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Abstract In this paper, we extend the concept
of a generalized Parikh vector of the partial word
known as e−generalized Parikh vector, and its re-
lated properties are studied. We also introduce the
e−generalized Parikh matrix of the partial word and
provide its characterization theorem. Further, we dis-
cuss the algebraic properties of partial words in terms
of e−generalized Parikh matrix. In addition, we de-
fine partial line languages and confer their proper-
ties concerning e−generalized Parikh vector of partial
words.
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1 Introduction

Combinatorics on words is a relatively new branch of dis-
crete mathematics with applications in many fields. In
the algebraic study of words and languages, analyzing
words as numerical quantities is often convenient. In
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this context, the Parikh matrix mapping (Parikh ma-
trices) [16] is now famously used to study words. The
perceptible epic of the Parikh matrix mapping (Parikh
matrices) begins exactly in the year 2000 by Mateescu
et al. as an extension of the Parikh mapping (Parikh
vector) [18]. The necessity of the Parikh matrix map-
ping is that it enhances the characterization of words
through numerical quantities. The obstacle with the
Parikh vector was that much of the information about
the word was lost in the transition to the vector. In
that sense, an extension to a special kind of matrix called
Parikh matrix would provide more information while also
remaining computationally feasible. By using matrices
instead of vectors more information about the word is
preserved and numerical facts such as the number of
occurrences of certain subwords in a word can be ele-
gantly computed by matrix multiplication. In general a
word cannot be determined by its Parikh matrix. Hence,
one of the most studied questions in this area is the
injectivity problem of Parikh matrix mapping and M-
equivalent classes of words, which consist of words with
a common Parikh matrix. A word is M-unambiguous if
and only if its M-equivalence class is a singleton. How-
ever, the injectivity problem as well as characterization
of M-unambiguity have been elusive problems. Some
properties related to the injectivity of the Parikh matrix
over a binary alphabet are analyzed in [1, 2, 3, 4, 17].
A number of investigations on different properties re-
lated to Parikh matrices have been done extensively in
[7, 8, 9, 10, 13, 14, 15, 19, 20, 21, 22, 25, 28, 29, 30, 31, 32].

The concept of generalized Parikh vector introduced by
R. Siromoney and V.R.Dare [26] which gives the exact
positions of the symbols in a word. The Parikh vector
for a word enumerates how many times each symbol of
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the alphabet occurs in it, while the generalized Parikh
vector indicates its position within the word. The gen-
eralized Parikh vector was examined in [27] to decrypt
public key cryptosystems based on DOL/TOL systems.
Sasikala et al. intoduced a language called line language
[23] and analyzed a geometrical representation for this
line language with the help of generalized Parikh vector.
It had been proven that the generalized Parikh vectors
of the same length lie on a hyperplane. For words of the
same length in a binary alphabet, the generalized Parikh
vectors lie in a straight line. Several investigations to
developing Parikh matrices have been shown in Figure 1.

Figure 1: Studies on Parikh Matrices

As we know that genetic instructions are carried by DNA
molecules. Moreover, in DNA computing, DNA strands
are viewed as finite words (strings) and utilized to encode
information. Some information may be missing or not
visible during DNA sequencing which can be disclosed by
positions representing the missing symbols in a word. As
a result, in gene comparisons partial words [5] are studied
instead of total words which are strings of symbols from
a finite alphabet with a “don’t care symbol” or “hole”.
Blanchet-Sadri has made a first step towards investigat-
ing languages of partial words by introducing the concept
of p codes, which are sets of partial words preserving the
uniqueness of factorization of partial words [6]. A partial
word can also be used in a number of common and well
known fields such as pattern matching and text search-
ing. A number of studies on related to partial words have
been done extensively in [11, 12]. Sasikala et al. extended
the concept of line languages with respect to generalized
Parikh vector to partial words where the positions rep-
resenting the holes are neglected and the corresponding
languages obtained are termed Partial Line languages in
[24]. But words with symbols restricted to either sin-

gle elements of alphabet or else alphabet itself (called a
hole) have been intensively studied as partial words. This
leads us to introduce e−generalized Parikh vector to par-
tial words where the positions representing the holes are
considered as a set of symbols over the alphabet.

The remainder of this paper is organized as follows. In
Section 2, the basics are provided that are used in sub-
sequent sections. We introduce and analyze some of
the properties of e−generalized Parikh vectors of par-
tial words in Section 3. Section 4 introduces the con-
cept of e−generalized Parikh matrices of partial words
and give a flow chart to explain the schematic moves to
calculate e−generalized Parikh matrices of binary words
defined over binary alphabets. Also we discusses the char-
acterizations on the entries of the e−generalized Parikh
matrices in terms of partial words. In Section 5, we ex-
tend the concept of partial line languages with respect to
e−generalized Parikh vectors.

2 Preliminaries

In this section, we provide some basic definitions and ter-
minologies that will be helpful for readers to understand
the main section.

2.1 Words and Subwords

A finite set Σ called an alphabet whose elements are
called symbols. A word x is a sequence of elements drawn
from Σ. The empty word of length zero is denoted by
λ. For a given Σ, let Σ+ be the set of all possible non
empty finite symbols of Σ and Σ∗ = Σ+ ∪ (λ). The
length of the word x is denoted as |x|. If there exist
words y1, y2, · · · , yn and x0, x1, x2, · · · , xn over Σ such
that y = y1y2 · · · yn and x = x0y1x1y2 · · · ynxn the word
y ∈ Σ∗ is termed as scattered subword of the word x. The
number of occurrences of the word y in x is represented
as |x|y. Let aij be the word aiai+1 · · · aj for 1 ≤ i < j ≤ k

and if i = j then aij = ai. An ordered alphabet denoted
as Σk is an alphabet Σ = {a1, a2, · · · , ak} with the total
order relation a1 < a2 < · · · < ak. Let a, b be two sym-
bols in an alphabet Σ and δa,b be the Kronecker delta
with respect to the symbols then

δa,b =

⎧⎨
⎩1 if a = b,

0 if a �= b.
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2.2 Partial words

A partial word u♦ is a sequence of elements drawn from
Σ which may have a number of holes. A partial word
u♦ = u♦[1 . . . n] over Σ is a partial function

u : {1, 2, · · · , n} → Σ.

For 1 ≤ i < n if u♦(i) is defined, then we say i ∈ D(u♦)

(the domain of u♦), otherwise i ∈ H(u♦) (the set of
holes). A word over Σ is a partial word over Σ with
an empty set of holes. For any partial word u♦ over Σ,
|u|♦ denotes its length. If u♦ is a partial word of length n

over Σ then the companion of u♦ (comp(u♦)) is the total
function comp(u♦) : {1, 2, · · · , n} → Σ ∪ {♦} defined by

comp(u♦) =

⎧⎨
⎩u♦(i) if i ∈ D(u)

♦ if i ∈ H(u).

The symbol ♦ /∈ Σ is viewed as a hole symbol. The set
of all partial words over Σ ∪ {♦} = Σ♦ is denoted as Σ∗

♦
and Σ+

♦ denotes the set of all partial words excluding the
empty word. It is possible to identify partial words with
their companions. If a partial words is complete, it does
not contain ♦. Thus a partial word is any word over the
alphabet Σ♦ where the symbol ♦ can be considered in a
particular manner: that is the symbol ♦ can match any
symbol from Σ. We note that,

1. A total word is a partial word with zero holes.

2. Empty word is not a partial word.

3. The symbol ♦ does not belong to the alphabet Σ but
a standby symbol for the unknown letter.

4. The symbol ♦ is compatible to the letters of the al-
phabet Σ.

2.3 Parikh matrix

Let N be the collection of all non-negative integers and
Mk be the collection of all k×k right triangular matrices
whose elements are in N with unit diagonal.

Definition 2.1. [16] The Parikh matrix mapping with
respect to Σk = {a1 < a2 < · · · < ak} denoted as ψk is
the morphism ψk : Σ∗

k → Mk+1 defined such that for

every integer 1 ≤ t ≤ k, if ψk(at) = (mij)1 ≤ i, j ≤ k+1

then mt,(t+1) = 1, mii = 1 for 1 ≤ i ≤ k+1 and all other
elements of the matrix being zero.

Theorem 2.2. ([16]) Let x be the word over Σ∗
k then the

Parikh matrix has the following characteristics
(i) mii = 1 for 1 ≤ i ≤ k + 1

(ii) mij = 0 for each 1 ≤ j < i ≤ k + 1

(iii) mi(j+1) = |x|aij for each 1 ≤ i ≤ j < k.

Example 2.3. Let x = acbc be the word over Σ3 then
the Parikh matrix of x is

ψ3(acbc) = ψ3(a)ψ3(c)ψ3(b)ψ3(c)

=

⎡
⎢⎢⎢⎢⎣
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1 1 1 1

0 1 1 1

0 0 1 2

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1 |x|a |x|ab |x|abc
0 1 |x|b |x|bc
0 0 1 |x|c
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Note 1. Two words x, y ∈ Σ∗
k are called M−equivalent

represented by x ∼M y if and only if ψk(x) = ψk(y). If
there exists a word w �= z such that z ∼M w then the
word z ∈ Σ∗

k is termed as M−ambiguous. Otherwise z is
termed as M−unambiguous.

Definition 2.4. The alternate Parikh matrix with re-
spect to Σk denoted as ψk is the morphism ψk : Σ∗

k →
Mk+1 defined such that

ψk(at) = (mij)1 ≤ i, j ≤ k+1

where 1 ≤ t ≤ k then mt(t+1) = −1 if t < k, mii = 1 for
1 ≤ i ≤ k+1 and all other entries of the matrix are equal
to zero.

Example 2.5. Let x = acbc be the word over Σ3 then
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the Parikh matrix of x is

ψ3(acbc) = ψ3(a)ψ3(c)ψ3(b)ψ3(c)

=

⎡
⎢⎢⎢⎢⎣
1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1 −1 1 −1

0 1 −1 1

0 0 1 −2

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

2.4 Generalized Parikh vector and general-
ized Parikh matrix

Definition 2.6. Let w be a word over Σk. The general-
ized Parikh vector of w is denoted as G(w) and defined
by

G(w) =
{
(gp1 , gp2 , · · · , gpk

) ∈ [0, 1]2 :

gpr =
∑

i∈gr
1
2i , 1 ≤ r ≤ k

}

where gr be the set of all positions of ar ∈ Σ occurs in w.

Example 2.7. If the word x = ababb over Σ3 then the
generalized Parikh vector of x is

G(x) =

(
1

2
+

1

23
,
1

22
+

1

24
+

1

25

)

=

(
5

23
,
11

25

)
.

Definition 2.8. Let w be a word of length n over
Σk where Σk = {a1, a2, · · · , ak} such that w =

w1w2 · · ·wt · · ·wn where wt ∈ Σk for 1 ≤ t ≤ n. The
generalized Parikh matrix mapping denoted as ψGM is
the morphism ψGM : Σ∗

k → Mk+1 such that ψGM (wt)

is a square matrices of order k + 1 then ψGM (w) =

ψGM (w1)ψGM (w2) · · ·ψGM (wn) defined by the condition

ψGM (wt) = (mp,q)1≤p,q≤k+1; 1 ≤ t ≤ n

where if wt = al then

• mp,p = 1 for 1 ≤ p ≤ k + 1

• ml,(l+1) =
1
2t for 1 ≤ l ≤ k

• remaining entries are zero

Example 2.9. Let x = ababb be a word over Σ2 then the
generalized Parikh matrix of x is

ψGM (ababb) = ψGM (a)ψGM (b)ψGM (a)ψGM (b)ψGM (b)

=

⎡
⎢⎣
1 1

2 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 0 0

0 1 1
22

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 1

23 0

0 1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣
1 0 0

0 1 1
24

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 0 0

0 1 1
25

0 0 1

⎤
⎥⎦

=

⎡
⎢⎣
1 5

23
47
28

0 1 11
25

0 0 1

⎤
⎥⎦ .

Definition 2.10. A language L is said to be a line lan-
guage if there exist line language l in R2 such that gen-
eralized Parikh vectors of L lie on l. The line l is called
a language line. A language is said to be a finite line
language if it contains only finite words.

Throughout the paper, we consider the symbol ♦ re-
stricted to either single elements of Σk or else Σk itself.

3 e−generalized Parikh vector for partial
words

Dare et al. studied the concept of generalized Parikh vec-
tor to partial word where the positions associated with
the holes are neglected. But words with symbols re-
stricted to either a single element of the alphabet or the
alphabet itself (called a hole) have been intensively stud-
ied as partial words. This study leads us to explore the
generalization of a generalized Parikh vector to the par-
tial word called an e-generalized Parikh vector, where the
positions associated with the holes are considered a set of
symbols over the alphabet. In this section, we introduce
the e-generalized Parikh vector of partial words, which
indicates the accurate positions of symbols in a word,
including holes as a set of symbols over the alphabet.

Definition 3.1. Consider the partial word u♦ over Σ♦ =

{a1, a2, · · · , ak}∪{♦}. Then the e-GPV of u♦ is denoted
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as G♦(u♦) and defined by

G♦(u♦) =
{
(gp1

, gp2
, · · · , gpk

) ∈ [0, 1]2
}

where gpr
=
∑

i∈gr
1
2i +

∑
j∈g♦

1
2j , 1 ≤ r ≤ k.

The set gr consists of all positions of ar ∈ Σ occurs in
u♦ and the set g♦ consists of all positions of ♦ occurs in
u♦.

Example 3.2. Let u♦ = ♦ab♦b be the binary partial
word. As ”a” occurs in position 2, we have g1 = {2} and
”♦” occurs in the positions 1 and 4, we have g♦ = {1, 4}.
Therefore

gp1 =

(
1

22

)
+

(
1

2
+

1

24

)
=

13

24
.

Further ”b” occurs in the positions 3 and 5, we have g2 =

{3, 5}. So

gp2
=

(
1

23
+

1

25

)
+

(
1

2
+

1

24

)
=

23

25
.

The e-GPV of binary partial word u♦ is

G♦(u♦) = (gp1
, gp2

) =

(
13

24
,
23

25

)
.

Theorem 3.3. Let u♦, v♦ ∈ Σ♦, then

G♦(u♦v♦) = G♦(u♦) +
1

2|u♦|G♦(v♦).

Proof. Let the e-GPV of u♦ and v♦ be

G♦(u♦) = (gp1
, gp2

, · · · , gpk
)

G♦(v♦) =
(
gp′

1
, gp′

2
, · · · , gp′

k

)

where u♦ and v♦ be the partial words over Σ♦. As
evidenced by the concatenation of u♦ and v♦, sym-
bols of v♦ fall after the symbols of u♦. To remuner-
ate this shift through the length of u♦, the components
gp′

1
, gp′

2
, · · · , gp′

k
are multiplied by 1

2u♦ . Therefore

G♦(u♦v♦) =

(
gp1

+
1

2u♦
(gp′

1
), gp2

+
1

2u♦
(gp′

2
), · · · ,

gpk
+

1

2u♦
(gp′

k
)

)

= (gp1 , · · · , gpk
) +

1

2u♦

(
gp′

1
, · · · , gp′

k

)
= G♦(u♦) +

1

2|u♦|G♦(v♦).

Theorem 3.4. Let u♦ ∈ Σ♦, then

G♦(un
♦) = G♦(u♦)

(
1− 1

2n|u♦|

1− 1

2|u♦|

)
.

Proof. Let the e-GPV of u♦ be

G♦(u♦) = (gp1
, gp2

, · · · , gpk
)

where u♦ be the partial word over Σ♦. To prove the
theorem, we utilize the method of induction on the length
of u♦. Clearly the partial word of length n = 1 satisfies
the theorem and thus the base step holds. Now consider
the induction step, let

G♦(u2
♦) = G♦(u♦)

(
1 +

1

2|u♦|

)

G♦(u3
♦) = G♦(u♦)

(
1 +

(
1

2|u♦|

)
+

(
1

2|u♦|

)2
)

...

G♦(un
♦) = G♦(u♦)

(
1 +

(
1

2|u♦|

)
+

(
1

2|u♦|

)2

+ · · ·

+

(
1

2|u♦|

)n−1
)
.

Since by the geometric series

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x

and by the induction hypothesis, we have

G♦(un
♦) = G♦(u♦)

(
1− 1

2n|u♦|

1− 1

2|u♦|

)
.

Theorem 3.5. The e-GPV of partial word is injective.

Proof. Consider two partial words u♦ and v♦ defined over
the alphabet Σ♦ such that

G♦(u♦) = G♦(v♦) = (gp1
, gp2

, · · · , gpk
) .

Then

gpr =
∑
i∈gr

1

2i
+
∑
j∈g♦

1

2j
, for 1 ≤ r ≤ k
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where the set gr consists of all positions of ar ∈ Σ occurs
in u♦ and the set g♦ consists of all positions of ♦ occurs in
u♦. Thus (gp1 , gp2 , · · · , gpk

) uniquely fixes the positions
of the symbols in u♦ and v♦. Therefore u♦ must be equal
to v♦.

We present an algorithm for computing the e-generalized
Parikh vector of partial word over Σ♦.

Algorithm 1: Algorithm for Computing
e−generalized Parikh Vector of Partial Word
Data: Partial word u♦ over

Σ♦ = {a1, a2, · · · , ak} ∪ {♦}
Result: e-generalized Parikh vector G♦(u♦)

1 Initialize an empty set gpos to keep track of
positions of occurrences of symbols;

2 for each symbol ar in Σ do
3 Initialize an empty set gr and set gpos[ar] = gr;

4 Initialize an empty set g♦ and set gpos[♦] = g♦;
5 for each position i in u♦ do
6 if ui = ar then
7 Add i to gpos[ar];

8 else if ui = ♦ then
9 Add i to gpos[♦];

10 Compute G♦(u♦) using the following condition:

G♦(u♦) =
{
(gp1 , gp2 , · · · , gpk

) ∈ [0, 1]2
}

where gpr
=
∑

i∈gr
1
2i +

∑
j∈g♦

1
2j , 1 ≤ r ≤ k The

resulting G♦(u♦) is the e-generalized Parikh
vector of partial word u♦.

4 e-generalized Parikh Matrices for Par-
tial Words

This section introduces the e-generalized Parikh matrix
(or e-GPM) of partial words and includes a flowchart
to demonstrate the steps involved in calculating the e-
generalized Parikh matrix for a given partial word.

Definition 4.1. Consider u♦ be the partial word with
length n over Σ♦ where such that u♦ = u1u2 · · ·ut · · ·un

where ut ∈ Σ♦ for 1 ≤ t ≤ n. The e-GPM mapping de-
noted as ψ♦ is the morphism ψ♦ : Σ∗

♦ → Mk+1 such
that ψ♦(ut) is a square matrices of order k + 1 then
ψ♦(u♦) = ψ♦(u1)ψ♦(u2) · · ·ψ♦(un) defined by the con-
dition ψ♦(ut) = (mp,q)1≤p,q≤k+1; 1 ≤ t ≤ n where either
if ut = al then mp,p = 1 for 1 ≤ p ≤ k + 1, ml,(l+1) =

1
2t

for 1 ≤ l ≤ k and remaining entries are zero or if ut = ♦

then mp,p = 1 for 1 ≤ p ≤ k + 1, mp,p+1 = 1
2t for

1 ≤ p ≤ k and remaining entries are zero.

Example 4.2. Let u♦ = a♦bab♦ be the binary partial
word. Then the e-GPM of binary partial word u♦ is

ψ♦(u♦) = ψ♦(a)ψ♦(♦)ψ♦(b)ψ♦(a)ψ♦(b)ψ♦(♦)

=

⎡
⎢⎣
1 1

2 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 1

22 0

0 1 1
22

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 0 0

0 1 1
23

0 0 1

⎤
⎥⎦

⎡
⎢⎣
1 1

24 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 0 0

0 1 1
25

0 0 1

⎤
⎥⎦
⎡
⎢⎣
1 1

26 0

0 1 1
26

0 0 1

⎤
⎥⎦

=

⎡
⎢⎣
1 53

26
263
210

0 1 27
26

0 0 1

⎤
⎥⎦ .

4.1 Characterization of the Entries on the
e-generalized Parikh Matrices of Partial
Words

The following theorem provides a characterization of e-
GPM.

Theorem 4.3. Let u♦ be a partial word of length n over
Σ♦ where such that u♦ = u1u2 · · ·ut · · ·un where ut ∈ Σ♦
for 1 ≤ t ≤ n. The e-GPM mapping

ψ♦(u♦) = (mp,q)1≤p,q≤k+1

has the following properties:
(i) mp,q = 0 for all 1 ≤ q < p ≤ k + 1

(ii) mp,p = 1 for all 1 ≤ p ≤ k + 1

(iii) mp,q+1 = e-GPV of scattered subword ai,j for all
1 ≤ i ≤ j ≤ k.

Proof. Clearly, properties (i) and (ii) are true. Our aim
is to prove the property (iii). Clearly the partial word of
length n = 1 satisfies the theorem and thus the base step
holds. We argue by induction on length of u♦ for proving
the theorem. Let the property (iii) true for all partial
words of length at most n. Assume that the partial word
u♦ be of length n+1. Therefore u♦ = u′

♦at where u′
♦ = n

and either at ∈ Σk or at = ♦.
Case 1 : Suppose if at ∈ Σk with 1 ≤ t ≤ k then

ψ♦(u♦) = ψ♦(u′
♦at) = ψ♦(u′

♦)ψ♦(at).
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Consider that

ψ♦(u′
♦) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 m′
1,2 m′

1,3 m′
1,4 · · · · · · m′

1,k+1

0 1 m′
2,3 · · · · · · · · · m′

2,k+1
...

. . . . . . . . . . . . . . .
...

0 · · · 0 1 1
2t · · · ...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . m′
k,k+1

0 0 0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assuming the induction hypothesis holds for ψ♦(u′
♦), it

satisfies property (iii). Also from Definition 4.1, we ob-
tain that

ψ♦(at) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · · · · 0

0 1 0 0 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 1 1
2t · · · 0

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

0 0 0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix ψ♦(at) contains only zeroes, except for the
entries on the main diagonal, which are set to one. Ad-
ditionally, the element located at position (t, t+ 1) has a
value of 1

2t . Therefore ψ♦(u′
♦) = R.

Case 2 : Suppose if at = ♦ then

ψ♦(u♦) = ψ♦(u′
♦♦) = ψ♦(u′

♦)ψ♦(♦).

From Definition 4.1, we obtain that

ψ♦(♦) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2t 0 0 · · · · · · 0

0 1 1
2t 0 · · · · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 1 1

2t · · · 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
0 0 0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix ψ♦(♦) contains only zeroes, except for the
entries on the main diagonal, which are set to one. Ad-
ditionally, the elements on the super diagonal are 1

2t .

Therefore

ψ♦(u♦) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2t 0 0 · · · · · · 0

0 1 1
2t 0 · · · · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 1 1

2t · · · 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
0 0 0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence ψ♦(u′
♦) = R. Therefore the final matrix R =

(mr,s)1≤r,s≤k+1 has the property that mq,p+1 = m′
q,p +

m′
q,p+1 for all q, 1 ≤ q ≤ p and for all other entries

mp,q = m′
p,q. Since e-GPV of aj,i = aj · · · ai as a scat-

tered subword in u♦ equals the e-GPV of aj,i in u′
♦ and

e-GPV of aj,i−1 in u′
♦, the inductive step is complete.

Thus the property (iii) is true. Hence the Theorem fol-
lows.

We present an algorithm for computing the e-generalized
Parikh matrix of a binary partial word.

Algorithm 2: Algorithm to find ψ♦(u♦)
Data: Partial word u♦ of length n over Σ♦,

Alphabet Σ♦ = {a1, a2, . . . , ak} ∪ {♦},
Parameter k

Result: Matrix ψ♦(u♦) of order k + 1
1 Initialize matrix M of order k + 1 with all entries

set to 0;
2 for each symbol ut in u♦ do
3 if ut is an element of Σ♦ then
4 Set mp,p = 1 for 1 ≤ p ≤ k + 1;
5 if ut = al then
6 Set ml,(l+1) =

1
2t for 1 ≤ l ≤ k;

7 else if ut = ♦ then
8 Set mp,p = 1 for 1 ≤ p ≤ k + 1;
9 Set mp,p+1 = 1

2t for 1 ≤ p ≤ k;

10 The resulting matrix M is ψ♦(u♦)

Note 2. We note that,

1. Coordinates of the e-GPV of a partial word are the
elements of the super diagonal of the e-GPM.

2. In the binary partial word u♦, the entries m1,2 and
m2,2 in the e-GPM represent the first and second co-
ordinates of the e-GPV and the entry m1,3 represents
the e-GPV of the scattered subword ab.
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Theorem 4.4. The e-GPM of binary partial word is in-
jective.

Proof. Consider two partial words u♦ and v♦ defined over
the alphabet Σ♦ = {a, b} ∪ {♦} such that

ψ♦(u♦) = ψ♦(v♦)

=

⎡
⎢⎣
1 gp1

gpab

0 1 gp2

0 0 1

⎤
⎥⎦

where gp1
and gp2

be the components of e-GPV and gpab

be the e-GPV of scattered subword ab of u♦ and v♦.
Then by Theorem 3.5 we have (gp1

, gp2
) uniquely fixes

the positions of the symbols of the alphabet in the partial
words u♦ and v♦. Therefore e-GPV of scattered subword
ab also fixes the positions in the partial words u♦ and v♦.
Hence u♦ must be equal to v♦.

Corollary 4.5. The e-GPM of u♦ over Σ♦ is injective.

Theorem 4.6. Let the e-GPM be

⎡
⎢⎣
1 gp1 gpab

0 1 gp2

0 0 1

⎤
⎥⎦ where

gp1 and gp2 be the components of e-GPV and gpab
be the

e-GPV of scattered subword ab such that gp1 , gp2 and gpab

are in the form of g
2l

where g, l be a positive integer with
respect to a partial word u♦ of length n over Σ♦ = {a, b}∪
{♦}. Then the e-GPM satisfies the following condition:

(i) if gp1
and gp2

are the components of the e-GPV then

gp1 + gp2 =

n∑
i=1

1

2i
+

n∑
j∈g♦

1

2j

(ii) if gp1
= x

2l1
, gp2

= y
2l2

and gpab
= z

2l3
then

l3 ≤ l1 + l2 and z = 0 or z < xy.

Proof. (i) Let u♦ be the partial word over Σ♦ = {a, b} ∪
{♦} such that the e-GPM of u♦ is an upper triangular
square matrix whose supper diagonal elements are the
components of the e-GPV. Therefore if g1, g2 and g♦
denote the positions of a, b and ♦ of the partial word of

length n such that

gp1
=

∑
i∈g1

1

2i
+
∑
j∈g♦

1

2j

gp2
=

∑
i∈g2

1

2i
+
∑
j∈g♦

1

2j
then

gp1
+ gp2

=

n∑
i=1

1

2i
+
∑
j∈g♦

1

2j
.

(ii) If gp1
and gp2

be the components of the e-GPV of the
partial word u♦ such that gp1

= x
2l1

and gp2
= y

2l2
then

the e-GPV of the scattered subword ab is

gpab
=
∑⎛

⎝∑
i∈g1

1

2i
+
∑
j∈g♦

1

2j

⎞
⎠
⎛
⎝∑

i′∈g2

1

2i′
+
∑
j∈g♦

1

2j

⎞
⎠

for all i, j < i′ where the occurrences of a contributes∑
i∈g1

1
2i +

∑
j∈g♦

1
2j and the occurrences of b contributes∑

i′∈g2
1
2i′

+
∑

j∈g♦
1
2j . Therefore l3 ≤ l1 + l2. Let gpab

be the e-GPV of the scattered subword ab of the partial
word u♦ such that gpab

= z
2l3

then we have to prove that
either z = 0 or z < xy. Now we consider two cases.
Case 1 : If the partial word u♦ begins with b or a sequence
of b followed by ♦ or a sequence of ♦ and then followed
by a or a sequence of a with no b after the occurrence of a
in the partial word u♦ then there is no scattered subword
ab in the partial word u♦. Therefore z = 0.
Case 2 : Other then Case 1 we have z < xy.

It can be challenging to perform manual matrix multipli-
cation when dealing with partial words of larger length.
To address this issue, Figure 2 is provided to outline the
process for calculating the e-GPM of a binary partial
word.

4.2 e-Partial Line Languages

The concept of partial line languages in relation to e-
GPVs is extended in the form of e-partial line languages
with respect to e-GPVs.

Definition 4.7. A partial language LP is said to be an
e-partial line language if there exist a language line lep

in R2 such that e-GPVs of LP lie on lep. The line lep

is called a e-partial language line. A partial language is
said to be a finite e-partial line language if it contains
only finite partial words.
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Figure 2: Flow Chart to Find e-generalized Parikh Ma-
trix of a Binary Partial Word

Remark 4.8. We note that,

1. The e-GPV of all partial words lies in the region
above the lines x = 0, y = 0 and x + y = 1. Figure
3 illustrates this region, which is called the e-Partial
Line region or EPL−region.

2. The EPL−region is unbounded.

3. There are no partial words whose e-GPVs are
bounded by the lines x = 0, y = 0, and x+ y = 1.

4. L = (u)+♦ be the partial language where u ∈ {a, b}
lie on the line x+ y = 1.

Figure 3: e-generalized Parikh Vector of Binary Partial
Words
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