
 

  

Abstract—In recent years, infrared target detection has 

played a crucial role in intelligent transportation and assisted 

driving. Addressing the current issues of low detection accuracy, 

poor robustness, and missed detections in infrared image 

detection, we propose an improved infrared road traffic 

detection algorithm, YOLOv8-EGP, based on YOLOv8s. 

Firstly, we replace the original C2f module with the SCConv 

convolution module to extract feature information of different 

sizes, thereby enhancing the perception of local features in 

infrared images and connecting spatial relationships between 

them. Then, in the head part, we use the dyhead detection head 

and combine three different dimensions with multi-attention, 

improving the expression ability of the detection head for 

infrared targets without increasing computational complexity. 

Finally, we add a small target detection layer (min) to reduce 

missed detections of small targets in infrared images and 

improve the final detection accuracy. The conducted ablation 

experiments show that on the FILIR public dataset, compared 

to YOLOv8s, the YOLOv8-EGP algorithm increases mAP50 by 

6.1%, and precision and recall also increase by 5.8% and 1.6%, 

respectively, indicating that the improved model can better 

adapt to infrared target detection, validating the effectiveness of 

this method. 

 
Index Terms—Deep Learning, Infrared Images, Object 

Detection, YOLOv8 

 

I.  INTRODUCTION 

ith the rapid development of safe cities, smart 

transportation, and other fields, the application of 

infrared image object detection technology is becoming more 

and more widespread. This is especially true in the area of 

vehicle assisted driving, where it plays a crucial role. Due to 

the unique imaging method and the low resolution of IR 

images, they are also susceptible to environmental noise 

interference. This makes the task of object detection and 

recognition relatively challenging, leading it to become a hot 

topic of research.  

Object detection is a crucial research area in computer 

vision, finding extensive applications across various domains 

[1]. Object detection algorithms have witnessed significant 

development in computer vision in recent years. Many 

classical representative algorithms have emerged, generally 

falling into two categories. One is the traditional object 
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detection algorithm, in which the network only focuses on 

extracting representations from a single image and ignores 

the potential correlation between images [2]. Another type is 

deep learning-based object detection algorithms. In addition, 

object detection models can also be categorized into two 

types, one of which is the two-stage approach. For example, 

in 2014, Girshick et al [3]. A two-stage object detector model 

called R-CNN was introduced in, which was the first 

algorithm to apply deep learning to object detection. 

However, despite significant progress, it still faces many 

issues related to real-time performance and accuracy. 

Subsequent models like Fast R-CNN [4] and Faster 

R-CNN [5] were developed to address the shortcomings of 

the R-CNN model. For instance, Fast R-CNN replaces the 

fully connected layers in R-CNN with ROI Pooling layers to 

improve the accuracy of object detection. 

Faster R-CNN introduces the Region Proposal Network to 

generate candidate boxes, which reduces the computational 

complexity. However, it still faces challenges such as high 

computational requirements, long training times, and 

difficulties in handling multiple scales and small objects. 

Another class of models is the single-stage approach, which 

emerged in 2016. Representative algorithms include YOLO 

[6] and SSD [7]. These models successfully transform object 

detection into a regression problem, using deep neural 

networks to automatically learn and predict object positions 

and categories. This significantly improves the accuracy and 

efficiency of object detection, although at the cost of some 

accuracy. The computational speed is greatly enhanced. 

The SSD algorithm is trained on both detection and 

classification tasks within the same network, simplifying the 

model structure. It uses different anchor boxes to 

accommodate various sizes, improving efficiency and 

detection accuracy. However, its speed was slower compared 

to the YOLO series [8-10] algorithms. 

The YOLO series evolved rapidly, with continuous 

updates from YOLOv3 to YOLOv6 [11] in recent years. 

They addressed some of the shortcomings of the original 

version and improved both speed and accuracy. For example, 

the YOLOv7 [12] algorithm introduced in 2022 featured an 

efficient ELAN structure, dynamic label assignment strategy, 

and added auxiliary heads to the feature pyramid model. This 

not only improves the accuracy of object detection, but also 

increases the speed. However, YOLOv7 still faces challenges 

related to model complexity and computational requirements. 

The latest YOLOv8 algorithm adopts a state-of-the-art 

(SOTA) model that draws inspiration from YOLOv7 ELAN's 

design principles. It replaces the C3 structure of YOLOv5 

with the C2f structure, which provides a richer gradient flow. 

In addition, the head profile has been replaced with the 

current mainstream decoupled head structure, separating the 
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classification and detection heads. Furthermore, YOLOv8 

abandons the Anchor-Based approach in favor of 

Anchor-Free and employs the Task-Aligned Assigner [13] 

positive sample assignment strategy along with Distribution 

Focal Loss for loss calculation. In terms of data augmentation 

during training, YOLOv8 borrows the strategy from YOLOX 

[14] of disabling Mosaic augmentation in the final 10 epochs, 

effectively enhancing model accuracy. 

Overall, YOLOv8 builds on the strengths of the YOLO 

family while introducing innovations that improve model 

flexibility and performance. However, when it comes to 

object detection in IR images, the complexity of IR images 

and the lack of distinctive object features, especially for small 

objects, can lead to poor model accuracy. 

In this paper, we introduce the YOLOv8-EGP algorithm 

for IR road object detection by proposing several 

improvements and optimizations based on YOLOv8s. The 

optimizations include: 

1. Improving the C2f layer by replacing it with a more 

flexible and adaptive convolution module called SCConv 

[15], enhancing feature diversity in the output. 

2. Adding a detection layer designed to better handle small 

targets, improving feature extraction for small objects, and 

addressing issues such as inaccurate detection caused by 

YOLOv8s' division of the image into large grids. 

3. Enhancing detection capabilities using the 

attention-based detection head dyhead [16] to improve model 

generalization and detection accuracy. 

II.  IMPROVED MODEL 

This algorithm uses the YOLOv8s model as a reference 

and makes improvements to enhance object detection in IR 

images. First, it replaces the original C2f layer in YOLOv8s 

with SCConv. Second, an additional small object feature 

extraction layer is added to improve the feature extraction 

capability. In addition, the original Detect detection head of 

the model is replaced with an attention-based detection head 

called dyhead. 

The entire model structure is divided into three levels. The 

YOLOv8-EGP model is structured as follows and is shown in 

Fig. 1. 

1. The backbone main network, known as the "backbone," 

serves as the core feature extractor responsible for the initial 

feature extraction. 

2. The neck part builds upon the backbone network to 

extract and fuse features to provide richer information for 

subsequent predictions. 
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Fig. 1. YOLOv8-EGP model
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Fig. 2. SCConv module

3. The head part is the output layer for predicting bounding 

boxes and class information. 

This architecture is designed to enhance the model's 

capability for infrared object detection by improving feature 

extraction and prediction. 

A. SCConv Module 

The SCConv module represents the Self-Calibrated 

Convolutions module. 

The original YOLOv8s model uses the C2f module to 

maintain consistency in the number of convolution channels 

between cv1 and cv2. This is beneficial for preserving the 

consistency of the convolutional information. However, in 

the cv3 module, it has twice as many input channels as the 

previous layers. The reason for this is that the main gradient 

flow cv3 is obtained by a cat operation between the 

BottleNeck branch and the CBS branch of the secondary 

gradient flow cv2. This design is designed to allow the C2f 

module to capture richer gradient flow information.  

The C2f module was designed with inspiration from the 

ELAN module, which aims to make the model more 

lightweight while capturing rich information. However, such 

a design may encounter issues when dealing with targets in 

infrared object detection. For instance, infrared images, 

which are influenced by temperature variations, may exhibit 

less prominent features when their grayscale values are low. 

The feature maps output by C2f are generated using the same 

formula repeatedly, and their spatial receptive field is 

primarily controlled by the predetermined kernel size. As a 

result, the extracted features may contain a significant 

amount of redundant information, leading to weak 

discriminative power. 

In the context of infrared object detection, the challenge is 

to efficiently capture meaningful features from objects with 

low contrast or temperature sensitivity. Therefore, further 

improvements or adaptations of the C2f module may be 

necessary to address these specific challenges and enhance 

the performance of the model on infrared images. 

In the YOLOv8-EGP model, the SCConv module used is 

distinct from other convolutional modules. SCConv achieves 

this by employing convolutional kernels of various sizes, 

allowing it to capture spatial context relationships, have a 

stronger receptive field, and pay more attention to local 

information. The SCConv module, can encode multiscale 

information through adaptive operations, providing richer 

feature information for subsequent operations, thereby 

improving localization accuracy. The structure of the 

SCConv module is depicted in Fig. 2. 

In Fig. 2, X represents the input feature map, Y represents 

the output feature map, Convn denotes convolution layers 

with different kernels, Cn indicates results from different 

branches of X1, ⨁ represents the XOR operation, and ⨂ 

signifies element-wise multiplication between matrices. The 

input feature map of dimensions C×H×W is divided into X1 

and X2, with the channel count halved to C/2×H×W through 

Split. X2 is processed by a regular convolutional layer to 

produce the output Y2, aimed at preserving spatial context 

relationships. Meanwhile, X1 undergoes an adaptive 

calibration operation to yield Y1. For X1, average pooling is 

applied: 

 
2 r 1

C avgpool (X )=  (1)  

The down-sampling factor r for pooling is set to 2 in the 

model, and it is followed by up-sampling using bilinear 

interpolation.  

The process involves upsampling the C2 convolution and 

adding it to C3, followed by a sigmoid operation to obtain 

weight values. Then, these weight values are applied as 

element-wise multiplication with the result of the C1 

convolution, yielding C'.  

 
2 1 2 1

C' Conv (X ) (C C )=  
 

(2)  

After obtaining C', it undergoes a convolution operation 

using Conv4 to produce the final output Y1. 

 
1 4

Y Conv (C ')=  (3)  

X1's role is to extract features in the downward direction, 

expand the receptive field, and capture attention mechanism 

weights. The structures of C3 and C2 serve a similar role in 

obtaining attention mechanism weights, while C1 acts as the 

main branch module of the attention mechanism. X2 and X1 

are concatenated without affecting each other, resulting in the 

acquisition of rich gradient information. 

Overall, SCConv can significantly enhance the receptive 

field and improve the feature extraction capability for 

infrared targets with minimal changes in parameter count. 

This leads to more precise localization and higher accuracy, 

achieving better results. 

B. Dyhead Module 

The dyhead module represents the Dynamic Head module. 

Infrared images and visible-light images exhibit significant 

differences in visual characteristics, which can lead to 

various challenges when using object detection algorithms 

directly. Issues such as single-channel data and differences in 

thermal radiation need to be addressed for better performance. 

In the YOLOv8-EGP model structure, the dyhead detection 

head is utilized to combine multiple attention mechanisms at 

feature levels, spatial positions, and output channels. This 

enables scale awareness, spatial awareness, and task 

awareness, making it particularly effective for handling 

complex object shapes and scenes in infrared image targets. It 

enhances the robustness of object detection, and the design of 

dyhead allows high-performance object detection with 

relatively low computational resources. It can still deliver 

satisfactory results even when computational resources are 

limited. The block structure of this module is depicted in Fig. 

3.  
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The term πL represents the Scale-aware Attention. It 

involves the following steps: 

1. Global Pooling on H×W: The feature map's maximum 

value is obtained by performing global pooling over the 

H×W dimensions. 

2. Channel Integration: A 1×1 convolutional kernel is used 

to process and integrate channels. 

3. Activation Functions: The result goes through ReLU [17] 

and sigmoid activation functions. 
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Fig. 3. Dyhead module 

In the context of infrared images, which often have lower 

resolution and contrast, the ability of an object detector to 

perceive sizes is crucial. This structure helps in feature 

extraction by capturing the maximum value from the feature 

map. It is better suited to capture information about the size 

of the objects, making it effective for handling multi-scale 

targets. Therefore, it significantly enhances the 

scale-awareness capability for infrared object detection. 

πS represents the Spatial Attention, which is implemented 

using the deformable convolution v2 [18] structure. This 

structure enables a sparse treatment of the attention by adding 

an offset at each sampling point and modulating the feature 

amplitude. Conventional convolution operations are typically 

performed on a fixed grid, limiting their ability to handle 

irregular objects. However, deformable convolution v2 

allows the convolutional positions to be deformed, ensuring 

diversity in the input data. 

Deformable convolution v2 adds an offset at each 

sampling point, enabling convolution positions to adapt to the 

offset. When applied to infrared images, this adaptive 

convolution position adjustment allows the model to capture 

features of different sizes, shapes, and orientations. This, in 

turn, improves detection accuracy, performance, and the 

model's generalization ability for infrared object detection. 

πC represents the channel attention, which is constructed 

using a two-layer fully connected neural network. This 

channel attention mechanism facilitates joint learning and 

generalization of the target representation. In the context of 

infrared images, it can selectively weight different features 

extracted by various convolutional kernels to enhance or 

suppress specific features, thereby improving the 

effectiveness of infrared image processing. 

For instance, high-frequency features in infrared images 

can capture information about texture structures. The channel 

attention mechanism enhances the perception of these 

features. On the other hand, low-frequency features reflect 

overall image characteristics, and the mechanism can 

enhance these features as well, thereby improving perception. 

In summary, the channel attention mechanism selectively 

enhances different features based on their relevance, which 

contributes to better feature extraction and overall 

performance in processing infrared images. 

C. Small-Object Detection Head (min) 

One of the challenges in infrared image object detection is 

the difficulty in detecting small targets. When the target is 

distant, it has very few pixels, and the high background noise 

around the target can severely interfere with the detection 

process. Due to the low signal-to-noise ratio, it becomes 

challenging to distinguish the target from the noise, posing 

significant difficulties in detection. Additionally, 

distinguishing between infrared target features and 

background features can be challenging. In complex 

environments, targets can also be affected by various factors 

such as viewing angle, lighting conditions, and occlusion, 

making feature extraction for the target even more difficult. 

In the original YOLOv8s model, there are three detection 

heads designed for multi-scale object detection. The P3 head 

is used to detect targets larger than 8×8 pixels within a 

detection grid of 80×80. 
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Fig. 4. Min module 
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The P4 head detects targets of 16×16 within a grid of 

40×40, and the p5 head detects targets of size 32×32 within a 

grid of 20×20. However, since the model focuses on 

relatively large grids for detection, it can lead to missed 

detections or poor performance when dealing with small 

targets. 

To address the issue of subpar detection of small objects, 

the proposed YOLOv8-EGP model adds a dedicated small 

object detection head on top of the existing structure. The 

structure diagram is shown in Fig. 4. 

In the YOLOv8s model, there are typically three normal 

detection heads: P3, P4, and P5, each producing output at 

different scales. To enhance the model's ability to detect 

small targets, a fourth output layer, P2, has been added. This 

additional layer generates a feature map of size 80×80, 

allowing the model to detect targets as small as 4×4 in size. 

During experiments, this modification improved detection 

performance by 5% compared to YOLOv8s, specifically for 

detecting small targets. 

III.  EXPERIMENTAL RESULTS AND DISCUSSION 

A. Datasets 

The dataset used for this experiment is the 

FLIR_ADAS_v2 [19] infrared dataset, released by FILIR 

Systems in 2022. Compared to previous versions, this dataset 

has expanded to include 15 different categories, added video 

data, and increased the total annotated frames to 26,442 

frames, representing a 1% increase from the original version. 

Moreover, all images included in this dataset are annotated 

with labels for all 15 categories. 

For this experiment, a subset of 10,467 infrared images 

was selected. These images were divided into training, 

testing, and validation sets using a 7:3:1 ratio, resulting in 

7,326 images for training, 2,094 images for testing, and 1,047 

images for validation. Due to the limited number of images 

available for some of the 15 categories, only six specific 

categories were chosen for experimentation. These categories 

include person, bike, car, bus, light, and sign. 

B. Experimental Environment 

The model was developed using the Python programming 

language and implemented with the PyTorch deep learning 

framework. The PyTorch version used was 1.8.1. The 

hardware specifications for the system included a GeForce 

GTX 1080ti GPU with 11,178MB of VRAM. 

During training, the input images were resized to 640×640 

pixels. The Stochastic Gradient Descent (SGB) function was 

employed as the optimizer. The training process consisted of 

300 epochs, with a batch size of 8. The momentum and 

weight decay parameters were set to 0.937 and 0.0005, 

respectively. The initial learning rate was set to 0.01, and a 

cosine annealing learning rate schedule was applied. Mosaic 

augmentation was enabled for the last 10 epochs of training. 

C. Experimental Evaluation Metrics 

This article conducts research on three model evaluation 

metrics, namely precision, recall, and mean Average 

Precision (mAP) at a threshold of 0.5. Precision: Precision is 

an important evaluation metric in classification tasks. It 

measures the proportion of true positives (TP) in all samples 

predicted as positive. The calculation formula is as follows: 

 TP
Precision=

TP+FP
 

 

 (4)  

TP (True Positives) represents the number of true positive 

samples, which are the samples correctly classified as 

positive. 

FP (False Positives) represents the number of false positive 

samples, which are the samples incorrectly classified as 

positive. 

The calculation of precision helps assess the model's 

ability to recognize objects in infrared images. If the model 

has a high precision, it means that it can accurately identify 

the target, reducing false positives and false negatives, 

thereby improving the reliability and safety of the driving 

assistance system. 

 Recall is another important evaluation metric that 

represents the proportion of correctly predicted samples 

among all true positives. 

 TP
Recall=

TP FN+
 

 

(5)  

FN (False Negative) represents the number of false 

negatives, indicating samples that are incorrectly classified as 

negative. 

The calculation of recall helps assess whether the model 

can effectively identify all true positive targets. If the model 

has a high recall rate, it means that it can correctly identify as 

many positive targets as possible, avoiding misses, and thus 

enhancing the system's reliability and safety. 

mAP@0.5 stands for mean average precision (mAP) 

computed under the condition of an intersection over Union 

(IoU) equal to 0.5. It is commonly used to evaluate the 

performance of object detection tasks. mAP calculates the 

average precision for each class and then takes the mean of 

those values. 

 TABLE I 
RESULTS OF ABLATION EXPERIMENTS 

YOLOv8s SCConv dyhead min P(%) R(%) mAP@0.5(%) 

    84.0 68.2 76.8 

    83.2 69.3 77.2 

    82.7 69.4 77.1 

    84.6 73.3 81.8 

    83.7 68.8 77.5 

    85.6 74.0 82.9 
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TABLE II 

COMPARISON BETWEEN THE ORIGINAL YOLOV8S MODEL AND THE MODEL WITH ADDED SMALL OBJECT DETECTION HEAD 

Approaches alls(%) person(%) bike(%) car(%) bus(%) light(%) sign(%) 

YOLOv8s(P) 84.0 85.9 85.2 0.85 82.1 87.4 78.5 

YOLOv8s(R) 68.2 73.9 68.6 78.1 78.1 57.7 52.9 

YOLOv8s(mAP@0.5) 76.8 82.8 76.9 85.0 84.1 70.2 61.6 

min(P) 84.6 87.4 82.7 86.8 82.6 87.8 80.2 

min(R) 73.3 78.1 73.9 81.0 77.0 68.3 61.6 

min(mAP@0.5) 81.8 87.6 81.4 88.7 84.0 79.1 70.3 

In object detection tasks, if a detection box has an overlap 

with a ground truth object box greater than 0.5 (i.e., IoU 

greater than 0.5), then that detection box is considered a True 

Positive. mAP@0.5 represents the average precision for all 

classes at IoU equals 0.5. The formula for calculating the 

average precision for n classes is as follows: 
1n

i 1 0

1
mAP Precision(Recall)d(Recall)

n =

= 
 

 

(6)  

mAP calculates the average precision for each class and 

then computes the mean of these individual class average 

precision scores. It is used to evaluate the overall 

performance of a model across multiple classes. 

D. Ablation Experiment 

To comprehensively evaluate the influence of various 

methods on the experimental outcomes, it is crucial to 

perform ablation experiments using the YOLOv8s model as a 

reference. This involves a step-by-step approach, starting 

with the replacement of the original C2f layer in YOLOv8s 

with SCConv, followed by the substitution of the native 

detection head (detect) with dyhead, and ultimately, the 

addition of an extra layer dedicated to small object detection. 

These sequential tests allow for a detailed depiction of 

parameter variations within each module. 

Table I demonstrates that when the original YOLOv8s 

model is enhanced with the SCConv and dyhead modules, 

there is a slight decrease in precision but an improvement in 

recall. Overall, the mAP values show a slight increase of 

0.4% and 0.3%, respectively. This indicates that the 

application of SCConv and dyhead modules have a slightly 

positive impact on infrared object detection. 

Moreover, in the original YOLOv8s model results, the 

precision, recall, and mAP for the "light" and "sign" classes 

exhibited significantly lower values compared to other 

classes. This discrepancy can be attributed to the adverse 

effects of low-resolution infrared images and substantial 

environmental noise. However, upon incorporating an 

additional small object detection layer, there is a conspicuous 

improvement in these metrics. This enhancement confirms 

the effectiveness of the added detection layer for improving 

the detection of small objects. The comparative experimental 

results are presented in Table II. 

In the final comparison between YOLOv8s and 

YOLOv8-EGP, we observed consistent improvements across 

all three measures of evaluation: Precision increased by 1.6%, 

Recall showed a notable improvement of 5.8%, and mAP 

exhibited a significant boost of 6.1%. These findings affirm 

that, within the domain of infrared target detection, the 

YOLOv8-EGP model surpasses the original model, 

underscoring its capacity for substantially enhancing the 

extraction of target features. To offer a more comprehensive 

depiction of these advancements, we have included the actual 

model progression curves in Fig. 5. 

 
(a) Precision Comparison 

 
(b) Recall Comparison 

 
(c) mAP Comparison 

Fig. 5. YOLOv8s and YOLOv8-EGP 
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Fig. 6. YOLOv8s (top) and YOLOv8-EGP (bottom)

After 300 rounds of training, the Precision, Recall, and 

mAP curves for both YOLOv8 and YOLOv8-EGP models 

are shown in the figure. It is evident that both models 

essentially converge within the first 100 rounds of training, 

and their trends remain relatively stable, demonstrating 

excellent model robustness. By analyzing the curves, one can 

estimate that the actual difference in Recall and mAP 

between the two models is approximately around 6%. This 

further confirms that the improved model is better suited for 

infrared image object detection tasks. Therefore, applying the 

enhanced model to practical production and daily life is 

expected to deliver superior detection performance. To 

provide a clearer illustration of the model's real-world 

effectiveness, we have included some actual result images in 

Fig. 6. 

In the comparative visualization of actual results, it is 

evident that the YOLOv8s model performs less effectively in 

detecting small objects compared to YOLOv8-EGP and 

exhibits occasional instances of missed detections. Moreover, 

YOLOv8-EGP demonstrates a substantial enhancement in 

overall accuracy, while there is a slight reduction in the 

detection of a few infrared targets, this decrease is 

significantly outweighed by the substantial overall 

improvement in performance. 

E. Comparative Experiments 

To further validate the algorithm's performance, this study 

conducted a comparative analysis between YOLOv8-EGP 

and other mainstream algorithms using the FILIR dataset. 

The evaluation was based on three key metrics: precision, 

recall, and mAP@0.5. This approach allowed for a 

comprehensive assessment of the algorithm's capabilities in 

Table III.  

To highlight the improvements brought by the 

YOLOv8-EGP model, it was rigorously compared with the 

original YOLOv8s and the larger, more accurate, albeit 

computationally intensive YOLOv8m models, all under 

comparable configurations. The results were striking: 

YOLOv8-EGP not only effortlessly outperformed YOLOv8s 

but also surpassed YOLOv8m with a remarkable 3.6% higher 

mAP, all while maintaining lower parameter and 

computational complexities. When compared to the 

YOLOv7-tiny algorithm in the same category, 

YOLOv8-EGP achieved an outstanding 12.3% higher mAP. 

Furthermore, in comparison to YOLOv5m, which shares a 

similar computational complexity, YOLOv8-EGP 

showcased a 5.5% higher mAP. These findings 

unequivocally establish that, among models in its category on 

infrared image datasets, YOLOv8-EGP stands out as a 

superior choice, making it exceptionally well-suited for 

real-world applications. 
TABLE III 

COMPARATIVE EXPERIMENT RESULTS OF DIFFERENT MAINSTREAM 

MODELS 

Approaches P(%) R(%) mAP@0.5(%) 

YOLOv8s 84.0 68.2 76.8 

YOLOv8m 84.7 71.5 79.3 

YOLOv7-tiny 78.5 62.9 70.6 

YOLOv5m 86.3 68.4 77.4 

YOLOv8-EGP 85.6 74.0 82.9 

IV.  CONCLUSION 

This paper presents a YOLOv8-EGP model algorithm for 

infrared target detection, which addresses various issues in 

the YOLOv8s model, such as low recognition rates, low 

accuracy, and missed detection of small targets in infrared 

images. The SCConv module enhances the receptive field of 

infrared targets, leading to improved feature extraction. The 

dyhead module achieves high-performance target detection 

with low computational cost, and experimental results show 

some improvements compared to the original model. 

Additionally, the addition of the additional small target 

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 252-259

 
______________________________________________________________________________________ 



 

detection layer efficiently enhances the detection capability 

of small targets in infrared images. The original model 

suffers from low accuracy due to low pixel resolution and 

significant noise interference in infrared images, while the 

improved model shows a significant increase in accuracy in 

this regard. When compared to other models, it demonstrates 

similar or superior performance. 

The experimental results also indicate that the 

YOLOv8-EGP model outperforms the original model by 

6.1%. This enhancement has practical applications in fields 

such as vehicle-assisted driving, nighttime road recognition, 

and intelligent transportation. 
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