
 

  

Abstract—Sleep apnea is not easy to diagnose. 

Electrocardiography (ECG) signals are broadly used to 

identify and analyze different types of sleep disorders. For 

detection of sleep apnea, the multi-feature analysis is an 

encouraging means to assist recognize the characteristic non-

overlapping apnea and non-apnea events. This study consists of 

the following steps: 1) segmenting non-overlapping apnea and 

non-apnea events, (2) investigating beat by beat of ECG signal 

to identify and calculate RR interval, (3) feature extraction to 

deeply based time, frequency, and non-linear analysis 

approach, and (4) classifying apnea and non-apnea using the 

various kernel of support vector. To address this issue, we 

created an optimal SVM model classifier to investigate the 

utility of patterns in predicting apnea and non-apnea 

occurrences. Our system with RBF kernel function of SVM is 

achieved to have an area under the curve (AUC), the 

classification accuracy (CA), F1 score, precision, the recall of 

0.836, 0.851, 0.85, 0.86, 0.851 respectively in labelling ECG 

signal into apnea or non-apnea events. 

 
Index Terms—ECG, sleep disorder, sleep apnea, SVM, 

multifeature analysis 

 

I. INTRODUCTION 

leep is a type of human rest. Sleep quality has an 

impact on the freshness and normalcy of human organs. 

The human body will refresh body cells.  Therefore, it is 

important to preserve sleep quality. People are less 

concerned about their health and quality of life because of 

technological advancements and modern lives. In the long 

term, the standard of living, to some extent, will be 

influenced by sleep patterns. Some potential factors can 

disrupt the sleep pattern like lack of sleep, depression, 

snoring disorders, fatigue, wrong sleeping position, 

uncomfortable place, and sleeping environment. Obstructive 

sleep apnea-hypopnea syndrome (OSAHS) is a chronic 

sleeping disorder. OSAHS is distinguished by a respiratory 

system blockage, leading people to wake up frequently 

throughout the night and deteriorating their physical 

condition during the day. These problems can lead to more 
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serious disease in the human heart. The most extreme 

conditions will result in hypertension, stroke, and other  

cardiovascular issues [1]. Someone with short sleep duration 

and poor-quality sleep is strongly associated with weight 

gain compared to those who have enough sleep, For the first 

time, this study provides a systematic review of the 

literature as well as quantitative estimates of the cross-

sectional associations between sleep duration and obesity (or 

measures of obesity) in population-based studies of children 

and adults from around the world. Obesity is associated with 

an increased risk of being a short sleeper, both in childhood 

and in adulthood. A pooled regression analysis in adults also 

suggests that losing one hour of sleep per day is associated 

with an increase in body mass index. It weighs about 1.4 kg 

for a person of about 178 cm height with short sleep 

duration had the potential to be overweight [2]. 

The clinical sleep centre is the site of the study of sleep, 

and the problem is using polysomnography (PSG). PSG is a 

quantitative measure to analyze sleep disorders. Even other 

equipment with the same function will always use PSG as a 

comparison, the gold standard used by the hospital. PSG 

usually consists of several electrodes and more complicated, 

electroencephalography (EEG) electrodes to record 

electrical activity in the brain, two electrodes for 

electrooculography (EOG) to record the movement of the 

eyeball, three electromyography (EMG) which are usually 

attached to the legs to record movement during sleep, 

electrocardiography (ECG) electrodes to record heart 

activity and some sensors to record oxygen saturation [3], 

[4], [5], thoracic and abdominal respiratory and respiratory 

movements [6], [7]. Heart rate variability has been used in 

research on biological cues for the identification of sleep 

problems [8], [9]. These studies focused on extracting sleep 

stages are extracted based on three-band time-frequency 

localized and wavelet filter bank from a single lead EEG 

[10]. This approach is also using 30 seconds of ECG signals 

to get features based on time series decomposition of RR 

into intrinsic mode functions (IMFs) on EEG signals [11]. 

Other studies use a combination of several non-linear 

features, features obtained from the frequency domain and 

phase reconstruction of ECG signals to detect sleep apnea 

[12]. Alternative investigation of Obstructive Sleep Apnea 

(OSA) screening using wavelet bicoherence from snore 

signals [13]. An extraction process based on internal RR 

variations uses the wavelet decomposition process [14]. This 

technique has been used to assess the severity of OSA by 

analyzing the morphology of the pQRSt waves from an 
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ECG signal [15]. Another approach employs time-varying 

autoregressive modeling to account for differences in HRV 

between normal and epileptic patients [16]. Furthermore, the 

characteristics of intrinsic band functions are derived from 

EDR and HRV observations [17]. The combination feature 

set from RR interval, systolic blood pressure and diastolic 

blood pressure from beats of the signal using Laquerre 

expansion approach [18]. 

To get maximum results during the extraction process, an 

examination of the signal's acquisition and preprocessing 

steps is required. However, the analysis should not degrade 

the signal's characteristics or reject valuable clinical 

information. Several studies associated to preprocessing 

ECG signals include sinusoidal modelling to reduce or even 

eliminate disturbing signal parts such as power line 

interference and signal wandering noise [19]. The results of 

the extraction procedure are heavily influenced by signal 

wandering. The action of reducing or eliminating will be 

beneficial as is done with ECG signals using linear 

regression techniques [20]. Another study, reduce noise in 

ECG signals using the low-pass filter FIR method by 

adjusting the window values that vary so that the results are 

more efficient [21]. An alternative strategy using Hilbert 

transform to eliminate baseline wander ECG signals has 

been carried out [22]. Moreover, eliminating at the same 

time unwanted signal and signal to wandering using the 

wavelet transform with a multi adaptive [23].  

Several approaches for diagnosing sleep disorders were 

started several years ago, including employing support 

vector machine (SVM) and other classifiers to classify five 

cases of sleep disorders [10]. Estimated slow wave sleep 

based on the variation of RR interval to identify OSA and 

healthy patients [24]. In another study, the difference 

between normal and apnea is recognized using a bootstrap 

aggregating classifier based on spectral and statistical 

features of the ECG signal [25]. Moreover, another 

approach to detect OSA using SVM [26], [27]. Other 

Classify strategy based on the Unable-Q factor wavelet 

transform to recognize sleep apnea using RUSboosted [4]. 

In recent years, research leading to the uses of deep learning 

to detect OSA has developed rapidly. Advanced deep 

learning research that uses data learning techniques 

automatically to get set features using deep learning as 

alternate method uses six convolution layers using one 

Dimension Convolutional Neural Network [28] without 

specifying set features. One of the last publication uses 

RNN deep learning from ECG derived feature values [29]. 

However, there are some limitations to the studies that have 

been carried out. The ectopic beats, arrhythmic events, 

missing data and noise effects, causes corrupt data along the 

QRS interval. There are inconsistencies in the absolute and 

relative frequency band values. Therefore, the possible loss 

of clinical information is critical. The deviation of potential 

loss may lead to unpredictable results that are not easy to 

interpret. The loss of clinical information causes difficulties 

and inaccuracies in the diagnosis of signal patterns in 

individuals with sleep disorders. To distinguish between 

apnea and non-apnea signaling patterns, a tool is therefore 

required for a more in-depth investigation of ECG 

morphology, QRS intervals, and periodic patterns of ECG 

signals.  

In this study, to obtain the set features that have 

characteristics that are compatible with the ECG signal 

pattern in sleep disorder patients, we combined five 

approaches obtained from the time domain, frequency 

domain and other non-linear analysis techniques to get the 

best features. These approaches are statistical RR interval 

approach, Poincare plot, FFT spectrum, AR spectrum and 

detrended fluctuation analysis. This combination resulted in 

17 features and those features were then re-processed using 

the relief feature selection method by selecting relevant 

features and contributing to getting classification results 

with high accuracy values. Subsequently, in this research, 

we proposed five important features and used various kernel 

models of SVM to categorize apnea and non-apnea 

segments. 

The objective of this research: (1) Investigation of sleep 

disorder signal from single lead ECG recordings based on 

multi-feature analysis, namely time, frequency and non-

linear approach; (2) Evaluation of feature value based on 

characteristic QRS morphologies to obtain the most 

important and significant feature to predict potential sleep 

disorder; (3) Evaluation of feature selection method to 

reduce complexity and computation time without losing the 

clinical pieces of information; and (4) Applying various 

kernel model of SVM to classify apnea events and non-

apnea events. 

II. DATA DESCRIPTION AND METHODS 

2.1.  ECG-Apnea Recordings 

The Apnea-ECG recordings utilized in the experiment are 

provided by the physionet database [30]. The recordings 

were acquired from single-lead ECG at a sampling rate of 

100Hz and 16-bit resolution. There are 70 recordings with a 

length of 7 – 10 hours and labelled by the clinical expert, 

namely apnea-non-apnea events. The experiment used 

several labels with the index of a01-a20. This study used 

343 non-overlapping recordings for the precision of 

evaluation and classification process. The non-overlapping 

signals have durations of ± 20 minutes. Fig. 1(a) displays 

two non-overlapping segmented signals, namely non-apnea 

events for label a01N and Fig. 1(b) shows two non-

overlapping segmented signals, namely apnea events (±16 

minutes) for label a01A. Each record has been marked as 

apnea and non-apnea events by a clinical expert. In some 

recordings, there may be additional signals such as the 

influence of spO2, oxygen saturation, and respiratory so that 

the recording pattern becomes not easy to process again.  

2.2.  Pre-processing 

ECG-apnea recordings will be divided into groups based 

on need. The segmented data will further improve the 

quality of the recorded signal, as shown in Fig. 2 To reduce 

some of the effects of noise, the signal will be reconstructed 

during pre-processing, such as the effect of noise power 

source, noise medical instrumentations and other influences 

that make the quality of the ECG signal damaged. The 

noise-induced ECG signal imperfection will have a 

substantial impact on the detection of ECG waves. 

Moreover, contaminate ECG signals with noise and other 

signals will interpret very difficultly. The block diagram 

developed in this study is presented in Fig. 3 In the first 

stage, the data was obtained by chopping the signal after it 

had been confirmed by a medical specialist to obtain the 

apnea signal and the non-apnea signal. 
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Fig.1. An example of non-apnea event (a) and apnea event(b) of ECG 

signal segments 

 

The segmentation was performed without overlapping to 

guarantee that no interference could disrupt the feature 

extraction process. The second stage involved obtaining 

features that matched the ECG signal pattern of patients 

with sleep problems. These features were derived using a 

variety of methods, one of which was analyzing the 

statistical value of the adjacent R wave intervals or 

commonly known as calculating heart rate variability. With 

this approach, several features can be obtained, including 

RRmean, RRstd, heart rate std, triangular interpolation of 

RR intervals and root mean square of the successive 

differences. These parameters can then be used to determine 

whether there are differences in the mean and standard 

deviation across apnea and non-apnea patients. Those 

difference will then be utilized to determine which features 

are significant and useful for increasing classification 

accuracy.  

The following step involved further reducing the 

generated features to shorten the computation time and 

reduce feature complexity caused by the components that 

did not relate to the sleep disturbance signal pattern. In the 

final step, the collection of features was divided into two 

groups: those whose characteristics resembled the signal 

pattern for apnea and those of other groups, which 

resembled the signal pattern for non-apnea. Most of the 

ECG recordings from dataset have been intensively pre-

processed with some approaches to eliminate noise. The 

recordings of ECG with label a16N have robust heart rate 

variability. There is a small spike that could reduce the heart 

rate minute by minute and therefore, the RR intervals will 

change while comparing successive values of beats. The 

ECG signal to be retrieved must be flawlessly pre-processed 

and free of signal deterioration or noise interference. 

 
Fig. 2.  Original of ECG event with noise and de-noising and baseline 

wander removing 

 

If not done appropriately, this could result in a signal loss of 

clinical information. The loss means that clinical experts 

will have trouble diagnosing. Because of incorrect medical 

treatment, an incomplete diagnosis will do the patient harm. 

ECG signal segment discloses differences between two non-

overlapping signals. Table. II shows the variation of the 

histogram of apnea events and non-apnea events. The 

comparison of the different recordings to find the best 

feature extraction process and the best feature value. The 

comparison of data distribution features based on 

quantitative evaluation reveals that there is a considerable 

difference in the pattern of the ECG signals linked with any 

changes that occur because of periodic failures and 

unanticipated construction. The non-apnea event has a heart 

rate mean of 84 BPM and a standard deviation of 5.2 BPM 

over 1242 beats. Besides, the non-apnea event has a heart 

rate mean of 77 BPM and a standard variation of 8 BPM 

over 1278 beats. 

2.3.  Extraction of ECG features 

This section will detail our feature extraction scheme. 

After segmenting the data, it will be extracted. The method 

of feature extraction is utilized to obtain features that will be 

used to define the many problems associated with sleep 

apnea based on variations in patterns between apnea and 

non-apnea. The recognition of the pattern will further assist 

the clinical expert in diagnosing and determining further 

steps to take preventive action. Based on the experiment   

features tests are categorized into five approaches: (i) 

statistical RR interval features, (ii) Poincare plot features, 

(iii) FFT spectrum, (iv) AR spectrum, and (v) detrended 

fluctuation analysis approach. The following sections define 

the different features, are as follows: The test produces 17 

features including RRmean, RRstd, heart rate std, RMSSD, 

TINN (statistical of HRV parameters), SD1, SD2 (Poincare 

plot parameters), VLF power, LF power, HF power (FFT 

spectrum and AR spectrum parameters), alpha1, residue1, 

alpha2 and residue2 (detrended fluctuation analysis 

parameters). Table I demonstrates the values of the mean 

and standard deviations for apnea and non-apnea, which 

have a lower feature value compared with the feature value 

of apnea (* mark). This difference indicates that these 

features are highly relevant for input on the next process, 

namely the feature selection and the classification processes. 

Furthermore, the comparison shown in Table I between 

groups showed that the decrease in the temporal and spectral
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Fig. 3. A Framework of the Proposed Approach 

 

 

 

component parameters of apnea events resulted differently 

from non-apnea events. For instance, non-apnea events 

show significant difference feature value in RR mean (ms), 
 

TABLE I 

THE FEATURE VALUE FOR APNEA AND NON-APNEA 

 

features 

recordings of 

apnea 

(Mean (±standard 

deviation)) 

recordings of non-

apnea 

(Mean (±standard 

deviation)) 

RR mean (ms) 904(±93) 866(±115)* 

RR std (ms) 92(±48) 65(±41)* 

heart rate 

std(BPM) 7.3(±5.5) 5.4(±2.8)* 

RMSSD(ms) 87(±65) 77(±61)* 

TINN(ms) 263.2(±98.3) 150.2(±62.5)* 

SD1(ms) 61(±46) 55(±43)* 

SD2(ms) 128(±60) 91(±46)* 

VLF power_fft 

spectrum(ms2) 3953(±5532) 1204(±2103)* 

LF power_fft 

spectrum(ms2) 4061(±5076) 2370(±3623)* 

HF power_fft 

spectrum(ms2) 2630(±4334) 2159.8±3887.1)* 

VLF power_ar 

spectrum(ms2) 6789(±7740) 2277(±4466)* 

LF power_ar 

spectrum(ms2) 7135(±7545) 4502(±6909)* 

HF power_ar 

spectrum(ms2) 4225(±6248) 3839(±5909)* 

Alpha1 1.2612(±0.3187) 0.9373(±0.2608)* 

Residue1 

0.0004641 

(±0.0004756) 

0.0005333 

(±0.0006675) 

Alpha2 

0.4615 

(±0.2246) 

0.7060 

(±0.2425) 

 

RR std (ms), Heart rate std (Beats per minute), RMSSD 

(ms), TINN (ms), SD1 (ms), SD2 (ms), VLF power (ms2), 

LF power (ms2), HF power (ms2), VLF power (ms2), LF 

power (ms2) and HF power (ms2), while this difference is 

only observed during some period of short and long duration 

for apnea and non-apnea events. It is well known that the 

behavior of the thirteen features for non-apnea events 

corresponds to the lower feature value than feature value of 

apnea events, and their periodic pattern of ECG signals for 

sleep disorder is strong enough to be noticed by the model 

proposed. Additionally, this behavior is seen in the 

nonlinear analysis parameters as one of the five other 

features that were chosen for the analysis. For apnea events, 

the non-linear parameters exhibit a range of slope value 

alpha1, and alpha2 of 1.2612 and 0.4615, respectively. The 

slope value for non-apnea is 0.9373 and 0.7060 respectively. 

The short-long scaling of the ECG signal is indicated by the 

slope of the line.  The alpha1 is a marker for the short 

duration of the ECG signal based on the local trend of the 

signal. The alpha2 is displayed for the long duration of the 

ECG signal based on the local trend of the signal result. 

Slope value that is more than 0.5 means that the signal has a 

similarity with the original signal with the smallest error 

value.  

 

 
 

CODE SNIPPET. 1. Pseudo code for calculating fractal scaling from RR 

interval 

 

The variabilities result of these nonlinear dynamics methods 

using detrended fluctuation analysis [31] could have the 
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quantitative approach to investigate the irregularity of heart 

rate in the time and frequency of the signal. Here, we 

propose the fluctuation analysis approach is strongly related 

to the value of approximation error and successively 

attained the value of F (n) and the value of the slope alpha 

(α). The procedure is summarized step by step to explore a 

nonlinear approach, which has the following Code Snippet 1 

structure. The Code Snippet. 1 is the pseudo code for the 

process to determine signal slope to demonstrate the DFA 

approach to analyzing self-similarity for short-range ECG-

apnea signal.  

2.4.  Feature Selection 

The classification phase can be applied in all areas of life, 

including its use in the medical field. Moreover, there are 

many algorithms used to perform classification techniques. 

To obtain valid and efficient classification results, 

researchers have even performed a variety of methods such 

as improvement of the preprocessing phase, modification of 

feature extraction scheme and finding the feasible of feature 

selection phases. All processes aim to produce features that 

are dominant and influential during the classification 

process. Further features selected will be used to build a 

model based on five selected features. Also, the selection 

process of this feature will shorten the process of building 

the model and the process of classification. In this study, 

based on feature extraction results, there are 17 features 

derived from 5 feature sets. Further, 17 features are done by 

the ranking process using scoring analysis of variance. This 

scoring method will be constructive to reduce the problem 

of feature space, which is always a constraint in generating 

the classification process. Furthermore, features that have a 

dominant value will be selected to be the main feature that 

will be used later when forming the model for the 

classification process. In Fig. 4, the dominant features of 

scoring features are TINN, SD2, VLF, alpha1, and alpha2. 

 

 
 

Fig. 4.  The result of the scoring method to select five important features 

2.5.  Various Kernel of Support Vector Machine (SVM) 

Classifier 

The concept of the SVM classification method is to 

maximize the hyperplane to get the best point to separate the 

two classes. The best point is obtained by measuring the 

distance between the hyperplane and the closest data from 

each class. Previous studies have used SVM to differentiate 

apnea and non-apnea [32], [33], [34]. In this study, we used 

4 type kernels to test the similarity of two vectors in high 

dimensional space such as SVM with linear kernel, SVM 

with the polynomial kernel, SVM with sigmoid kernel and 

SVM with RBF kernel [34]. In SVM, the goal is to find a 

hyperplane that separates the data with the minimum error. 

The use of different kernels is to get different approaches so 

that the problem can be quickly solved and known according 

to the characteristics of each kernel. The kernel method is 

basically mapping data into a higher dimensional by 

expecting that the data will be more easily separated or more 

structured in that space so that the best hyperline can be 

determined by a clear separation between two classes.  The 

experiment with varying SVM is to ensure getting the best 

hyperline and support vector according to the characteristics 

of the data to be classified. Using the right kernel with the 

right dataset is one of the key elements in the success or 

failure of implementing the kernel in an SVM. 

III. RESULTS AND ANALYSIS 

We explain the details of our experiments, offer the 

results, and discuss their advantages. Fig 4 gives the result 

of the hypothesis. It can be seen that all the features display 

the difference between apnea and non-apnea. The selective 

feature method possesses a good discriminatory capability to 

classify apnea and non-apnea signal segments. The data 

distribution on alpha1 features indicates how often data with 

certain feature values appear in the data. For alpha1, the 

feature value of 0.8205-1.2016 has the number apnea events 

of 47 and non-apnea events of 90. This shows the 

probabilities for apnea events is 0.343 ± 0.079 (mean ± SD) 

and for non-apnea events is 0.657 ± 0.079 (mean ± SD). 

Moreover, for TINN, the feature value < 179.5 has 28 apnea 

events and 138 non-apnea events. It shows the probabilities 

for apnea events is 0.169 ± 0.057 (mean ± SD) and non-

apnea events is 0.831± 0.057 (mean ± SD). Distribution of 

feature value for VLF power is < 179.5 and the number of 

occurrences of apnea events is 124 and non-apnea events is 

177. It shows the probabilities for apnea events is 0.412 ± 

0.056 and non-apnea events is 0.588 ± 0.056. The Alpha 2 

has feature value is 0.42-0.78, and the number of incidences 

of apnea events is 71 and non-apnea events is 95. It shows 

the probabilities for apnea events is 0.428± 0.075 and non-

apnea events is 0.572 ± 0.075. Besides, it presents the 

distribution of feature value for SD2 as < 95.5 and the 

number of incidences of apnea events is 58 and non-apnea 

events is 122. The SD2 feature also shows the value of the 

probabilities for apnea events is 0.341 ± 0.071 and non-

apnea events is 0.659 ± 0.071. Many kernels that can be 

utilized to obtain hyperplanes that match the characteristics 

of datasets have helped the development of SVM in recent 

years. Such kernel functions can make class separation 

better and more structured. The selection of kernel functions 

depends on the desired model. The mapping function with a 

specific limit will not make the dimension space impossible. 

Table III displays various parameter settings for each kernel, 

as well as the available alternatives and recommended 

values for obtaining the most accurate model. The SVM 

kernel parameter values are determined by optimizing the 

training model. A suitable model is less time consuming and 

reduces complexity accuracy of 0.851, while the SVM with 

sigmoid kernel achieved the highest area under the curve 

(AUC) of 0.7250. The RBF kernel's trainable parameters are 

0.001 optimization parameters with an iteration limit of 100. 

As a result, the average performance of the dataset was 

taken into account in the selection of optimal architecture 
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TABLE II 

FEATURE SELECTION BASED ON DISTRIBUTIONS VARIABLE FOR FIVE FEATURES SELECTED 

 
No Variable Feature Frequency Probabilities (mean ± SD) 

1 Alpha1 

 with class ≤ 0.8205 Apnea:10; Non-apnea:64 Apnea:0.220±0.090 

Non-apnea:0.780±0.090 

 with class 0.8205 - 1.2016 Apnea:47; Non-apnea:90 Apnea:0.343±0.079 

Non-apnea:0.657±0.079 

 with class 1.2016 – 1.5828 Apnea:71; Non-apnea:27 Apnea:0.724±0.088 

Non-apnea:0.276±0.088 

 with class ≥ 1.5828  Apnea:24; Non-apnea:2 Apnea:0.343±0.079 

Non-apnea:0.657±0.079 

2 TINN   

 with class ≤ 179.5 Apnea:28; Non-apnea:138 Apnea:0.169±0.057 

Non-apnea:0.831±0.057 

 with class 179.5 – 311.9 Apnea:93; Non-apnea:39 Apnea:0.705±0.078 

Non-apnea:0.295±0.078 

 with class 311.9 – 444.3 Apnea:30; Non-apnea:6 Apnea:0.833±0.122 

Non-apnea:0.167±1.22 

 with class ≥ 444.3 Apnea:9; Non-apnea:0 Apnea:- 

Non-apnea:- 

3 Alpha2 

 with class ≤ 0.42 Apnea:76; Non-apnea:21 Apnea:0.784±0.082 

Non-apnea:0.216±0.082 

 with class 0.42– 0.78 Apnea:71; Non-apnea:95 Apnea:0.428±0.075 

Non-apnea:0.572±0.075 

 with class 0.78 – 1.14 Apnea:12; Non-apnea:57 Apnea:0.174±0.089 

Non-apnea:0.826±0.089 

 with class ≥ 1.14 Apnea:1; Non-apnea:10 Apnea: 0.091±0.170 

Non-apnea: 0.909±0.1770 

4 VLF_power 

 with class ≤ 8783 Apnea:124; Non-apnea:177 Apnea:0.412±0.056 

Non-apnea:0.588±0.056 

 with class 8783 – 17522  Apnea:20; Non-apnea:2 Apnea:0.909±0.120 

Non-apnea:0.091±0.120 

 with class 17522 – 26261 Apnea:8; Non-apnea:2 Apnea:0.800±0.248 

Non-apnea:0.200±0.248 

 with class ≥ 26261 Apnea:8; Non-apnea:2 Apnea:0.800±0.248 

Non-apnea:0.200±0.248 

5 SD2 

 with class ≤ 95.5 Apnea:58; Non-apnea:112 Apnea:0.341±0.071 

Non-apnea:0.659±0.071 

 with class 95.5 – 167  Apnea:63; Non-apnea:57 Apnea:0.525±0.089 

Non-apnea:0.475±0.089 

 with class 167 – 238.5 Apnea:26; Non-apnea:13 Apnea:0.667±0.148 

Non-apnea:0.333±0.148 

 with class ≥ 238.5 Apnea:13; Non-apnea:1 Apnea:0.929±0.135 

Non-apnea:0.071±0.135 

 

for the SVM model. Table IV shows the specifics of 

classification performance obtained using various SVM 

kernels. The performance of the SVM classifier was 

evaluated using four metrics: area under the curve (AUC), 

classification accuracy (CA), F1, Precision, and Recall. 

According to the classification results, the SVM with RBF 

kernel earned the greatest classification. 
 

TABLE III  

HERE ARE THE PARAMETERS OF VARIOUS SVM KERNELS 

parameters SVM 

linear 

SVM 

polynomial 

SVM rbf SVM 

sigmoid 

Setting cost 1 - - - 

Regression loss 0.1 - - - 

Optimization 

parameters 

(tolerance) 

0.001 0.001 0.001 0.001 

Optimization 

parameters 

(iteration limit) 

100 100 100 100 

Setting g, c, d - g=auto, 

c=0.00, 

d=0.3 

g=auto g=auto, 

c=0.00, 

d=0.3 

 

In this section, an SVM classifies two datasets of different 

classes by finding out the maximum hyperplane margin 

which separates two classes. To map the input space to a 

high dimensional feature space, we can use the mapping 

function or better known as the kernel function. An SVM 

has several kernel functions, including linear, RBF, sigmoid 

and polynomial kernel functions [35]. In this work, we used 

all the kernel functions to detect the non-overlapping ECG 

signal segment using five feature values. 

 
TABLE IV  

PERFORMANCE COMPARISON OF VARIOUS SVM KERNELS FOR 

CLASSIFICATION 

 

kernels The best performance evaluation 

AUC F1 score Precision Recall CA 

SVM rbf 0.836 0.850 0.860 0.851 0.851 

SVM polynomial 0.836 0.782 0.782 0.782 0.782 

SVM linear 0.711 0.782 0.782 0.782 0.782 

SVM sigmoid 0.841 0.770 0.770 0.770 0.770 
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Based on the observed that the SVM that uses the RBF 

kernel has the best classification accuracy among others, It 

is observed that the SVM that uses the RBF kernel has the 

best classification accuracy among others. Based on the 

SVM model with a linear kernel generated, our system can 

predict apnea recordings of 103 records accurately and 

accurately predict non-apnea by 166 records. Predictions 

with the SVM model using a polynomial kernel, its 

performance can predict 50 apnea recordings correctly and 

predict 180 non-apnea records. SVM kernel with RBF 

kernel can accurately predict apnea records as much as 113 

and predict non-apnea recordings precisely as much as 162. 

Other kernel models, namely sigmoid, have the exact 

prediction ability of 116 for apnea recordings and 137 for 

non-apnea recordings. Therefore, to measure using one 

measure of performance, the best is the SVM model with the 

RBF kernel. In addition, the value of accuracy is to compare 

data that are correctly classified as non-apnea and apnea 

with the overall data. 

 
TABLE V  

PERFORMANCE COMPARISON CUMULATIVE STUDY OF PREVIOUS WORK 

CONDUCTED ON THE PHYSIONET APNEA-ECG DATABASE 
 

Authors Feature 

extraction 

technique 

Decision Methods Accuracy 

value(%) 

Gutta et 

al[36] 

Manual or 

handcraft 

feature 
 

OSA HMM 82.33 

Singh et 

al[37] 

automatic 

or 

learned 

feature 
 

OSA DNN 85 

Singh et al 

[38] 

Manual or 

handcraft 

feature 
 

Normal 

and 

apnea 

SVM sensitivity: 

82.45, 

and 

specificity: 

79.72 
 

Li et al [39] Manual or 

handcraft 

feature 
 

OSA decision 

fusion 

method 

85 

Viswabhargav 

et al [40] 

Manual or 

handcraft 

feature 
 

Normal 

and 

apnea 

SVM 

with 

radial 

basis 

function 

(RBF) 

kernel 

78.07 

Pombo et al  

[41] 

Manual or 

handcraft 

feature 

Normal 

and 

apnea 

SVM 61.61 

using 84 

features, 

and 

70.94 

using 20 

features 

Our work Manual or 

handcraft 

feature 

Normal 

and 

apnea 

SVM 

with 

RBF 

85.1 

 

There are several objectives to be achieved in comparing 

several feature extraction and selection techniques from 

several previous studies. The accurate performances of these 

classifiers and our work are presented in Table V. There are 

indeed other techniques that produce high accuracy today, 

namely deep learning. Deep learning performs the feature 

extraction process automatically. One of them uses the 

convolution technique through configuration with various 

approaches, but its use is basically an unknown process 

when extracting features such as a black box. This approach 

makes the process non-transparent so that it is not known 

which features have the dominant role, in which part of the 

process the most plays a role and how much important 

information is lost or useless and still requires very large 

data to create a model that produces optimal results. 

Therefore, the study of manual feature extraction is still 

sufficient to make it continue to grow. These studies also 

provide a variety of approaches such as studies based on the 

number of features, selection methods, number of leads, data 

duration, preprocessing techniques, and data acquisition. 

IV. CONCLUSION 

In this study, we developed a machine learning model that 

uses multi-feature analysis from screening of non-

overlapping single lead ECG. We employ statistical and 

spectral moment to generate 17 different features such as 

statistics of HRV parameters, Poincare plot, FFT spectrum, 

AR spectrum, and detrended fluctuation analysis parameters 

to predict the risk of sleep disorder among patients. In this 

study, besides submitting a feature selection process. The 

experiment is designed to test multiple classification models 

to see which one performs the best. The dominating 

characteristics are then used for classification using SVM 

classifiers with various kernels such as RBF kernel of SVM, 

Linear kernel of SVM, polynomial kernel of SVM, and 

sigmoid kernel of SVM. The suggested method produces the 

best-performing kernel, the RBF kernel of SVM, with an 

AUC of 0.836, classification accuracy (CA) of 0.851, F1 of 

0.85, the precision of 0.86, and recall of 0.851. This method 

demonstrates that multi-feature analysis with feature 

selection can assist a clinical expert in obtaining suspected 

sleep disorder screening, particularly when used for 

individual testing at home. Besides, these approaches can 

provide a more efficient, timeless consuming, and cost-

effective tool to evaluate the performance of sleep study 

investigation.  
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