
 

  

Abstract—Wood surface defect detection poses challenges 

due to the diverse range of defects, making accurate localization 

and identification difficult. In this study, we introduce an 

enhanced approach for detecting flaws on wood surfaces by 

leveraging an augmented version of the YOLOv8s algorithm. 

To improve the focus on problematic target qualities, we 

initially constructed a HAM (hybrid attention module) 

structure within the Backbone. This structure incorporates 

spatial and channel attention techniques, enhancing the ability 

to identify defects. Additionally, we enhance the feature fusion 

capabilities by augmenting the expansion convolution module, 

reducing information loss during the connection with the Neck 

network. This augmentation improves the target receptive field, 

ensuring critical information preservation for effective 

diagnosis of wood surface defects. Furthermore, we introduce 

ghost convolution to enhance feature expression while 

minimizing the number of parameters. This approach optimizes 

the model’s overall performance. Through extensive testing, 

our proposed GH-YOLOv8s model demonstrates accurate 

detection of five distinct types of wood surface defects, including 

defect types such as Live Knot, Dead Knot, Resin, Knot with 

crack, and Crack, achieving a mean average precision (mAP) of 

98.4%. This performance surpasses the original model by 2.0% 

and maintains a high FPS (Frames Per Second) rate of 163.9, 

this means it can achieve efficient object detection in real-time 

scenarios. Moreover, our approach outperforms commonly 

used target detection methods, establishing its superiority in 

wood surface defect detection. 

 
Index Terms—Wood surface defects, HAM, Expansion 

convolution, Ghost convolution 
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I. INTRODUCTION 

He "State of the World's Forests 2022" study emphasized 

the importance of forests and trees, highlighting the 

alarming destruction of over 420 million hectares of forests 

since the 1990s. To address this environmental crisis posed 

by biodiversity and harness sustainable economic benefits, it 

is crucial to implement effective measures for protecting 

forest resources [1]. A key aspect of forest preservation 

involves the prudent utilization of timber resources. Wood 

widely in various industries such as construction and 

furniture production, often exhibits multiple defects during 

its creation and processing, including Knot, Crack, and Resin. 

These defects might result in a decline in the strength of the 

wood's durability and even directly influence its service life 

as well as overall aesthetic appeal. Traditionally, detecting 

such defects on wood surfaces have relied on human visual 

inspection, which is limited in terms of accuracy and 

efficiency. However, with advancements in computer vision 

and image processing technologies, there is a growing 

interest in leveraging digital image processing technology to 

automate the detection of wood surface defects. This 

emerging field has gained significant attention as a research 

hotspot, offering promising avenues for improving the 

detection and assessment of wood imperfections. 

For instance, Reference [2] suggested a technique based on 

feature vector texture feature classification and picture block 

percentile color histogram to identify knot defects. Reference 

[3] proposed a method utilizing Gabor filters and 

morphological processing for detecting linear objects. 

However, this method is limited to linear defects and 

struggles with detecting multi-category defects. Reference [4] 

introduced an automatic classification method for wood 

defects using a support vector machine (SVM), capable of 

classifying four defect types. Reference [5] presented an 

enhanced YOLOv3 [6] detection approach that offers more 

precise identification of defects. However, its performance is 

inferior to the RefineDet [7] model when using a picture 

input size of 320*320. Reference [8] employed the DenseNet 

[9] network in the single-stage SSD [10] network structure to 

fuse multi-layer feature maps, resulting in higher recall and 

accuracy rates but longer detection times. Reference [11] 

utilized the YOLOv5 [12] algorithm to detect wood defects 

such as Dark Knots, Decay Knots, Edge Knots, and Pin Knots. 

However, they solely applied the original algorithm and did 

not propose any corresponding improvements. 

While various detection techniques for wood surface 

defects have been explored, issues related to detection 

efficiency persist due to variations in surface fault shapes. 

This paper aims to enhance the accuracy, efficiency, and 
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automation of wood surface defect detection through a deep 

learning-based approach. Firstly, a ghost convolution [13] 

incorporating the Logish activation function [14] is employed 

to reduce parameters and calculations. Secondly, a hybrid 

attention mechanism (HAM) [15] module, combining spatial 

and channel attention, is used to retain critical spatial position 

information while focusing on essential channel features. 

Furthermore, a depthwise separable convolution block [16] 

with different expansion rates enhances the feature fusion 

capability of the Neck network. By implementing these 

optimization strategies, we can improve the YOLOv8s [17] 

detection performance on surface defects in the wood, which 

can fulfill positioning needs for wood defect identification 

and boost business automation in processing. 

II. THE PRINCIPLE OF THE YOLOV8S MODEL 

YOLOv8, developed by Ultralytics, is a novel algorithm in 

the YOLO series that incorporates new structural 

functionalities and optimization techniques from YOLOv5 

and YOLOX [18]. These additions enhance the model's 

functionality, adaptability, and effectiveness. The YOLOv8 

architecture consists of three main components: Backbone, 

Neck, and Output, as shown in Fig. 1. 

In the initial stage, the input image undergoes feature 

extraction in the Backbone network. The extracted features 

are then passed to the Neck network, which further refines the 

details of the features. Finally, the Head network utilizes the 

refined features for target training and prediction.  

The Backbone module consists of CBS (convolution layer, 

BN layer, SiLU activation function) and C2F structures. The 

primary part of CBS is to strengthen the semantic expression 

of features. Through a combination of the convolutional layer 

(CBS) and DB (a bottleneck block), the C2F module 

performs a series of convolution operations on the input 

feature map to extract higher-level semantic features that 

capture the shape, texture, and other details of the detection 

target. YOLOv8s also incorporates the SPPF [19] module, 

which converts feature maps of varying sizes into fixed-size 

feature vectors. This is achieved by sequentially applying 

Maxpool with a 5*5 convolution kernel and cascading the 

results to expand the receptive field of feature map. The Neck 

network focuses on further extracting features obtained from 

the Backbone network and aims to combine feature 

information at different scales. YOLOv8 utilizes FPN [20] 

and PANet [21] structures to fuse features through 

upsampling and downsampling operations. This fusion 

process preserves the original features of the input image and 

increases the generalization capacity of the model. The 

YOLO Head serves as the classifier and regression 

component of YOLOv8, responsible for determining the 

presence of objects corresponding to the prior boxes on 

feature points and detecting and labeling them. YOLOv8s 

offers five models, namely YOLOv8n, YOLOv8s, 

YOLOv8m, YOLOv8l, and YOLOv8x. This work focuses on 

enhancing YOLOv8s as the core model, striking a balance 

between detection accuracy and speed. 

 

III. IMPROVEMENTS TO THE YOLOV8S MODEL 

The hybrid attention mechanism (HAM) module, the 

expansion convolution module (ECM), and ghost 

convolution are the key improvements made to the YOLOv8s 

model. These improvements have collectively resulted in the 

creation of GH-YOLOv8s, as illustrated in Fig. 2. In the 

following sections, we will delve into each component 

individually. 

 

 
Fig. 1.  The structure of the YOLOv8s model 
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A.  Logish Activation Function 

The activation function plays a pivotal role within neural 

networks, enabling the introduction of nonlinear operations 

and breaking the limitations of simple linear transformations. 

This capability empowers the neural network to approximate 

complex functions effectively. Additionally, it addresses the 

challenges of disappearing or expanding gradients while 

enhancing the model's expressive capacity. In the YOLOv8s 

algorithm, the SiLU activation function is utilized. However, 

this function may encounter issues when the input values are 

extremely large or small, leading to outputs tending towards 

0 or 1, potentially causing gradient vanishing or exploding 

challenges. To overcome these limitations, this article 

proposes the adoption of the Logish nonlinear activation 

function, which is particularly suitable for complex networks 

with higher learning rates. According to formula (1), the 

Logish function exhibits nonlinearity and nonmonotonicity. 

It begins by performing a logarithmic operation to narrow the 

numerical range of the sigmoid function. Subsequently, it 

applies significant regularization impact to the negative 

output using the variable “x”. 

 ( ) ( )( )ln 1f x x Sigmoid x= +                       (1) 

Formula (2) is employed to illustrate the derivative of the 

Logish activation function, which plays a vital role in 

calculating gradients and updating network parameters 

during the backpropagation algorithm. This utilization 

guarantees a more stable training process for the neural 

network. 
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The Logish activation function offers several advantages. 

Firstly, it ensures negative activation values and negative 

derivative values, which contribute to the robustness of the 

model during training. Additionally, it preserves partial 

sparsity, reducing parameter redundancy and enhancing the 

model’s generalization capability. Importantly, switching to 

the Logish activation function does not introduce any 

increase in redundant calculations. 

B.  Lightweight Structure 

Lightweight models offer efficient execution in 

resource-constrained environments and deliver faster 

inference speeds by minimizing model size and complexity. 

In this paper, the primary focus is on leveraging enhanced 

ghost convolution to achieve model lightweightness, as 

illustrated in Fig. 3. The ghost convolution process begins 

with a 1*1 convolution, utilizing the Logish activation 

function, to extract essential information from the input 

feature map. Subsequently, a depth-separable convolution, 

also employing the Logish activation function, is performed 

to generate a comparable feature map. Finally, we combine 

the 1*1 and depth separable convolution outputs. 

C.  Attention Mechanism 

The attention mechanism plays a crucial role in selecting 

important information from numerous features information 

while disregarding less relevant information. The typical 

attention mechanisms mainly include SE [22], ECA [23], and 

CBAM [24]. 

ECA enhances the SE attention mechanism by adaptively 

selecting the size of the one-dimensional convolution kernel. 

It facilitates cross-channel information interaction and avoids 

channel information loss during dimension reduction. Fig. 4 

illustrates the schematic diagram of the ECA module. 

The ECA attention mechanism initially performs global 

average pooling (GAP) to obtain features. It then utilizes 1D 

convolution with a convolution kernel size “k” for adaptive 

feature selection. The weight “w” is obtained through the 

Sigmoid activation function, as shown in formula (2). Finally, 

the result is multiplied by the original feature map to get 

theoutput feature map. In the formula, σ represents the 

Sigmoid activation function, Conv1D denotes 

one-dimensional convolution, and k represents the size of the 

convolution kernel, which is proportional to the channel C, as 

shown in the formula (3-4). |*| represents the odd number 

closest to *, and y and b represent the mapping slope and 

intercept, typically set as 2 and 1, respectively. 

CBAM is a hybrid attention mechanism that integrates 

spatial and channel attention, as depicted in Fig. 5. The 

channel attention mechanism assigns different weights to 

 
Fig. 2.  The structure of the GH-YOLOv8s model 

  

 
Fig. 3.  The structure of ghost convolution 

  

 
Fig. 4.  The structure of the ECA attention mechanism 
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various channels. It begins by applying Maxpool and 

Avgpool operations based on the width and height of the 

input feature map. The number of channels is adjusted 

through a neural network structure, and the output undergoes 

a summation operation. The resulting weight parameters are 

obtained through the Sigmoid activation function. Finally, 

the input feature map is multiplied by these weights to obtain 

the output feature map of the channel attention mechanism. 

The spatial attention mechanism assigns different spaces with 

different weights. It performs channel-based Maxpool and 

Avgpool operations on the feature map, resulting in two 

H*W*1 feature maps. These maps are then concatenated 

along the channel direction. Subsequently, a 7*7 convolution 

reduces the dimensionality, followed by a Sigmoid function 

to generate weight parameters. These parameters are 

multiplied by the output feature map of the channel attention 

mechanism to obtain the output feature map of the CBAM 

attention mechanism. 

This paper combines the ECA attention mechanism with 

the spatial attention mechanism within the CBAM attention 

mechanism, constructing a hybrid attention mechanism 

called HAM, as shown in Fig. 6. The spatial attention module 

utilizes the output of the ECA attention mechanism as input. 

By integrating multiple attention mechanisms, the hybrid 

attention mechanism enhances the model's performance from 

different aspects. This combination enables a more thorough 

and effective extraction of defect characteristics, thereby 

improving the model’s generalization capacity. 

 

D.  The Structure of ECM 

The expansion convolution module, illustrated in Fig. 7, 

employs depthwise separable convolution to capture more 

precise feature information. It is seamlessly integrated with 

the Neck network to enhance feature fusion capabilities. The 

ECM structure uses a depthwise separable convolution, 

employing multiple expansion rates with a convolution 

kernel size of 3*3. The feature maps obtained from different 

expansion rates are then connected using the Concat function. 

Subsequently, a depthwise separable convolution with 1*1 

convolutions is utilized to actively restore the number of 

channels. This structural design aims to expand the model's 

receptive field and incorporate contextual information across 

different scales during feature extraction, thereby minimizing 

information loss. Simultaneously, it strengthens the 

connectivity between the Neck module and improves the 

pyramid feature fusion ability. 

 

IV. RESULT ANALYSIS 

A.  Lab Environment 

The experimental environment actively utilizes a 

Windows 64-bit system, with the processor of Intel(R) 

 
Fig. 5.  The structure of the CBAM attention mechanism 

 
Fig. 6.  The structure of the HAM attention mechanism 

 
Fig. 7.  The structure of ECM 
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Xeon(R) Silver 4210R CPU @2.40GHz, 64GB of running 

memory. The used graphics card is NVIDIA RTX A5000, 

through PyTorch deep learning framework. GPU 

acceleration software was also used with CUDA11.6 and 

CUDNN8.4 versions. 

 

B.  Experimental Dataset 

The experiment utilized a dataset sourced from a 

comprehensive collection of wood surface defects [25]. The 

dataset was captured using a three-line scanning camera, 

specifically the SW-4000TL-PMCL model, resulting in 

images with a resolution of 2800*1024. The dataset primarily 

consisted of defects in the form of Quartzity, Live Knot, 

Marrow, Resin, Dead Knot, Knot with crack, Knot missing, 

and Crack. However, the number of images containing more 

than three defect categories was quite small. Prior to the 

experiment, manual screening was performed on the dataset 

to remove any background noise or undesired features. 

Simultaneously, to tackle the issue of overfitting and 

augmenting the available data, data enhancement techniques 

such as cropping, translation, mirroring, and flipping were 

applied. These methods aimed to increase the dataset's 

quantity while enhancing the network's overall generalization 

capacity. As a result of this expansion process, the total 

number of datasets reached 14416, which were subsequently 

divided into an 80% training set and a separate verification 

set in a ratio of 8:2. In this experiment, we used these five 

sorts of labels as experimental data for training: Live Knot, 

Resin, Dead Knot, Knot with crack, and Crack. The number 

of labels is shown in Fig. 8. 

 

C.  Evaluation Index 

To evaluate the performance of the model, the precision 

rate (Precision), the recall rate (Recall), and the mean 

Average Precision (mAP) are mainly used as the 

performance indicators of the algorithm, as expressed in 

formulas (3), (4) and (5). 

100%
TP

Precision
TP FP

= 
+

                  (3) 

100%
TP

Recall
TP FN

= 
+

                     (4) 

( )

( )

( )

1

0
 P R dRAP

mAP
N class N class

= =
                  (5) 

Among them, TP, FP, and FN respectively represent the 

correctly detected sample data, the wrongly detected sample 

data, and the incorrectly detected sample data. N denotes the 

number of types of target tags. AP corresponds to the area 

under the (Precision-recall) PR curve, where Recall is plotted 

on the horizontal axis and the Precision is plotted on the 

vertical axis. To enable performance comparison across all 

target classes, the evaluation metric employed for the model 

is the mean Average Precision (mAP) computed across all 

classes. Several hyperparameters are defined when 

conducting experiments. These include an initial learning 

rate of 0.01, an input image size of 640x640, a batch size of 

16, 200 epochs, an Intersection over Union (IoU) threshold of 

0.5, and the utilization of 4 workers. 

 

D.  Performance Analysis 

This study employs advanced techniques, including ghost 

convolution with Logish activation functions, a hybrid 

attention mechanism (HAM), and an expansion 

convolutionmodule (ECM), to enhance the YOLOv8 

algorithm’s precision and effectiveness in identifying wood 

surface defects. The GH-YOLOv8s model outperforms the 

original model in terms of assessment measures such as 

Precision, Recall, and mAP. Results presented in Table I 

demonstrate a noteworthy improvement, with Precision 

increasing by 2.7%, Recall by 3.6%, and mAP by 2.0%. 

These enhancements highlight the GH-YOLOv8s model's 

enhanced feature extraction capabilities compared to the 

original model. 

 
Fig. 8.  Number of label instance 

 

TABLE I 
MODEL PERFORMANCE COMPARISON 

Model Precision/% Recall/% mAP@0.5/% 

YOLOv8s 96.0 93.3 96.4 

GH-YOLOv8s 98.7 96.9 98.4 
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Moreover, the GH-YOLOv8s model excels in accurately 

and comprehensively capturing defect targets, leading to 

improved accuracy in wood surface defect detection. It 

efficiently performs precise defect detection tasks, as 

depicted in Fig.9, which showcases a comparison between 

the detection of each defect target using the GH-YOLOv8s 

model and the original model. The accuracy rate has 

significantly improved across the board. 

 

E.  Ablation experiment 

To further validate the efficacy of the suggested approach, 

we conducted a set of ablation experiments, as illustrated in 

Table II. All improvement strategies employed in the 

experiments are based on the YOLOv8s model. In the table, 

the symbol "×" indicates the absence of a specific method, 

while the symbol "√" denotes its utilization. The results in 

the table clearly demonstrate the positive impact of 

incorporating the ghost convolution with Logish activation 

functions. This addition has led to noticeable improvements 

in Precision, Recall, and mAP, allowing the model to 

effectively capture intricate relationships and nonlinear 

features within the feature maps. Furthermore, the inclusion 

of the HAM has resulted in a 1.0% increase in mAP, 

indicating that the model pays more focused attention to the 

defect targets. Moreover, the introduction of the ECM has 

enriched the contextual information and enhanced the feature 

representation. The structural integration of C2F and ECM 

within the Backbone, connecting it with the Neck network, 

facilitates the incorporation of additional semantic 

information into the feature pyramid layer. Alongside the 

other two modules, this integration effectively improves 

Recall and minimizes the loss of feature information. The 

collective contribution of these three modules significantly 

enhances the overall performance of the model and 

substantially augments its capability to identify wood surface 

defects. 

 

 
Fig. 9.  Five types of label mAP comparison 

 
TABLE II 

ABLATION EXPERIMENT 

GLConv HAM ECM Precision/% Recall/% mAP@0.5/% 

× × × 96.0 93.3 96.4 

√ × × 97.4 93.9 96.9 

× √ × 97.7 95.0 97.4 
× × √ 97.6 94.7 97.1 

√ √ × 98.4 95.1 97.7 
√ × √ 97.7 96.1 97.8 

× √ √ 98.5 96.1 97.9 

√ √ √ 98.7 96.9 98.4 

 

 

 

 

 

 

 

 

TABLE III 

DETECTION RESULTS OF DIFFERENT ALGORITHMS 

Model Parameter/M FPS mAP@0.5/% Weight/MB 

GH-YOLOv8s 12.1 163.9 98.4 26.7 

YOLOv7s 35.5 82.6 80.7 71.4 

YOLOv6s 17.24 251.8 96.2 36.3 

YOLOv5s 6.7 227.2 95.6 13.7 

YOLOXs 8.94 88.9 77.9 68.5 

YOLOv3s 61.5 30.5 82.7 235.1 

SSD 24.1 50.9 82.6 100.1 

Faster R-CNN 136.7 17.7 70.2 108.8 
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F.  Compare with Other Models 

We compare the GH-YOLOv8s model with other popular 

target detection methods in the same configuration setting 

using a similar defect dataset to assess the efficacy of the 

model provided in this study, as summarized in Table III. In 

terms of mAP, the GH-YOLOv8s model exhibited 

remarkable improvement, surpassing YOLOv7s, YOLOv6s, 

YOLOv5s, YOLOXs, YOLOv3, SSD, and Faster R-CNN by 

17.7%, 2.2%, 2.8%, 20.5%, 16.4%, 15.8%, and 17.1%, 

respectively.  

Furthermore, the GH-YOLOv8s model offers significant 

advantages in terms of deployment on hardware devices. It 

weighs substantially less, with reductions of 62.6%, 26.4%, 

61%, 88.6%, 73.3%, and 75.5% compared to YOLOv7s, 

YOLOv6s, YOLOXs, YOLOv3s, SSD, and Faster R-CNN, 

respectively. Additionally, it presents numerous benefits over 

models like YOLOv7s in terms of parameter efficiency. 

Although the FPS value is slightly lower than that of 

techniques such as YOLOv5s, it is still within acceptable 

bounds and can fulfill the demands of wood surface flaw 

detection in real-time. 

 

G.  Test Results 

To provide a clearer comparison between the old model

and the upgraded model, several samples were tested to 

assess the impact of detection.  

Fig. 10 illustrates that the upgraded GH-YOLOv8s model 

exhibits higher confidence levels for each defect target 

compared to the original model. This increased confidence 

translates into a more remarkable probability of accurately 

detecting such defects, showcasing the GH-YOLOv8s 

model's enhanced ability to precisely locate target objects in 

the scene.  

Fig.11 demonstrates that, when utilizing the same IoU 

threshold and NMS parameters, the original YOLOv8s 

model fails to accurately eliminate overlapping frames. In 

contrast, the optimized GH-YOLOv8s model incorporates a 

structure that is better suited for detecting wood defects, 

resulting in improved detection performance.  

Furthermore, Fig.12 reveals that the YOLOv8s model 

shows some missing detections, particularly for defect targets 

such as the Live_Knot and Crack. However, the 

GH-YOLOv8s algorithm significantly addresses these issues. 

It not only accurately detects and distinguishes five different 

types of defects but also improves the detection confidence 

for smaller defect targets. Therefore, the GH-YOLOv8s 

algorithm has better performance in detection. 

 

 

  
(a)The prediction results of GH-YOLOv8s. (b)The prediction results of YOLOv8s. 

Fig.10. Confidence score comparison results. 
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(a)The prediction results of GH-YOLOv8s. (b)The prediction results of YOLOv8s. 

Fig.11. Detection results under the same parameters. 

 

  
(a)The prediction results of GH-YOLOv8s. (b)The prediction results of YOLOv8s. 

Fig.12. Whether to miss the target comparison 
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V. CONCLUSION 

This work focuses on the identification of wood surface 

flaws using the YOLOv8s model for detecting wood surface 

defects. Several enhancements have been incorporated to 

improve the model’s performance. Firstly, the hybrid 

attention mechanism has been introduced into the Backbone 

network to gather feature information, enabling the model to 

prioritize the target of interest. Additionally, the expansion 

convolution structure has been added to expand the receptive 

field and enhance the feature extraction capabilities of the 

Neck network. To mitigate the increased parameter count 

resulting from these enhancements, ghost convolution has 

been employed to reduce the model's size. Experimental 

findings demonstrate that the GH-YOLOv8s model achieves 

higher accuracy and robustness in defect detection, with an 

impressive mAP of 98.4% and a model detection speed of 

163.9 FPS. Additionally, GH-YOLOv8s surpasses other 

commonly used detection algorithms, confirming the 

effectiveness of the proposed enhancements. These findings 

provide strong support for practical applications and have the 

potential to enhance the level of automation in wood 

processing enterprises. In future work, we aim to expand the 

dataset to include a wider range of defect types, including 

smaller targets. We will refine and upgrade the YOLOv8 

model to improve its flexibility for wood defect identification 

tasks. We also intend to increase the model's applicability in 

real-world scenarios such as industrial automation and wood 

quality monitoring, thus further advancing its practical 

utility. 
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