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Abstract—Electric vehicles have become the first choice
for products delivery in logistics, due to their environmental
friendliness and low cost compared to the traditional fuel
vehicles. This paper deals with an electric capacitated vehicle
routing problem with variable energy consumption rate (E-
CVRP), which aims to minimize the total cost including vehicle
fixed cost, traveled distance cost and energy cost. First, a
mixed integer linear programming model is constructed based
on the fact that the energy consumption is affected by the
vehicle load. Second, a hybrid Max-Min Ant System (HMMAS)
algorithm is proposed to solve this problem. Three neighbor-
hood structures are introduced and executed in a Variable
Neighborhood Descent (VND) algorithm to improve the current
solution. In addition, an effective charging station adjustment
strategy is adopted to further improve the solution obtained by
the local search process. Finally, some experiments have been
conducted on public instances, and the results demonstrate the
effectiveness and stability of the algorithm.

Index Terms—electric vehicles, vehicle routing problem, max-
min ant system, variable neighborhood descent, charging station
adjust.

I. INTRODUCTION

IN recent years, greenhouse gas emissions, particularly
CO2, have had a major impact on the worlds ecosystem

and social-economic development. Reducing carbon emis-
sions is crucial to protect the Earths ecological environment
and the long-term human development. The transportation
sector is the second largest sector of the worlds total carbon
emissions[1]. To achieve the low-carbon goal, the application
of electric vehicles (EVs) is an effective way to reduce
CO2 emissions in the transportation domain. Electric ve-
hicles have gradually replaced the traditional fuel vehicles
in public transportation and logistics fields, as they have
some advantages of environmental friendliness, low cost and
energy consumption. It is generally agreed that reasonable
planning of electric vehicle routes can not only reduce carbon
emissions, but also improve vehicle utilization and reduce
operating costs.
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The Electric Vehicle Routing Problem (EVRP) is an
important variant of the classical Vehicle Routing Problem
(VRP). Unlike traditional VRP, EVRP has battery quantity
constraint except for the constraints commonly used in VRP
such as vehicle capacity, time windows, etc. In EVRP, each
battery quantity of electric vehicle decreases as the vehicle
travels. Therefore, when there is not enough battery quantity
to serve the subsequent customers, the electric vehicle has
to go to a charging station to recharge. When planning the
routes of electric vehicles, it is necessary to consider more
factors such as the vehicle battery and the location of the
charging station, etc. For this reason, the EVRP problem is
more complex than the classical VRP problem.

As an important variant of VRP, there are a number of
research results in the area of EVRP. Conrad and Figliozzi
[2] first studied the recharging vehicle routing problem and
took into account the vehicle recharging while driving. Green
vehicle routing problem was proposed by [3], which inspired
the subsequent studies. Schneider et al. [4] designed a hybrid
variable neighborhood search and tabu search algorithm
to solve the EVRP with time window (EVRPTW). Goeke
and Schneider [5] presented an adaptive large neighbor-
hood search (ALNS) method for mixed fleets EVRP, where
the energy consumption is calculated by a realistic energy
consumption function. Lin et al. [6] considered the impact
of vehicle load on energy consumption for EVRP. Keskin
and Catay [7] proposed a partial recharging strategy and
designed an ALNS algorithm to solve EVRPTW with partial
recharging. Montoya et al. [8] used non-linear charging func-
tions to calculate battery consumption, and then developed
a hybrid iterated local search and hill climbing algorithm to
solve the EVRP with non-linear charging function. Keskin et
al. [9] implemented an adaptive large neighborhood search
algorithm to solve EVRP problem, which considered vehicle
queuing at charging stations. The recent survey of EVRP can
be found in [10],[11].

These literatures have prompted the development of EVRP
to some extent. However, it still needs to further exploit
the research of EVRP. Many researchers have only focused
on minimizing the total travel distance, which does not
reflect the real operation cost. In addition, the existing EVRP
model rarely considers the impact of vehicle load on battery
consumption. When the load on the electric vehicle is very
big, it requires more battery consumption. Reference [6]
indicates that the effect of vehicle load on energy con-
sumption should not be ignored. The energy consumption
rate is linearly related to the vehicle load. Therefore, it is
necessary to study the EVRP with total cost including vehicle
fixed cost, operation cost and energy consumption cost, and
the calculation of energy consumption should consider the
impact of the vehicle load, that is electric capacitated vehicle
routing problem (E-CVRP). Like VRP, E-CVRP is also a
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NP-hard problem, so developing effective algorithms for E-
CVRP remains a challenge.

Ant Colony Optimization (ACO) algorithm was proposed
by [12] in 1991. ACO algorithms include several different
variants, all of which are inspired by the foraging behavior
of some ant species. The max-min ant system (MMAS) [13]
is one of the most successful variants of all ACO algorithms.
It is characterized by the fact that only the best ant updates
the pheromone trails, and that the value of the pheromone
is bounded. MMAS has been successfully applied in solving
VRP and EVRP [14],[15],[16],[17],[18],[19].

In view of, this paper deals with the E-CVRP problem
with the total operating cost, which is made up of vehicle
fixed cost, total distance traveled cost, and total energy
consumption cost. Then, a hybrid MMAS algorithm, called
HMMAS, combined with VND is proposed to solve the
model. In the process of VND, three neighborhood operators
are used to find a better solution. Additionally, we developed
a charging station adjustment strategy to adjust the locations
of the charging stations to enhance the quality of solutions.
The experimental results on some public instances reveal
the proposed algorithm is effective and stable compared to
existing EVRP algorithms.

The remaining structure of this paper is as follows. Section
II describes and models the addressed problem. The proposed
HMMAS algorithm in this paper is introduced in Section III.
Section IV give the experimental results and analysis. Finally,
we draw a remark and give the research direction in Section
V.

II. PROBLEM DEFINITION AND FORMULATION

A. Problem Definition

The E-CVRP is described as follows. A depot provides
delivery services to a set of customers with known demand.
The deliveries are performed by a homogeneous fleet of
electric vehicles with load capacity and battery capacity. All
vehicle routes start and end at the depot. While the vehicle
travels, the battery quantity decreases proportionally to its
load and distance traveled. Therefore, the EV may need to
visit a charging station to continue its route. Each vehicle
departs from the depot or recharging stations fully charged.
Travel speeds are assumed to be constant along each arc. The
E-CVRP aims to find an optimal set of routes to minimize
operating costs, subject to several constraints.

B. Model Formulation

The E-CVRP is defined on a directed graph G = (V,E).
Assume that N = {1, 2, . . . , n} denotes the set of customers,
0 represents the depot, and F is the set of charging stations.
F ′ denotes the set of βi copies of each charging station i ∈ F
(i.e., |F ′| =

∑
i∈F βi). The set |F ′| allows each charging

station to be visited multiple times [3]. βi is set to 2 |N |
since, in the worst case, each EV needs to visit the charging
station once before and after serving each customer [20]. So,
the set of all nodes is denoted as V = {0}∪N∪F ′. The set of
arcs is denoted by E = {(i , j ) ,∀i, j ∈ V, i 6= j}. Each node
i ∈ V has a non-negative demand qi, with qi = 0 for i /∈ N .
Each EV has a load capacity of C and a battery capacity of
Q. Each arc between node i and node j is assigned a distance
dij and a load-dependent energy consumption hidij . Due to

the uncertainty load carried on arc (i, j), hi is a variable
energy consumption rate [21] is defined as:

hi =
(
r +

ui
C

)
(1)

Where r is a constant and denotes each arc’s empty-vehicle
energy consumption rate, variable ui refers to the load of
the vehicle carried on arc (i, j). Variable yi refers to the
remaining battery when the vehicle arrives at node i. The
binary decision variable xij determines whether the vehicle
travels on arc (i, j). If so, xij = 1, otherwise xij = 0. Each
vehicle departs from the depot fully loaded and fully charged.

The E-CVRP is to find optimal delivery routes for a
fleet of EVs, considering battery capacity and load capacity
constraints. The total cost of routes consists of three parts:
vehicle fixed cost Z1, distance traveled cost Z2 and energy
cost Z3. Vehicle fixed cost is a function of the number of
vehicles being used. It comprehensively considers the driver’s
wages, vehicle purchase cost, vehicle insurance cost, and so
on. Distance traveled cost depends on the total route duration
of all EVs. Energy costs are related to electricity consumed
and electricity price. They are defined in Equations (2), (3)
and (4), where c1, c2 and c3 are the unit cost coefficients.

Z1 = c1
∑
i∈V

x0i (2)

Z2 = c2
∑

i,j∈V,i6=j

dijxij (3)

Z3 = c3
∑

i,j∈V,i6=j

hidijxij (4)

The model of E-CVRP is described as follows.
Minimize

Z = Z1 + Z2 + Z3 (5)

Subject to: ∑
i∈V,i6=j

xij −
∑

j∈V,i6=j

xji, j ∈ V (6)

∑
i∈N,i6=j

xij = 1,∀j ∈ V (7)

∑
i∈V,i6=j

xij ≤ 1,∀j ∈ F ′ (8)

u0 = C (9)

0 ≤ uj ≤ ui − qjxij + C(1− xij),∀i, j ∈ V, i 6= j (10)

y0 = Q (11)

0 ≤ yj ≤ yi − hijdij +Q(1− xij),∀i ∈ V,∀j ∈ N (12)

yj = Q− hijdijxij ,∀i ∈ F ′,∀j ∈ 0 ∪N (13)

xij ∈ {0, 1},∀i ∈ V,∀j ∈ V, i 6= j (14)

The objective function (5) minimizes the sum of vehicle
fixed cost, distance traveled cost and energy cost. Con-
straint (6) handles the connectivity of all nodes. Constraint
(7) guarantees that each customer is visited exactly once,
whereas constraint (8) ensures that each charging station is
visited at most once. Constraint (9) enforces the EV is fully
loaded from the depot. Constraint (10) tracks the load of the
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Algorithm 1 HMMAS Framework
Input: instance data, maximum iterations number I , pop-

ulation size M , neighborhood structures NBS, parameters
α, β, Tmax, Tmin

Output: the best solution Sgb
1: Generate an initial solution S0 using sweep algorithm
2: Initialize heuristic information matrix; Initialize

pheromone trails matrix and the bound values of the
pheromone [τmin, τmax] by S0; set T = Tmax

3: set iteration variable i← 1
4: repeat
5: for k = 1, . . . ,M do
6: construct k-th ant solution
7: end for
8: find the best solution Sib in M ant solutions
9: if (f (Sib)− f (Sgb))/f (Sib) ≤ T then

10: Sib ← V ND (Sib, NBS)
11: end if
12: if f (Sib) ≤ f (Sgb) then
13: Sgb ← Sib
14: end if
15: update pheromone trails by the method defined by

equations (19) and (20)
16: T ← T − (Tmax − Tmin)/I
17: i← i+ 1
18: until i > I
19: return Sgb

vehicle and the remaining vehicle load between 0 and the
maximum load capacity C. Constraint (11) ensures the EV
is fully charged from the depot. Constraint (12) tracks the
remaining battery level at each vertex. Constraint (13) defines
the remaining battery level when the EV departs from the
station. Finally, constraint (14) illustrates the domains of the
decision variable.

III. THE PROPOSED ALGORITHM

A. Overall Description of HMMAS

MMAS [13] is one of the most effective methods for
solving EVRP. It prevented premature convergence of the
algorithm by limiting the value of the pheromone trail to
the range [τmax, τmax]. However, the results of the standard
MMAS fluctuate between the global solution and the local
solution when solving medium and large-scale problems. The
proposed in this paper applies the VND algorithm to optimize
the iterative solution for a given threshold at each iteration.
The procedures of HMMAS are shown in Algorithm 1.

In Algorithm1, a feasible initial solution S0 is constructed
for E-CVRP. Then, we initialize the pheromone trail, heuris-
tic information matrix and the pheromone extend values
τmax and τmin. The main process of MMAS is in lines
4∼18. Firstly, we constructed M ants of the colony in lines
5∼7. Then, the best ant is obtained in line 8. After that,
a new solution Sib is improved if the gap between the
latest and the current global optimal solution Sgb is smaller
than a threshold in lines 9∼11. After finishing an iteration,
we update the pheromone trail by section C. Finally, the
HMMAS returns a global best solution.

B. Solutions Construction

Each ant constructs a feasible solution by using heuristic
information and pheromones. The process of constructing an
ant solution is presented in Algorithm 2.

Initially, all ants start from the depot fully loaded and fully
charged. Then, each ant iteratively selects the next node until
all customers have been visited. Ant k-th preference customer
as the next node. When the ant k-th visits the next node
and violates the load constraint, the ant returns to the depot.
When the ant k-th visits the next node, which violates the
battery constraint, the ant detours to the station to charge.

The formula of the k-th ant selects customer j from node
i is defined as follows:

j =

{
argmax(ταij · η

β
ij), q ≤ q0

Z, q > q0
(15)

In which τij is the pheromone value on arc (i, j), and ηij
(ηij = 1/dij]) is the heuristic information of arc (i, j). α and
β are the relative importance of τij and ηij , respectively. q is
a random variable uniformly distributed in the range [0, 1],
q0 is the threshold of q. argmax is a function to find the
node j that can generate a maximum value of ταij · η

β
ij . Z is

the randomly selected method based on the Roulette Wheel
according to the probability in formula (16).

P kij =


ταij ·η

β
ij∑

i∈V τ
α
ij ·η

β
ij

, j ∈ Jk
0, j /∈ Jk

(16)

Where P kij donates probability that k-th ant from node
i selects candidate customer j. Jk represents the unvisited
customers of k-th ant. To avoid directly visiting customer
j violating constraints, we forecast the state of the route. If
customer j violates load constraint, the vehicle returns to the
depot. If customer j violates battery constraint, the vehicle
detours to the station s. The station s can be expressed by
Equation (17).

s = argmin{dis + dsj} (17)

C. Pheromone updating

The proposed algorithm uses the pheromone trails update
strategy of MMAS [13]. At the beginning, all the pheromone
trails are initialized as follows:

τ0 =
1

ρC0
(18)

Where, ρ (0 < ρ ≤ 1) indicates the pheromone evap-
oration factor. C0 is the cost of a solution generated by
the sweep heuristic. After all ants have been constructed
to obtain an E-CVRP solution, the pheromone intensity on
each edge will be updated based on the best solution. All
the pheromone trails are decreasing by a constant factor ρ.
After evaporation, the best ant deposits pheromone on the
traversed arcs. The updating rules of pheromone trails are
shown in Equations (19) and (20).

τij(t + 1) = [(1− ρ) · τij(t) + ρ∆τij(t)]
τmax

τmin
(19)
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Algorithm 2 Solution Construction
Input: instance data, pheromone trails, heuristic information

matrix, parameters α, β.
Output: the ant solution S.
1: Initialize customer unvisited list Jk ← {1, 2, . . . , n}
2: S ← ∅, r ← {0}
3: repeat
4: select candidate node j from Jk by formulas (15), (16)
5: if j violates load constraint then
6: j ← 0
7: end if
8: if j violates battery constraint then
9: j ← select station by formula (17)

10: end if
11: r ← r ∪ {j}
12: if j = 0 then
13: S ← S ∪ {r}
14: r ← {0}
15: else if 1 ≤ j ≤ n then
16: Jk ← Jk − {j}
17: end if
18: until Jk is empty
19: if Jk is ∅ then
20: r ← r ∪ {0}
21: S ← S ∪ {r}
22: end if
23: return S

∆τij(t) =

{
1

f(Sib)
, (i, j) ∈ Sib

0, otherwise
(20)

Where 1− ρ is the pheromone residual factor. τij (t+ 1)
and τij (t) are the pheromone concentration from node i to
node j at (t + 1)-th iteration, t-th iteration, respectively.
∆τij (t) is the inverse of the cost of Sib. The value of
the pheromone trail is limiting between [τmin, τmax] and the
related formulas are defined in Equation(21) and (22).

τmax =
1

ρf(Ssb)
(21)

τmin =
(1− n

√
0.05)

(n2 − 1) n
√

0.05)
∗ τmax (22)

D. Neighborhood Structures

For the best ant obtained by each iteration, we employ
three neighborhood operators in the VND procedure to
improve the current ant. The neighborhood operators are
described in the following.

(1) Relocate. A customer i is removed from a route and
inserted into another position in the same or different route.
In Fig.1(a), customer 2 of route R1 is moved and then placed
in the position between depot and customer 1. As shown in
Fig.1(b), customer 5 is removed from route R1 and inserted
into the position after customer 3 in route R2. It is worth
noting that only the customers can be used in the relocation
operator.

(2) Two Points Swap. Two different customers swap their
positions to change the positions of them. The operator

Fig. 1. example of Relocate operator

Fig. 2. example of Two Points Swap

Fig. 3. example of 2-opt

occurs on the same route or the different routes. Fig.2 gives
an example of the Two Points Swap operator. In Fig.2(a),
customers 2 and customer 4 swap their positions on the same
route R2. For two different routes R2 and R1, as shown in
Fig.2(b), customer 2 on route R1 and another customer 5
on route R2 exchange their position. Similarly, this operator
only operates on customer points.

(3) 2-opt. When a 2-opt operator occurs in a route, two
edges that are not adjacent are first chosen, and then the
nodes between them are reversed. In Fig.3, two customers,
2 and 4 are selected, and the edge between 2 and 3 and the
edge between 8 and 4 are broken. The nodes between the
broken edges are reversed to 8, 5 and 3.

E. Variable Neighborhood Descent Procedure

Variable Neighborhood Descent (VND) is a deterministic
variant of Variable Neighborhood Search (VNS) developed
by [18]. The basic idea of VND is to improve the current
solution by constantly changing the neighborhood structure.
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Algorithm 3 Variable Neighborhood Descent
Input: solution S, neighborhood structures NBS.
Output: the best solution S∗.
1: Initialize S∗ ← S
2: k ← {1}
3: repeat
4: S′ ← NBSk (S∗)
5: if f (S′) ≤ f (S∗) then
6: S∗ ← S′

7: k ← 1
8: else
9: k ← k + 1

10: end if
11: until k ≤ |NBS|
12: insert recharging stations into routes that violating bat-

tery constraint
13: return S∗

In HMMAS, VND is used to search for the local best
solution after all ants have finished searching. The neigh-
borhood operators are first executed without considering the
battery amount constraint. After the neighborhood operator
is executed, the solution will be checked. If the solution
violates the constraints, the solution will be repaired to keep
it feasible. The pseudo-code of the VND procedure is given
in Algorithm 3.

In Algorithm 3, variable |NBS| is the number of neigh-
borhood operators. The main procedure of VND is step 3 ∼
step 11, which literately applies the neighborhood operator
to find a new solution. When the new solution S′ is better
than the current solution, the current solution is updated and
then returns the first neighborhood; otherwise, the search will
enter the next neighborhood. When all the neighborhoods
have been exploited, the VND search procedure terminates.
It is worth noting that the neighborhood operator may change
the order of the customers or the location of the charging
station when it is executed, and the obtained neighborhood
solution may violate the power constraint. As shown in step
12, if the new solution is not feasible, it should be repaired
to be a feasible solution.

F. Charging Station Adjustment Strategy

When a solution is constructed or repaired, some charging
stations are inserted into the routes to make the solution
feasible. However, the position of the charging station may
not be the best position. To decrease the total cost of routes,
we design a charging station adjustment strategy to change
the position of charging stations.

The main idea of this strategy is described in the following.
First, the positions of all charging stations and depots at
the route are firstly required in reversed order and put into
a position list (PL). For example, route R is denoted as
{0, a, s1, b, c, s2, d, 0}, where a, b, c are customers, s1 and
s2 are stations, and PL is {7, 5, 2, 0}. The moving range of
each station is obtained by PL. For example, if the station
s2 is shifted, its moving range in the route is between 7
and 2. Second, the moving cost for each charging station
was calculated. The movement of the charging station is
divided into two steps. The first step is to remove the station

from the current route, and the second step is to insert
new charging stations into the route without violating the
battery constraint. So, the increasing cost of each move is
the difference between CRn and CRo, in which CRn is the
cost of the new route after moving, and CRo is the cost of
the original route. Finally, the charging station that has the
lowest increasing cost is selected to be moved. According
to the above rule, one or multiple charging stations may be
shifted to decrease the objective value of the solution.

IV. EXPERIMENTAL STUDY

To validate the advantages of our HMMSA method, we
selected 14 instances from E-CVRP benchmark instances
[21]. The scale of the problem is between 29 and 212.
The instances consist of set E, set F, and set M, which are
generated on the famous CVRP instances of Christofides and
Eilon [23], Christofides et al. [24], and Fisher [25].

First, we describe the parameter settings of the algorithms.
Then, we compare the results of HMMAS with existing
algorithms ACS [12], MMAS [13], and VNS [21] on 14
E-CVRP instances. Finally, we analyze the efficiency of the
algorithmic components of our hybrid heuristic, which is the
VND procedure and charging station adjustment (CSA).

The proposed algorithm and comparison algorithms were
coded in Python 3.9. All experiments were executed on a
personal computer with the following parameters: Intel(R)
Core (TM) i7-10700 CPU @ 2.90 GHz, 16.0 GB RAM.
Meanwhile, all the algorithms were executed in 10 indepen-
dent times for each instance.

A. Parameter setting

For HMMAS, ACS and HMMAS, the main parameters are
the same. The number of iterations and population size are
set to 300 and 25, respectively. The pheromone evaporation
ρ, pheromone important factor α and heuristic information
important factor β are 0.1, 1 and 2, respectively. The values
of the max threshold and min threshold are set to 0.03 and
0.001, respectively. The parameter settings of the objective
function are as follows: c1 = 100, c2 = 1, c3 = 1.

B. Results and Comparison with existing algorithms

To evaluate the performance of our method, we compared
the results of HMMAS with existing algorithms ACS, M-
MAS and VNS on 14 E-CVRP instances. The results are
shown in Table I and Table II. In the Table I, column Best
indicates the Best cost value of each algorithm. Column Gap
indicates the deviation calculated by the formula (23), where
BKS is the best result of the above four methods. In Table
II, column Mean and column Time represent the average
solution and the average running time of 10 runs obtained
by the algorithm, respectively. Column Std is the standard
deviation of each algorithm.

Gap =
(BKS −Best)

BKS
∗ 100% (23)

As shown in in Table I, it can be seen that HMMAS is
more competitive than the three existing algorithms, which
has the lowest average total cost. The HMMAS method
finds 13 optimal solutions in 14 benchmark instances and
its success rate is 92.85%. Compared with ACS and MMAS,
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TABLE I
COMPARISON RESULTS OF BEST SOLUTION AND GAP OBTAINED FOUR METHODS

Instance BKS
ACS MMAS VNS HMMAS

Best Gap(%) Best Gap(%) Best Gap(%) Best Gap(%)

E-n29-k4-s7 1341.24 1367.51 1.96 1354.83 1.01 1374.96 2.51 1341.24 0.00
E-n30-k3-s7 1794.34 1887.03 5.17 1875.01 4.50 1879.36 4.74 1794.34 0.00
E-n35-k3-s5 1640.11 1801.87 9.86 1733.76 5.71 1722.39 5.02 1640.11 0.00
E-n37-k4-s4 2563.29 2690.27 4.95 2613.74 1.97 2572.80 0.37 2563.29 0.00
E-n60-k5-s9 1862.60 2271.57 21.96 1947.15 4.54 1936.76 3.98 1862.60 0.00
E-n89-k7-s13 2562.99 3042.79 18.72 2647.33 3.29 2617.19 2.11 2562.99 0.00

E-n112-k8-s11 3053.50 3821.00 25.14 3148.23 3.10 3099.61 1.51 3053.50 0.00
F-n49-k4-s4 2219.39 2301.19 3.69 2348.77 5.83 2219.39 0.00 2246.41 1.22
F-n80-k4-s8 1019.20 1185.88 16.35 1040.70 2.11 1036.95 1.74 1019.20 0.00

F-n140-k7-s5 3813.06 4677.25 22.66 3916.94 2.72 4141.94 8.63 3813.06 0.00
M-n110-k10-s9 3227.16 3850.04 19.30 3347.61 3.73 3666.35 13.61 3227.16 0.00
M-n126-k7-s5 3492.73 4317.58 23.62 3653.90 4.61 3980.62 13.97 3492.73 0.00

M-n163-k12-s12 4072.50 4991.05 22.55 4154.93 2.02 4181.00 2.66 4072.50 0.00
M-n212-k16-s12 5359.03 6394.77 19.33 5428.33 1.29 5430.01 1.32 5359.03 0.00

avg 2715.80 3185.70 15.38 2800.80 3.32 2847.10 4.44 2717.73 0.09

TABLE II
COMPARISON RESULT OF MEAN SOLUTION AND AVERAGE EXECUTION TIME

Instance
ACS MMAS VNS HMMAS

Mean Std Time(s) Mean Std Time(s) Mean Std Time(s) Mean Std Time(s)

E-n29-k4-s7 1415.69 26.85 19.39 1358.28 3.05 11.89 1419.49 23.97 2.54 1342.95 0.00 26.13
E-n30-k3-s7 1944.09 39.12 19.59 1895.32 18.34 11.76 2029.97 100.77 4.22 1810.41 9.66 24.79
E-n35-k3-s5 1842.04 16.20 22.77 1753.04 16.98 17.00 1755.92 38.82 5.53 1663.95 34.73 34.15
E-n37-k4-s4 2781.36 39.07 24.61 2638.48 16.97 16.93 2646.68 54.29 7.36 2605.22 16.74 77.03
E-n60-k5-s9 2333.28 42.09 44.42 1984.58 26.98 31.32 2119.36 98.24 29.22 1956.98 37.88 104.26

E-n89-k7-s13 3151.02 70.67 68.05 2718.76 45.60 59.62 2684.44 50.99 123.96 2622.98 41.65 263.19
E-n112-k8-s11 3872.04 44.61 90.88 3212.00 45.42 77.96 3149.35 35.88 184.64 3139.80 53.26 391.80

F-n49-k4-s4 2483.67 79.76 31.01 2434.55 55.02 20.94 2298.21 85.49 9.51 2189.36 23.22 50.09
F-n80-k4-s8 1206.12 15.59 55.18 1074.64 16.88 39.33 1189.23 83.24 54.46 1205.30 13.42 199.89
F-n140-k7-s5 4781.42 86.26 104.44 3998.96 54.22 102.81 4590.91 242.86 117.18 3903.00 58.97 646.84

M-n110-k10-s9 3951.97 60.00 85.49 3426.28 45.24 84.94 3759.98 73.75 120.26 3252.81 63.40 436.13
M-n126-k7-s5 4406.18 68.17 96.36 3729.44 42.84 84.84 4172.63 104.37 83.95 3665.98 85.79 652.16

M-n163-k12-s12 5150.62 89.29 144.70 4263.20 69.53 142.08 4263.05 59.66 326.77 4314.09 47.65 955.54
M-n212-k16-s12 6571.02 99.58 211.63 5644.02 89.04 215.45 5522.67 70.39 600.16 5685.84 50.89 2479.84

avg 3277.89 55.52 72.75 2866.54 39.01 65.49 2971.56 80.20 119.27 2811.33 38.38 452.99

HMMAS improve on average by 14.69% and 2.97%, respec-
tively. When compared to the single-solution metaheuristic,
which is VNS, the HMMAS algorithm decreases the total
cost on average by 4.54%. From the results in Table II, the
HMMAS also has the best average standard deviation value.
The average standard deviation of HMMAS is 38.38, which
is lower than the ACS algorithm 17.14, MMAS algorithm
0.63 and VNS algorithm 41.82. The average computation
time of the proposed algorithm is a little higher than that of
other comparison algorithms. The maximum-scale problem
instances can also be solved effectively by the HMMAS
algorithm within 45 minutes. On the whole, the HMMAS
algorithm can find better solutions than other algorithms in
a reasonable time.

C. Performance Analysis of Hybrid Components
As mentioned above, we introduced a variable neigh-

borhood descent procedure (VND) and a charging station

adjustment strategy (CSA) two-hybrid components into our
proposed algorithm. In order to verify the effectiveness of the
hybrid components of HMMAS, we designed two methods
based on basic MMAS. One is the hybrid method of MMAS
and CSA, namely MMASA. The other is to combine MMAS
with VND, namely MMASB. We executed MMAS and two
newly designed methods on seven benchmark instances from
set E.

The experimental results of our proposed algorithm and
three comparison methods are shown in Table III. The
description of column Best, column BKS and column Gap are
the same as above. As seen from Table III, we can observe
that the proposed algorithm has the best performance and
can obtain all the best solutions. When we employ the CSA
in MMAS, the average total cost decreases from 2800.80 to
2796.63. It shows the designed CSA strategy can improve the
quality of solutions. The VND procedure is also effective.
It can decrease the average total cost 61.24 compared to
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TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT METHODS

Instance
MMAS MMASA MMASB HMMAS

Best Std Gap(%) Best Std Gap(%) Best Std (%) Best Std Gap(%)

E-n29-k4-s7 1354.83 3.05 1.01 1343.56 6.28 0.17 1341.24 4.33 0.00 1341.24 0.00 0.00
E-n30-k3-s7 1875.01 18.34 4.50 1844.51 31.23 2.80 1808.92 23.70 0.81 1794.34 9.66 0.00
E-n35-k3-s5 1733.76 16.98 5.71 1710.33 18.52 4.28 1642.73 34.81 0.16 1640.11 34.73 0.00
E-n37-k4-s4 2613.74 16.97 1.97 2621.99 10.90 2.29 2593.48 11.30 1.18 2563.29 16.74 0.00
E-n60-k5-s9 1947.15 26.98 4.54 1915.21 41.18 2.82 1909.79 24.48 2.53 1862.60 37.88 0.00
E-n89-k7-s13 2647.33 45.60 3.29 2665.55 21.15 4.00 2562.97 36.45 0.00 2562.99 41.65 0.00

E-n112-k8-s11 3148.23 45.42 3.10 3115.14 58.06 2.02 3074.55 38.44 0.69 3053.50 53.26 0.00
F-n49-k4-s4 2348.77 55.02 4.56 2326.92 38.46 3.58 2262.16 45.32 0.70 2246.41 23.22 0.00
F-n80-k4-s8 1040.70 16.88 2.11 1037.68 13.94 1.81 1019.63 10.50 0.04 1019.20 13.42 0.00

F-n140-k7-s5 3916.94 54.22 2.72 3921.39 70.15 2.84 3822.61 84.52 0.25 3813.06 58.97 0.00
M-n110-k10-s9 3347.61 45.24 3.73 3332.57 59.44 3.27 3264.74 61.64 1.16 3227.16 63.40 0.00
M-n126-k7-s5 3653.90 42.84 4.61 3667.25 42.92 5.00 3517.66 69.87 0.71 3492.73 85.79 0.00

M-n163-k12-s12 4154.93 69.53 2.02 4176.74 50.55 2.56 4086.19 69.03 0.34 4072.50 47.65 0.00
M-n212-k16-s12 5428.33 89.04 1.29 5474.03 84.58 2.15 5447.27 64.73 1.65 5359.03 50.89 0.00

avg 2800.80 39.01 3.23 2796.63 39.10 2.83 2739.57 41.37 0.73 2717.73 38.38 0.00

TABLE IV
COMPARISON RESULT OF DIFFERENT COMPONENTS USED IN MMAS

Methods
Algorithm Modules

Average MTime(s) MGap(%) MCV(%)
MMAS VND CSA

MMAS X 2800.80 65.49 3.23 1.29
MMASA X X 2796.63 69.12 2.83 1.32
MMASB X X 2739.57 330.11 0.73 1.41
HMMAS X X X 2717.73 452.99 0.00 1.33

MMAS. When these two components are both used in
MMAS, that is, our proposed algorithm, the improvement
value of the average total cost is 83.08 compared to basic
MMAS. The results show that the two components in our
proposed algorithm are effective.

Further, we calculate the average execution time, average
standard deviation and coefficient of variation of comparison
methods. Table IV gives the results of different components
composition. In table IV, columns Average, MTime and
MGap represent the average of the best solution, execution
time, and deviation of all instances, respectively. Column
MCV is the average value of the coefficient of variation (CV),
and the value of CV is calculated by the formula (24), where
Std and mean represent standard deviation and mean value.

CV =
Std

Mean
∗ 100 (24)

From Table IV, we can observe that CSA and VND
components can improve the global optimization capability
of MMAS. The data shows that the average total costs
of MMASA, MMASB and HMMAS decrease by 0.15%,
2.19% and 2.97% compared to MMAS, respectively. So,
the two components can improve the optimization ability
of the algorithm. In addition, we also found that the CV
values of all methods are between 1.2 and 1.5, indicating
that the hybrid components have little effect on the stability.
In view of average computation time, MMASA, MMASB
and HMMAS increase a little. Even so, it is still acceptable
because the algorithm can find a higher-quality solution.

D. Convergence Analysis of HMMAS

This section discusses the convergence of HMMAS by
employing four E-CVRP instances having different scales.
The instances are E-n35-k3-s5, E-n89-k7-s13, F-n49-k4-s4,
and M-n163-k12-s12. Fig. 4 reports the convergence curves
of the ACS, MMAS, MMASA, MMMSB, and HMMAS
algorithms on these instances. The X-axis and Y-axis indicate
the number of iterations and the optimization objective value,
respectively.

In Fig. 4, we can see a steep declining trend in the
convergence curve of HMMAS. In this case, the value of
the objective function can rapidly drop and stabilize within
a few iterations. It confirms that the proposed algorithm can
quickly and effectively find the optimal solution, and exhibit
faster convergence speed and accuracy. In Fig. 4 (a), the con-
vergence curve of the MMASA algorithm remains constant
for a specific period of iterations and subsequently continues
to decrease. The charging station adjustment process causes
the algorithm to jump out of the local optimum, resulting in
a continuous decrease in the curve. The results demonstrate
that MMASA has stronger global search capabilities and
that the CSA strategy designed in this article is effective.
In four instances, MMASB converges to the optimal value
of about 60, 50, 150, and 180 generations, respectively. It
converges faster than other algorithms and has better opti-
mization capabilities, which proves that the VND module has
a significant effect on improving the optimization capability
of the algorithm.
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(a) E-n35-k3-s5 (b) E-n89-k7-s13

(c) F-n49-k4-s4 (d) M-n165-k12-s12

Fig. 4. Convergence curves of four instances

It can be clearly seen from Fig. 4 that under the same
number of iterations, the objective function value obtained by
the proposed algorithm decreases faster and smaller, which
shows that the convergence speed of HMMAS is faster. It
has the advantage of finding better solutions. In conclusion,
the HMMAS algorithm can effectively reach approximate
optimal or global optimal, and its improvement strategies
are also effective.

V. CONCLUSION

In this paper, we addressed the Electric Capacitated Vehi-
cle Routing Problem with variable energy consumption rate
(E-CVRP), where the variable energy consumption rate of
vehicles exhibits a linear correlation with their load. Then,
we proposed a hybrid max-min ant system algorithm, namely
HMMAS, to solve it. After all ants complete a round of
search, the variable neighborhood descent procedure is used
as a local search process to optimize the iterative optimal
solution. This procedure not only helps to enhance search ca-
pability but also accelerates convergence speed. In addition,
the charging scheduling of routes is further improved by the
charging station strategy. We conducted some experiments
on 14 benchmark instances and the results demonstrate the
effectiveness of our proposed algorithm.

In addition, we also test the performance of hybrid com-
ponents in our proposed algorithm. The results show that

introducing a VND procedure in the basic max-min ant sys-
tem method can enhance the search ability of the algorithm.
When we introduce the charging station adjustment strategy
into the algorithm, the algorithm can obtain better solutions
by shifting the position of charging stations. We also analyze
the convergence curves of five methods on four instances,
which demonstrates that the proposed HMMAS algorithm
has fast convergence speed and good optimization ability.

In the future, we will do some work to improve the
efficiency and generality of our proposed algorithm. Further-
more, with the application of electric vehicles in more and
more fields, some new problems have emerged, such as time
window, no-linear charging, and random demand, which have
become new constraints of E-CVRP. This will be a promising
research topic to solve these new variants of E-CVRP.
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