
Optimization Model for Outpatient Services 

Capacity Management in Different Patient 

Conditions and Diseases 
 

Poningsih, Poltak Sihombing, Muhammad Zarlis,Tulus

 
Abstract—The high population in cities such as Medan, the 

capital of North Sumatra Province, Indonesia, is observed to 

have led to the need for more patient clinics with good health 

services. These clinics are required to have optimal capacity 

management to meet the health services expectation of patient. 

However, the main problem identified is uncertainty associated 

with the number of outpatients, including the first visit (FV) and 

revisit (RV). This research was conducted to propose 

optimization model to determine the minimal capacity necessary 

for a particular breach risk in order to achieve the intended lead 

time. The intention was to fix the constraints of the prior model 

by selecting the equivalent deterministic individual opportunity 

restrictions depending on the probability knowledge 

distribution. The purpose of model was to optimize the 

management of outpatient requests not fulfilled completely, the 

limited range of appointment times for returning patient, and 

the average appointment lead time for old patient. The results 

showed that the probability of the number of FV patient 

arriving at time unit i and provided with an appointment at time 

unit j being greater than or equal to their stochastic arrival in 

time unit i was 0.51. Each test was found to be different due to 

the application of random values generated from computer 

memory. It was observed that the probability value recorded 

was higher than previous model. 

 

Index Terms—Optimization, Model, Outpatient Services, 

Uncertain Conditions, Patient Conditions. 

I. INTRODUCTION   

niversally, hospitals are built to provide health care 

services for people. These hospitals are required to 

provide a comprehensive range of medical services 

for inpatient and outpatient in the community. The inpatient 

facilities are normally equipped to handle critical medical 

situations and offer 24/7 care while outpatient services allow 

people to access medical care without needing prolonged 

hospitalization. This dual method helps ensure that 

individuals receive appropriate medical attention based on the 

severity and nature of their health conditions. The provision 

of timely access is essential in outpatient clinic that receives 

several appointment requests from different classes of 

patients every day. However, the needs of thess patients are 

sometimes not prioritized to prevent overbooking or idle slots 

in the calendar of the physicians.  
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This shows the importance of having efficient 

capacity management and scheduling strategies due to 

the limited capacity of the clinic. Uncertainties have 

been associated with patient, for example, multiple 

classes of those in outpatient clinic studied in this 

research are observed to have several demands. These 

classes include internal patient referred by other 

departments within a clinic, new and external ones, 

established patients with previous visit records, and any 

of these classes engaged in subsequent visits to receive 

follow-up care.   
 Demand forecasting is a subject observed to have been 

studied extensively [1] with significant results in the retail 

industry as well as in managing inventory within companies 

such as Dell [2]. Several comparative analyses have been 

applied to this forecasting method with a focus on the 

accuracy of their results. For example, neural networks were 

compared with traditional econometric methods and 

generally found to have better outcomes [3]. Meanwhile, the 

summary of good cases conducted using traditional methods 

such as autoregression, moving average, and exponential 

smoothing was presented in [4] and they were reported to be 

simple. 

Some studies have also been conducted on outpatient care 

model. For example, [5] focused on appointment scheduling 

at the department in West China Hospital (WCH) and the 

pilot data analysis showed that the use of the scheduling 

window improved the appointment system. The research 

analyzed two scenarios associated with the willingness of the 

patient to wait for their planned visits in order to have a 

comprehensive understanding of the process. This led to the 

development of a stylized single-server queue model to 

determine the ideal scheduling window. The results showed 

that the application of this scheduling window was not 

realistic to reduce the overall cost per day of the appointment 

system when patient was less sensitive to time delays or ready 

to wait for the planned services. However, model considered 

the time delay sensitivity of the patient (i.e., the possibility of 

seeking services elsewhere) and the potential cost of the 

physician’s idle time.  

Nguyen et al. [6] also used optimization methods to 

determine the optimal resource allocation solutions in 

outpatient clinics. The network flow method allowed the 

complex interactions between different resources within the 

clinical system to be modeled and optimized. The results 

showed that the proposed network flow method could assist 

in planning tactical resources for outpatient clinics. This was 

U 

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 260-266

 
______________________________________________________________________________________ 

mailto:poningsih@students.usu.ac.id
mailto:poltak@usu.ac.id
mailto:tulus@usu.ac.id


showed by the opportunity provided for the healthcare 

providers to optimize resource allocation, minimize patient 

waiting time, and improve overall services efficiency. In this 

research, an attempt was made to determine capacity required 

to accept the requests of all the patient. However, it was 

discovered that an excessive capacity level was needed to 

accommodate the unknown future demand of the FV patient. 

This required formulating the objective of the system in terms 

of the risk of violation (ε) which focuses on the probability 

that not all patient requests were met and observed to have 

exceeded ε. Therefore, the objective of model was to 

determine the minimum capacity needed to achieve the target 

grace period for a given breach risk. The main problem 

identified was non-optimal maximum capacity and this led to 

the inability to meet all outpatient requests, limited range of 

appointment times for returning patient, and the average 

appointment lead time for old patients due to emergencies 

which made it difficult to predict the time for new ones. 

These problems led to the need to optimize model to 

determine capacity required to receive all patient requests. An 

over-capacity level was recommended due to the difficulty in 

predicting the demand from FV patient in the future. 

Therefore, the objective of the system was expressed in terms 

of the risk of violation (ε) again with the focus on the 

probability that not all patient demands would be honored and 

found to be higher than ε. Model was intended to identify the 

minimal capacity necessary to accomplish the specified grace 

time for a specific breach risk. Monte Carlo algorithm [7], 

[8], [9], [10], [11] was adopted to estimate the probability of 

model being developed. This algorithm has been previously 

used by [12] to construct model for the probability 

distribution of travel laws and charge features to forecast load 

demand as scale electric vehicles (EVs) were connected to the 

electric grid. A replica was also used by Hartland et al. [13] 

to obtain precise estimates of experimental and theoretical 

uncertainties. This was based on the opportunity provided to 

develop probability distributions in SMEFT's degrees of 

freedom space. Moreover, it has been extensively used to 

determine the uncertainty in life cycle assessments [14]. 

Monte Carlo simulation [15] has also been applied several 

times to assess the probabilities before and after an 

evaluation, and the results were compared with the action 

priority form to confirm their values as high, medium, or low. 

The research was also used to generate a new model to be 

used for demand forecasting and capacity management for 

bed usage during a pandemic. 

 

II. LITERATURE REVIEW 

 Brown et al. [16] developed a network flow-based 

mathematical model to optimize resource allocation and 

schedule of patient examinations. Empirical data were used 

to test and validate model. The results showed that the 

network flow method improved capacity efficiency of 

outpatient clinics by reducing patient waiting times and 

optimizing resource use. This research contributed to the 

development of methods to enhance capacity management of 

outpatient services. The network flow method could be used 

by clinics and healthcare providers to make better decisions 

in optimizing services and increasing patient satisfaction. 

 White et al. [17] also developed a mathematical model 

based on integer programming using patient examination 

time, resource allocation, and patient preferences as 

variables. Moreover, existing constraints such as clinic 

capacity, services time, and physician preferences were also 

considered. Model was validated through simulations and 

experiments and its performance in improving scheduling 

efficiency and resource use in outpatient clinics was also 

evaluated. The results showed that the proposed integer 

programming model could improve operational efficiency 

and optimize patient examination scheduling, thereby 

reducing patient waiting time and improving clinical services. 

Thompson et al. [18] introduced a mathematical model 

based on linear programming using resource allocation, 

services time, and patient needs as variables. Furthermore, 

existing constraints such as clinic capacity, examination time, 

and patient priority were also considered. Model was 

validated through simulations and experiments, and its 

performance in increasing the efficiency of resource 

allocation in outpatient clinics was also assessed. The results 

showed that the proposed linear programming model  

improved operational efficiency and optimized resource 

allocation. This subsequently led to a reduction in the patient 

waiting time, an increase in productivity, and the 

maximization of resources in outpatient clinics. 

 A different method was applied by Martinez et al. [19] 

through the suggestion of an agent-based simulation model 

where each patient was identified as an agent. The variables 

considered were the number of resources, patient 

examination time, and patient waiting time. Moreover, 

iterative simulation and optimization methods were applied 

to determine the optimal capacity configuration needed to 

achieve the best performance in efficiency and patient 

satisfaction. The results showed that the proposed simulation-

based optimization model improved operational efficiency 

and resource use in outpatient clinics. This method allowed 

clinics to plan better capacity, minimize patient waiting time, 

and enhance the quality of services. 

 Lee et al. [20] developed model to achieve an optimal 

schedule for outpatient examinations in order to minimize 

patient waiting time. The main focus was on the improvement 

of services efficiency and time allocation of outpatient 

clinics. This led to the development of optimization-based 

mathematical model with constraints and desired goals 

including the maximum acceptable waiting time. Some 

optimization methods were applied to determine the best 

solution that satisfied these constraints. The results showed 

that the proposed optimization model was able to reduce 

waiting time for patient in outpatient clinics. The method was 

expected to provide an opportunity for healthcare providers 

to create more efficient schedules, minimize waiting times, 

and improve patient satisfaction. 

  Xu et al. [21] also proposed a fuzzy-based mathematical 

model with several objectives such as minimizing patient 

waiting time, maximizing resource use, and reducing 

operational costs. Optimization methods were applied to 

determine the optimal solutions and the results showed the 

ability of the proposed multi-objective fuzzy model to 

improve scheduling efficiency and resource use in outpatient 

clinics. It was expected to allow healthcare providers to make 

better decisions in the face of uncertain patient attendance, 

optimize patient appointment scheduling, and improve 

operational efficiency. 
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 Zhou et al. [22] developed optimization model that 

considered the minimization of patient waiting times, 

maximization of resource use, and reduction of patient 

cancellations and no-shows. Optimization methods were also 

applied to determine the best solution to achieve these goals. 

The results showed the ability of the two-stage optimization 

model proposed to assist in improving the scheduling 

efficiency and reducing the impact of cancellations and 

absences in outpatient clinics. The method was expected to 

be useful for healthcare providers in making initial 

scheduling more efficient and rescheduling optimally after 

patient cancellations or no-shows. 

 Li et al. [23] proposed optimization model to improve 

patient satisfaction in outpatient clinics by considering the 

heterogeneous preferences of patient. The method allowed 

healthcare providers to make schedules that work with patient 

preferences, minimize patient waiting time, and improve 

services quality. This research was observed to have 

contributed to the development of optimization methods and 

model for scheduling patient examinations in outpatient 

services. Moreover, the consideration of the heterogeneous 

preferences of patient led to the improvement of patient 

satisfaction, operational efficiency, and provision of more 

personalized services to patient. 

 Chen et al. [24] were also observed to have used 

optimization methods to determine the optimal scheduling 

solutions with due consideration for the inaccuracy of patient 

arrival times. A mathematical model was developed to ensure 

more accurate and efficient timing of patient examinations, 

thereby reducing waiting times and increasing services 

efficiency. The results showed that the proposed optimization 

model improved the efficiency of patient examination 

scheduling in outpatient clinics by considering untimely 

patient arrivals. The method was expected to assist healthcare 

providers in optimizing scheduling, minimizing waiting time, 

and increasing patient satisfaction. 

 Suman et al. [25] also applied the DMAIC (Define-

Measure-Analyze-Improve-Control) Six Sigma method to 

identify and reduce the total time patient spend in the surgical 

department of a hospital. The method increased process 

efficiency by identifying and overcoming variability and 

nonconformities. The mean time spent and standard deviation 

were calculated as 210.9 hours and 67.02 hours, respectively. 

Moreover, individual cause and effect analysis was also 

conducted on waiting time (WT) for surgery and length of 

stay (LOS) after surgery. 

 Mosca et al. [26] applied the "Engineering 4.0" concept in 

developing safe operating rooms for patient and medical staff. 

The term focused on a further industrial transformation of 

"Industry 4.0" with the focus on applying advanced 

technologies such as the Internet of Things (IoT), artificial 

intelligence (AI), big data processing, and automation to 

increase efficiency and safety in different sectors, including 

health care. The purpose was to preserve the integrity of tens 

of thousands of patients that lost their lives on the operating 

block due to external causes. It was discovered that the better 

use of an optimized management structure could provide 

significant benefits. 

 Cong et al. [27] used a sub-graph method to evaluate the 

impact of gene regulatory modules on renal clear cell 

carcinoma of the kidney (KIRC). The results showed that the 

combined effect of cancer-causing genes such as tumor 

suppressor, oncogenes, and DNA repair genes dramatically 

increased the probability of developing tumor metastasis. 

This led to the development of a new method to construct 

gene regulatory modules using a directed sub-graph method 

in order to reduce false positive results and identify highly 

relevant regulatory modules for tumor metastasis research. 

 Yanuar et al. [28] also identified the best model for LOS 

for inpatient COVID-19 patient in West Sumatra, Indonesia. 

The Los data were observed to have been skewed to the right 

or violated linear model assumptions, thereby leading to the 

preference for a quantile method. The asymptotic variance of 

the quantile regression was estimated by constructing 

confidence intervals for the parameters of interest. The results 

proved that wild bootstrap quantiles tended to produce the 

shortest confidence intervals while the diagnosis and outcome 

were found to have a statistically significant impact on the 

COVID-19 patient admitted to Los hospitals. 

 Lee et al. [29] used decision-making trials and laboratory 

evaluation methods to identify the critical dimensions of the 

Chinese version of the safety attitude questionnaire. The 

purpose was to improve the patient safety culture in Taiwan 

based on the perspective of experts. The causal dimensions 

were identified to be stress recognition, management 

perception, emotional exhaustion, and work-life balance 

while the affected variables were teamwork climate, safety 

climate, job satisfaction, and working conditions. The 

improvements in the dimensions were observed to have a 

little impact but a focus on the causal extent enhanced the 

measurement and performance of other directly affected 

variables. It was discovered that emotional exhaustion was 

the most critical dimension followed by management 

perceptions had a significant influence on other dimensions. 

This showed that hospital management needed to address 

emotional exhaustion and management perception to improve 

the patient safety culture. 

 Lin et al. [30] proposed a new framework called Patient 

Similarity Evaluation (PSE) to incorporate temporal 

information into embedded medical concepts for patient 

representational learning. The PSE combined Siamese 

Convolutional Neural Network (CNN) with Spatial Pyramid 

Pooling (SPP) to measure the similarity of all pairs of patient 

in order to predict the future health status of patient earlier 

and more precisely. The experimental results showed that this 

proposed framework performed better than all baseline 

methods. 

 Kusuma et al. [31] recommended a new coordinated 

ambulance routing model considered suitable for the COVID-

19 pandemic. Model was designed based on three steps 

including the hospital patient allocation, ambulance-patient 

dispatch, and ambulance-pickup dispatch sequencing. The 

two objectives were to minimize the number of unserved 

patient and the total travel distance. Model was developed 

using cloud theory-based annealing simulations. The results 

showed its ability to outperform existing uncoordinated 

model in terms of number of unserved patient, total travel 

distance, and average travel distance. It was discovered that 

there were zero unserved patient when their number did not 

exceed the slots available in the entire hospital. Model also 

led to a 12 to 19 percent reduction in total trip distance and 

27 to 29 percent in average trip distance.
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III. RESEARCH METHOD 

 

A. Research Framework 

A research framework is a structured plan or outline 

guiding the research process. It normally provides a clear and 

systematic method to design, conduct, and analyze research 

projects. Research framework is essential because it allows 

proper organization, rigorous and systematic analysis, and 

effective communication of results. The components usually 

vary depending on the type of research and the specific 

questions being addressed. Therefore, the framework applied 

in this research is presented in the following Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Research Framework 

 

The nine steps in the framework are explained as follows: 

1. Collection of Research Materials: Literature and research 

materials relevant to the research topic were retrieved. 

These were in the form of books, scientific journals, 

articles, or other sources of information to understand the 

issues being studied. 

2. Collection of Research Data: Necessary data were 

gathered to answer the research questions through 

surveys, interviews, observation, or document analysis. 

The aim was to collect information considered relevant to 

the research topic. 

3. Formulation of Model Functions: The data collection 

process was followed by the development of model 

functions to analyze data and answer research questions. 

These were in the form of theories, hypotheses, or 

conceptual frameworks developed based on data and 

research materials. 

4. Formulation of Constraint Functions: Constraint 

functions to limit or control the variables in the research 

were developed to assist in designing an adequate 

research methodology and maintaining factors having a 

potential influence on the research results. 

5. Modeling: Model was developed based on model and 

constraint functions previously developed. This could be 

mathematical, statistical, or contextual depending on the 

type of research being conducted. 

6. Model Testing and Simulation: The development of 

model was followed by tests and simulation. The purpose 

of the test was to assess the accuracy and validity as well 

as identify the weaknesses and strengths of model. 

7. Proposed Model: The testing and simulation process was 

followed by the improvement of model through revision 

or further development to enhance its quality and 

effectiveness. 

 

B.  Research Data 

Daily data on new and old outpatient visits for 2016-2021  

obtained from the Vita Insane Hospital Pematangsiantar City. 

It was discovered that the new outpatient was 2192 records 

and the geriatric were also 2192.   

 

IV. RESULTS AND DISCUSSION 

This research was conducted based on optimization model 

developed by Nguyen et al. [6]. The model was to improve 

the non-optimal maximum capacity. This was considered 

important due to the inability to meet all outpatient requests, 

limited range of appointment times for returning patient, and 

average appointment lead time for old patients due to 

emergencies which made it difficult to predict the time for 

new ones. The results of previous relevant studies were 

discussed before presenting the ones observed from this 

current research. Moreover, the notations used in model are 

stated as follows: 

𝑢, 𝑣, 𝑤  Target appointment grace period for the median, pth 

percentile, and 100th percentile of each (time unit). 

𝑝  pth percentil (50 < 𝑝 < 100). 

[𝑎, 𝑏]  Patient appointment time limits RV(Re-Visit) 

�̅� Average appointment time for RV patient (𝑎 < �̅� <
𝑏) (time units). 

𝛼, 𝛽 Constant rate of discharge for FV and RV patient, 

where 0 < 𝛼, 𝛽 < 1 

𝜏𝑓, 𝜏𝑟   Consultation period for FV and RV patient 

𝑟𝑗
𝑓
, 𝑟𝑗

𝑟 Predefined total number of FV and RV patient in 

time units 𝑗 

𝑓𝑖 Stochastic arrival of FV patient in time units 𝑖. 
𝑑𝑗
𝑟 The total number of RV discharges after 

appointments in time units 𝑗. 
𝑥𝑖𝑗 Number of FV patient that showed up for 

appointments at the time unit-th, arrived at the 

appointment time 𝑗, and listed in the system as RV 

patient 𝑗 after their visit at the time unit 

𝑦𝑖𝑗 Number of patient scheduled for a time unit 𝑖, had a 

different appointment at that time 𝑗, and listed as RV 

patient 𝑗 after time unit. 

𝑧𝑖𝑗 Number of FV patient observed at the time 𝑖  and 

assigned a time unit appointment 𝑗 
𝑐𝑖 Total capacity needed at a given time unit 𝑖. 

𝑐𝑖
𝑓
, 𝑐𝑖

𝑟 Time units needed to accommodate FV and RV 

patient 𝑖 
𝑆 The size of the arrival horizon in time units 

𝑇 The time units included in the planning horizon, 𝑇 =
max(𝑆 + 𝑏, 𝑆 + 𝑤) 
𝐿𝑚 , 𝐿𝑝 The set of 𝑧𝑖𝑗 that satisfies the median grace period 

target (𝑢) and the p-th percentile. 

𝑁1, 𝑁2, 𝑁 Index sets, 𝑁1 = {1,2, … , 𝑆} , 𝑁2 = {𝑆 +
1, 𝑆 + 2, … , 𝑇}, 𝑁 = 𝑁1 ∪ 𝑁2 

𝜀    Possible violation 

Pr⁡(𝐴)    The likelihood of an event 𝐴 

𝐹𝑖(⁡)    The distribution function of cumulative data for 𝑓𝑖 

Start 

Collection of Research Materials Research Data Collection 

Formulation of Model Functions Formulation of Constraint Functions 
 

Model Making 
 

Model Testing and Simulation 

Model Testing and Simulation 

Model 

End 
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𝜇𝑖 , 𝜎𝑖    median and range of uncertain arrivals 𝑓𝑖. 
The mixed integer model (P1) developed by earlier 

scholars to address capacity planning problem with demand 

uncertainty is presented as follows [6]: 

[P1]: 

Min 𝑞        (1) 

With constraints: 

𝑞 ≥ 𝑐𝑗, ∀⁡𝑗 ∈ 𝑁         (2) 

𝑃𝑟(∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ≥ 𝑓𝑖; ⁡∀⁡𝑖 ∈ 𝑁1) ≥ 1 − 𝜀    (3) 

∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 = 0;⁡∀⁡𝑖 ∈ 𝑁2        (4) 

𝑥𝑖𝑗 − (1 − 𝛼)𝑧𝑖𝑗 = 0, ∀⁡𝑖, 𝑗 ∈ 𝑁     (5) 

(𝑟𝑗
𝑓
+ 𝑟𝑗

𝑟 +∑𝑥𝑖𝑗

𝑗

𝑖=1

+∑𝑦𝑖𝑗

𝑗

𝑖=1

) − (𝑑𝑗
𝑟 +∑𝑦𝑗𝑖

𝑇+1

𝑖=𝑗

) 

⁡⁡⁡= ⁡0, ∀⁡𝑗 ∈ 𝑁       (6) 

 

𝑑𝑗
𝑟 − 𝛽(𝑟𝑗

𝑓
+ 𝑟𝑗

𝑟 +∑𝑦𝑖𝑗

𝑗

𝑖=1

+∑𝑥𝑖𝑗

𝑗

𝑖=1

) 

= ⁡⁡⁡0, ∀⁡𝑗 ∈ 𝑁                          (7) 

𝑦𝑖𝑗 = 0,∀⁡𝑗 − 𝑖 < 𝑎, ∀⁡𝑖, 𝑗 ∈ 𝑁     (8) 

𝑦𝑖𝑗 = 0,∀⁡𝑗 − 𝑖 < 𝑏, ∀⁡𝑖, 𝑗 ∈ 𝑁     (9) 

∑ 𝑑𝑖
𝑟𝑇

𝑖=𝑆+1 = 0     (10) 

∑ 𝑧𝑖𝑗𝑧𝑖𝑗∈𝐿
𝑚 ≥ (

1

2
∑ ∑ 𝑧𝑖𝑗

𝑇
𝑗=𝑖

𝑆
𝑖=1 ) + 1  (11) 

∑ 𝑧𝑖𝑗𝑧𝑖𝑗∈𝐿
𝑝 ≥

𝑝

100
(∑ ∑ 𝑧𝑖𝑗

𝑇
𝑗=𝑖

𝑆
𝑖=1 )   (12) 

𝑧𝑖𝑗 = 0,∀⁡𝑗 − 𝑖 > 𝑤,∀⁡𝑗 − 𝑖 < 0                 (13) 

∑ ∑ (𝑗 − 𝑖)
𝑗
𝑖=𝑖 𝑦𝑖𝑗

𝑇
𝑗=1 − �̅� ∑ ∑ 𝑦𝑖𝑗

𝑗
𝑖=𝑖

𝑇
𝑗=1 ≤ 0 (14) 

𝑐𝑗
𝑓
− (

1

1−𝛼
𝜏𝑓𝑟𝑗

𝑓
+ 𝜏𝑓 ∑ 𝑧𝑖𝑗

𝑗
𝑖=𝑖 ) = 0, ∀⁡𝑗 ∈ 𝑁 (15) 

𝑐𝑗
𝑟 − (

1

1−𝛽
𝜏𝑟𝑟𝑗

𝑟 +
1

1−𝛽
𝜏𝑟 ∑ 𝑦𝑖𝑗

𝑗
𝑖=𝑖 ) = 0, ∀⁡𝑗 ∈ 𝑁     

      (16) 

𝑐𝑗 − (𝑐𝑗
𝑓
+ 𝑐𝑗

𝑟) = 0, ∀⁡𝑗 ∈ 𝑁   (17) 

𝑥𝑖𝑗, 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑐𝑖
𝑓
, 𝑐𝑗

𝑟 , 𝑑𝑖
𝑓
, 𝑑𝑗

𝑟 ≥ 0,∀⁡𝑖, 𝑗 ∈ 𝑁  (18) 

𝑧𝑖𝑗 ∈ 𝑍+, ∀⁡𝑖, 𝑗 ∈ 𝑁    (19) 

Objective (1) minimized the maximum capacity required 

per unit of time to obtain a predetermined target grace period. 

The needed maximum capacity was mentioned in Constraint 

(2) while Constraints (3), (4), and (5) showed that flow was 

conserved at the FV node (5). The constraint required a 

minimal probability that all patient requests could be 

scheduled (3). Moreover, the inequality on the left side should 

be used to design any patient requests inside the arrival 

horizon (3). The random nature of arrivals showed that 

conditions (3) was also a chance limitation. No demand was 

considered after the arrival horizon as showed in Constraint 

(4). Furthermore, the number of FV patient to remain RV was 

set by the cap based on the initial appointment (5), limits (6), 

and an illustration of the flow conservation in the RV node 

(7). A unit of time for all the appointments of the FV and RV 

patient, as well as their total number determined in advance 

are presented in the first set of brackets of Constraint (6). The 

second bracket represents the outflow of all appointments 

scheduled for a unit of time including the number of RV 

patient discharged following their visit and then the 

subsequent visits. Meanwhile, the number of patients released 

after a visit was constrained by constraint number seven. All 

RV patient was required to have a grace period within a 

limited range of appointments due to Constraints (8) and (9). 

No RV patient discharge was also permitted following the 

final limit of the arrival horizon in Constraint (10). The 

median, 100th percentile, and 100th percentile appointment 

deadlines were required to be reached according to 

constraints (11), (12), and (13). The limitation of the typical 

RV appointment grace period was presented in Constraint 

(14) while the overall capacity needed was calculated in units 

of time through (15) and (16). The power required for FV and 

RV patient was also determined in units of time using (17). 

The space needed was for both returning and new FV or RV 

patient. Meanwhile, Constraints (18) and (19) served as the 

prerequisites for integrality and non-negative variables.  

The Ideas from earlier studies were used to create an 

equivalent capacity planning deterministic model. The 

process focused on approximating the joint opportunity 

constraint issue convexly in this section as a deterministic 

linear program. The issue associated with opportunity 

constraints (3) in the P1 joint was broken down into 

individual opportunity constraints to provide another 

approximation. The decomposition was calculated according 

to the inequality of Boole [32] 𝑃𝑟(∪𝑖 𝐴𝑖) ≤ ∑ Pr⁡(𝐴𝑖)𝑖 . This 

showed that the probability of one event happening was not 

more than the total probability of all possible circumstances. 

The shared probability constraint limited the likelihood that 

all FV patient was scheduled for all available periods (3). 

Moreover, the application of the inequality intersection 

presented in conditions led to the reformulation of the 

equation as follows: 

𝑃𝑟(∩𝑖∈𝑁1
{∑ 𝑍𝑖𝑗 − 𝑓𝑖

𝑇
𝑗=𝑖 ≥ 0}) ≥ 1 − 𝜀  (20) 

This was rewritten using 𝑃𝑟(∩𝑖 𝐴𝑖) = 1 − 𝑃𝑟(∪𝑖 (𝐴𝑖)
𝑐), 

where (𝐴𝑖)
𝑐  was the complement of 𝐴𝑖: 1 −

𝑃𝑟(∪𝑖∈𝑁1
{∑ 𝑍𝑖𝑗 − 𝑓𝑖

𝑇
𝑗=𝑖 ≥ 0}

𝑐
) ≥ 1 − 𝜀 . Therefore, 

Constraint (20) was observed to be equivalent to the 

following Constraint (21): 

𝑃𝑟(∪𝑖∈𝑁1
{∑ 𝑍𝑖𝑗 − 𝑓𝑖

𝑇
𝑗=𝑖 < 0}) ≤ 𝜀   (21) 

This created an upper bound on the likelihood that a 

violation would occur within one or more periods, with a 

violation occurring when an FV patient could not be 

scheduled. The limit on the left-hand side was obtained by 

applying Boole’s inequality to Constraint (21) as follows: 

𝑃𝑟(∪𝑖∈𝑁1
{∑ 𝑍𝑖𝑗 − 𝑓𝑖

𝑇
𝑗=𝑖 < 0}) ≤ ∑ 𝑃𝑟(∑ 𝑍𝑖𝑗 −

𝑇
𝑗=𝑖 𝑓 <𝑖∈𝑁1

0)                                 (22) 

This was based on the consideration that the 𝑃𝑟(∑ 𝑍𝑖𝑗 −
𝑇
𝑗=𝑖

𝑓𝑖 < 0) ≤ 𝜀𝑖  and ∑ 𝜀𝑖𝑖∈𝑁1 ≤ 𝜀  were proposed using the 

following individual opportunity constraints as a 

conservative approximation of Constraint (3). 

𝑃𝑟(∑ 𝑍𝑖𝑗 − 𝑓𝑖
𝑇
𝑗=𝑖 < 0) ≤ 𝜀𝑖 ⁡, ∀⁡𝑖 ∈ 𝑁1  (23) 

The value on the right side of 𝜀𝑖 ≥ 0 was selected and this 

showed that ∑ 𝜀𝑖𝑖∈𝑁1 = 𝜀. This showed the application of (22) 

and (23) ensured the fulfillment of (21). The Constraint (23) 

was rewritten as: 

𝑃𝑟(𝑓𝑖 −∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ≤ 0) ≥ 1 − 𝜀𝑖 ⁡, ∀⁡𝑖 ∈ 𝑁1  (24) 

Constraint (24) was provided with a lower bound on the 

chance of scheduling FV patient during each period. The 

value of 𝜀𝑖  was recommended to be set to 𝜀𝑖 =
𝜀

𝑆
 [33] to 

produce the following opportunity constraint:  

𝑃𝑟(𝑓𝑖 −∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ≤ 0) ≥ 1 −

𝜀

𝑆
⁡ , ∀⁡𝑖 ∈ 𝑁1  (25) 
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The legal opportunity limitations (3) could be broken down 

into a denser set of individual opportunity constraints than (3) 

in problem (P1). Therefore, the deterministic equivalent of 

this particular probability restriction was established based on 

the information gathered about the probability distribution. 

An equivalent deterministic model was also developed for 

the full distribution of information on demand arrival 

uncertainties. The probability distribution of the uncertainty 

of the arrival of requests was assumed to be known every time 

in this section 𝑓𝑖. For example, it was assumed that request 

arrivals had a known mean and variance and were normally 

distributed. Moreover, the cumulative distribution function 

was required to be stated as 𝑓𝑖  of 𝐹𝑖(⁡) . This led to the 

presentation of Constraint (25) as follows: 

𝐹𝑖(∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ) ≥ 1 −

𝜀

𝑆
⁡ , ∀⁡𝑖 ∈ 𝑁1                 (26) 

This (26) was further converted into a linear constraint 

using the inverse of the cumulative distribution function as 

follows: 

∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ≥ 𝐹𝑖

−1 (1 −
𝜀

𝑆
) , ∀⁡𝑖 ∈ 𝑁1                 (27) 

The probability constraint (3) in (P1) was replaced by (27) 

in order to obtain a tractable linear optimization problem in 

the following relationship.  

[P1-a]: 

Min⁡𝑞       (1a) 

With constraints: 

𝑞 ≥ 𝑐𝑗⁡, ∀⁡𝑗 ∈ 𝑁                    (2a) 

∑ 𝑍𝑖𝑗
𝑇
𝑗=𝑖 ≥ 𝐹𝑖

−1 (1 −
𝜀

𝑆
) , ∀⁡𝑖 ∈ 𝑁1                  (3a) 

Constraints (4) – (19)                  (4a) 

Optimization model obtained was reduced to an algorithm 

using the Monte Carlo simulation based on the following 

steps: 

1. Initialize the variables N, T, epsilon, and S. 

Initialize the vector F containing the value Fi for 

each i in N. 

Initialize the Z matrix with size N x T filled with 

normally distributed random numbers. 

2. For each i in N, calculate the values Finverse = 

qnorm(1 - epsilon/S, mean=0, sd=1) / sqrt(T) and Fi 

inverse = Finverse + (mean(Z[i,j]) / sd (Z[i,j])). 

3. For every i in N, calculate Si = 0. 

4. Repeat for Niteration 

5. For every i in N, do a Monte Carlo simulation by:  

a. Calculate the value (Zi = sum (Z [i, j])). 

b. If Zi >= Fi invers, add 1 to the value of Si. 

6. Calculate the probability value for each i in N using 

probabilities[i] = Si/Niteration. 

7. Calculate the overall probability value using total 

prob = prob (1 - probabilities). 

8. Print the overall probability values. 

The analysis conducted on the previous model limits using 

the R language produced a probability value of 0 while the 

optimized new model had 0.51 which was considered a 

significant increase. 

Program code Using the R Language in the Previous 

Model: 

# Monte Carlo function to calculate probability 

monte_carlo <-function(Z, f_hat, n_iter, threshold)  

  { 

   S <- 0 

  For (i in 1:n_iter) { 

    Z_i <- sum(Z[i,]) 

    if (Z_i >= f_hat) { 

      S <- S + 1 

    } 

    } 

return(S/n_iter) 

} 

# Initialize N and epsilon values 

N <- 100 

epsilon <- 0.01 

# Value initialization T, f_hat, and Z 

T <- 10 

f_hat <- c(5,6,7,8,9) 

Z <- matrix(rnorm(N*T), ncol=T) 

# Calculate probability using Monte Carlo 

probabilities <- numeric(length(f_hat)) 

for (i in 1:length(f_hat)) { 

prob_i <- monte_carlo(Z[,i], f_hat[i], 10000, 

threshold=epsilon) 

 probabilities [i] <- prob_i 

} 

# Calculate the overall probability using the multiplication 

method 

total_prob <- 1 

for (i in 1:length(probabilities)) { 

 total_prob <- total_prob * probabilities[i] 

} 

total_prob <- 1 - total_prob 

# Print overall probability results 

cat("Overall probability:", total_prob, "\n") 

Program code Using the R Language on an Optimized 

Model: 

# Determine the value T, Fi^(-1), and ε/S 

T <- 100 

Fi_inv <- 0.5 

epsilon_over_S <- 0.01 

# Create many random samples for the variable Zij 

Z <- matrix(rnorm(T * T), ncol = T) 

# Calculate the number of samples for each i in the set N1 

sum_Z <- apply(Z, 1, function(row) sum(row[1:T])) 

# Evaluate conditions: sum_Z >= Fi_inv *(1-

epsilon_over_S) 

for each i in N1 

pass_condition <- sum_Z >= Fi_inv * (1 - epsilon_over_S) 

# Calculates probability by calculating the average of 

conditions that are met 

probability <- mean(pass_conditions) 

# Shows probability estimation results 

cat("Probability estimation:", probability, "\n"). 

The algorithm produced was tested using the R language 

and the results showed a probability value of 0.51. This 

showed the presence of 0.51 more FV patient scheduled for 

appointments at time unit j and arrived at time unit i compared 

to those that stochastically arrived at unit time j. Each test was 

different because random values were generated from the 

computer memory for each occasion. 

 

V. CONCLUSION 

 In conclusion, model was able to optimize the problems 

associated with managing unfulfilled outpatient requests, a 
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limited range of appointment times for returning patient, and 

the average appointment lead time for old patient due to 

emergencies. Model also fixed the constraints identified in 

the previous model by determining the schedule based on the 

probability distribution information and the deterministic 

equivalent of the individual opportunity limitations. 

Moreover, the probability value increased by 0.51 compared 

to the previous model. 
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