D) + 20 + e, z = Mx [-32,32] 30 0

f17 =
D∑

i=1
(1000z1)

2 +
D∑

i=2
z2
i , z = Mx [-100,100] 30 0

TABLE II: The comparison results for different algorithms

Functions PSO GPSO HFPSO CSPSO MPSO

Min Mean SD Min Mean SD Min Mean SD Min Mean SD Min Mean SD

f1 8.93e-01 2.27e+00 1.24e+00 7.11e-174 7.11e-174 0 1.11e-16 4.42e-16 3.89e-16 8.56e-96 2.28e-95 1.38e-95 0 3.95e-302 0

f2 9.88e-01 2.15e+00 1.03e+00 1.09e-121 1.09e-121 0 3.63e-12 8.79e-12 4.24e-12 3.81e-84 9.54e-84 7.19e-84 2.78e-213 4.37e-190 0

f3 4.27e+00 1.59e+01 7.02e+00 9.48e-83 9.48e-03 0 1.29e-06 8.61e-06 6.56e-06 2.24e-19 4.09e-18 4.60e-18 0 5.02e-291 0

f4 1.07e+00 2.39e+00 1.17e+00 0 0 0 6.59e-22 6.55e-21 4.64e-21 6.83e-165 2.30e-164 0 0 0 0

f5 6.99e-05 9.85e-04 9.34e-04 0 0 0 1.52e-41 5.74e-39 7.52e-39 0 0 0 0 0 0

f6 3.74e-10 2.85e-07 7.12e-07 0 0 0 3.04e-39 2.45e-36 6.77e-36 0 0 0 0 0 0

f7 5.48e+02 3.91e+04 3.18e+04 0 0 0 3.71e-16 5.78e+03 1.36e+04 1.86e-158 2.21e-157 3.25e-157 0 0 0

f8 1.00e+00 2.90e+00 1.72e+00 0 0 0 0 0 0 0 0 0 0 0 0

f9 2.47e-02 1.20e-01 7.01e-02 1.73e-02 1.73e-02 0 1.04e-03 2.42e-03 1.21e-03 1.09e-03 2.17e-03 7.86e-04 1.65e-05 1.88e-04 1.58e-04

f10 1.50e+00 2.50e+00 9.89e-01 6.84e-21 6.84e-21 0 2.52e-05 3.56e-04 3.81e-04 3.44e-11 1.30e-09 1.37e-09 3.32e-201 2.86e-184 0

f11 -70.64 -67.27 2.20e+00 -78.33 -78.33 0 -68.90 -67.49 1.42e+00 -78.33 -78.33 1.49e-14 -78.33 -78.33 2.59e-08

f12 1.65e-01 2.23e+00 2.15e+00 8.32e-16 8.32e-16 0 2.63e-12 3.99e-10 9.88e-10 1.28e-88 5.66e-16 5.39e-16 2.66e-215 4.11e-05 1.30e-04

f13 3.12e+01 4.37e+01 1.16e+01 0 0 0 2.68e+01 4.01e+01 1.51e+01 0 0 0 0 0 0

f14 2.69e+01 4.23e+01 1.09e+01 6.21e-15 6.21e-15 0 4.62e-12 9.39e-12 3.73e-12 6.21e-15 8.70e-15 3.37e-15 -8.88e-16 -8.88e-16 0

f15 2.73e-01 3.68e-01 5.50e-02 1.27e-01 1.27e-01 0 7.82e-02 9.28e-02 2.36e-02 7.82e-02 1.38e-01 3.96e-02 0 2.92e-03 4.69e-03

f16 2.50e+00 4.79e+00 1.51e+00 1.33e-14 1.33e-14 0 5.41e-11 1.25e-10 5.32e-11 9.41e-15 8.70e-15 3.37e-15 -8.88e-16 -8.88e-16 0

f17 1.37e+00 4.54e+00 2.14e+00 2.96e-323 2.96e-323 0 2.16e-17 8.35e-17 3.91e-17 9.87e-161 4.47e-159 6.92e-159 0 0 0
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which is also used as the termination condition. The other
parameters are used as the comparison algorithms suggested.
The comparison results are summarized in Table II.

B. Comparison results

Table II clearly demonstrates that MPSO outperforms the
other four PSOs on almost all 17 benchmark functions. With
the exception of f3-f7 and f12, MPSO consistently achieves
higher accuracy compared to the other algorithms.

In the case of f3 and f6, both MPSO and GPSO exhibit
the same level of precision. Similarly, for f4-f5, MPSO,
GPSO, and CSPSO demonstrate identical precision. For f7,
MPSO, GPSO, HFPSO, and CSPSO exhibit the same level
of precision. Finally, for f12, MPSO, GPSO, and CSPSO
achieve the same precision.

To intuitively compare the convergence rate of MPSO and
the other four PSOs, the convergence curves (benchmark
functions f1-f16) of these algorithms are shown in Fig. 3.
From Fig. 3, it is easy to see that MPSO can find a better
solution when the algorithm terminates. For these functions,
MPSO converges to the optimal solution at a faster speed.
This implies that the mean prediction mechanism is effective.

V. CONCLUSION

In this paper, to provide a more favorable direction, we
introduced empirical knowledge into PSO algorithm, which
help the particles find the candidates with high quality. Nu-
merical experiments showed the mechanism is very useful.
In the next step, this method will be used to solve some
practical problems.
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