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Abstract—Lyndon words have been extensively
studied in different contexts of free Lie algebra and
combinatorics. All Lyndon and Nyldon words are
primitive and any primitive class of words contains
an unique Lyndon and an unique Nyldon word. This
property motivated the study of Lyndon partial word
which is primitive but all primitive classes of partial
words may not contain a Lyndon partial word. In
this paper we introduce two variants of Lyndon par-
tial words namely Nyldon and inverse Lyndon partial
words which are constructed from the decreasing al-
phabetical order. We compare the properties of the
variants with those of Lyndon partial words.

Keywords: Partial words, Lyndon words, Nyldon

words

1 Introduction

Lyndon words serve to be a useful tool for a variety
of problems in combinatorics [1, 2, 9, 18]. There are
many applications of Lyndon words in semigroups, pat-
tern matching, representation theory of certain algebras
and combinatorics such as they are used to describe the
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generators of the free Lie algebras. Lyndon words are
used as a special case of Hall sets. All of these applica-
tions make use of the combinatorial properties of Lyndon
words, in particular the factorization theorem. Their role
in factorizing a string over an ordered alphabet was ini-
tially illustrated by Chen et.al [8]. The central result
about Lyndon words is Lyndon factorization. Duval [14]
presented a algorithm to derive a factorisation of strings
over an ordered alphabet known as Lyndon factorization.
A unique factorization theorem in terms of Lyndon trees
for factoring a tree is proved in [20]. Influenced by Lyn-
don words, Grinberg [12] in a mathoverflow post defined
Nyldon words as a variant of Lyndon words. Charlier,
Philibert and Stipulanti [7] computed the Nyldon factor-
ization of a word using an algorithm and made a compar-
ative study between Nyldon and Lyndon words. In [5, 6]
inverse Lyndon factorizations, a version of the Lyndon
factorization, were introduced, and its properties were
examined in order to explore its potential application in
string queries. In [7] a novel proof of unique factoriza-
tion into Nyldon words connected to Hall set theory was
given, and Lazard process for producing Nyldon words
was examined."

Partial words are nothing but words with holes over the
alphabet and are considered in gene comparisons [11].
For instance, alignment of two DNA sequences which are
genetic information carriers can be regarded as construc-
tion of two compatible partial words. DNA strands are
viewed as finite words and are used to encode informa-
tion in DNA computing. Partial words that indicate the
locations of the missing symbols in a word might be used
to expose information that was unseen or absent during
encoding. The study of partial words was first conducted
by Berstel and Boasson [3] and Blanchet Sadri [4] later
expanded on their research. Both Lyndon and partial
words have wide application in pattern matching.
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Motivated by the works on [1, 5, 6, 7, 10, 15, 16, 17, 19],
here the concept of Lyndon partial words is used the two
variants of Lyndon partial words namely inverse Lyndon
and Nyldon partial words are established. All primitive
conjugacy class of words contains exactly a single Lyn-
don and Nyldon word but this property is not satisfied in
terms of Lyndon partial words and Nyldon partial words.
There are equal count of Lyndon and Nyldon words of
each length but count of Lyndon partial words and Nyl-
don partial words of each length are not equal. Lyndon
partial words have many vital properties among which
few analogues in Nyldon partial words, while many do
not. Contrarily to Lyndon partial words which are con-
structed from the increasing alphabetical order, Nyldon
partial words are constructed from the decreasing alpha-
betical order. Lyndon partial words are minimal in their
conjugacy class but the latter are not maximal in their
conjugacy class. But both Lyndon partial words and
Nyldon partial words share a common property such as
they have a unique factorization. In the case of vari-
ants of Lyndon partial words, both Nyldon and inverse
Lyndon partial words are constructed from the decreas-
ing alphabetical order and both are greater than any of
their proper suffixes. Yet the class of Nyldon and inverse
Lyndon partial words do not correspond to each other
since they show major differences such as inverse Lyndon
partial words are prefix-closed while the former are not.
Also factorization is not unique in inverse Lyndon partial
words. The paper has the following organization. We re-
call some basics in Section 2 and in Section 3 we introduce
Nyldon partial words and study their properties. A com-
parison between the Lyndon and Nyldon partial words
is established. We also introduce inverse Lyndon partial
words and study their properties. Finally we conclude
the paper in Section 4.

2 Preliminaries

Definition 2.1. [18] The alphabet Σ is a finite set of
symbols (or letters) and is non-empty.

Definition 2.2. [18] A total word or string is a series
of letters over Σ. The set of all total words from Σ is de-
noted by Sigma∗ and Σ+ =Σ∗ \λ where λ is the identity.

Definition 2.3. [18] A language L is a subset of Σ∗.

Definition 2.4. [18] The total word p is a sub word (or
factor) of q if q = xpy where x and y are total words. p

exists as a proper subword of q if xy �= ε. If x = ε (resp.
y = ε,), then p is a prefix (resp. suffix) of q.

Definition 2.5. [18] A rotation of the total word pr = yx

of p = xy is said to be non-trivial if both x and y are
nonempty.

Definition 2.6. [14] An ordered alphabet is an alphabet
with a total order so that comparisons of any two symbols
from the alphabet can be computed in constant time. The
alphabetical order (lexicographical order) ≺ on (Σ∗,≺) is
defined by setting u ≺ v if any of the following conditions
are met:

1. u is a proper prefix of v,

2. there exists words x, y, z (possibly empty) and ele-
ments a and b of Σ such that u = xay, v = xbz, a ≺ b.

The Table 1 illustrates examples of alphabetical order of
words over a given alphabet.

Table 1: Illustration of alphabetical order of words over
binary and tertiary alphabet

Alphabet Order Alphabetical Order
a, b a ≺ b aa ≺ aab ≺ aba ≺ b
a, b, c a ≺ b ≺ c ab ≺ abb ≺ abbc ≺ abc ≺

acbc

Definition 2.7. [6] A finite Lyndon word l is non-empty
and primitive such that it is less than all its rotations in
the alphabetical order.

Definition 2.8. [6] A word u over Σ+ is an inverse Lyn-
don word if u � q for each non-empty proper suffix q of
u.

Definition 2.9. [7] A Nyldon word is recursively defined
as any primitive word of length at least three in the set
N over Σ = {a, b} with order {a ≺ b} such that it cannot
factorized into a alphabetically non-decreasing sequence
of shorter words of N . N is called as the finite Nyldon
words set over Σ.

Definition 2.10. [4] The sequence containing a number
of do not know symbols or holes denoted as ♦ is termed as
a partial word. A total word is a partial word with zero
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holes. Empty word is not a partial word. The symbol
♦ is not an element of Σ but a back-up symbol for the
unknown letter. ♦ alone of any length cannot exist as a
word. A partial word p of length n over Σ is a partial
function p : {0, 1, 2 · · · , n− 1} → Σ. For 0 ≤ i < n,

if p(i) is defined, then we say i ∈ D(p) (the domain of
p), otherwise i ∈ H(p) (the set of holes). The positions
of the holes in the partial words are represented using
the following definition. The companion of p, denoted by
p♦ is the total function p♦ : {0, 1, 2 · · · , n− 1} → Σ♦ =

Σ ∪ {♦} defined by

p♦(i) =

⎧⎨
⎩
p(i) if i ∈ D(p)


 if i ∈ H(p).

Definition 2.11. [4] A partial word p♦ over Σ♦ is prim-
itive if there does not exist any partial word q♦ over Σ♦
such that p♦ = qi♦ with i ≥ 2.

Definition 2.12. [4] If p♦ = xy for some x and y over
Σ♦, then yx is said to be the a rotation (or a conjugate)
of p♦.

Definition 2.13. [4] A nonempty partial word p♦ over
Σ♦ is unbordered if no nonempty partial words x♦, q♦, r♦
over Σ♦ exist such that p♦ ⊂ x♦q♦ and p♦ ⊂ r♦x♦. Un-
bordered partial words are primitive.

3 Characteristics and Applications of
Lyndon partial words

Lyndon partial words, also known as Lyndon partial
words with gaps, represent a specialized and invaluable
concept within the realm of DNA sequence analysis.
They serve as a powerful tool for modeling and articu-
lating DNA sequences, particularly in scenarios involv-
ing incomplete or uncertain data. The primary utility of
Lyndon partial words comes to the forefront when deal-
ing with DNA sequences that exhibit gaps or regions of
missing information.

These partial words are crafted by transforming a given
DNA sequence into a structured representation. This rep-
resentation consists of a sequence of standard DNA base
letters, namely A (adenine), C (cytosine), G (guanine),
and T (thymine). Importantly, the unique characteristic

A C G - T C - G A

Figure 1: Lyndon Partial Word

of Lyndon partial words lies in their capacity to incor-
porate gaps or placeholder symbols, which stand in for
segments of the sequence where information is either ab-
sent or uncertain. Lyndon partial words are particularly
instrumental in the field of DNA sequencing due to their
ability to capture and convey the nuances of real-world
genetic data. When DNA sequencing is conducted, it is
common to encounter regions where the sequence qual-
ity is compromised, leading to uncertainties or outright
gaps in the data. Lyndon partial words elegantly address
this challenge by providing a structured framework to ac-
count for these irregularities. By including gap symbols,
often represented as ’-’ or ♦ or other designated symbols,
researchers and bioinformaticians can meticulously docu-
ment and manipulate sequences that may have segments
with unclear or incomplete information. In essence, Lyn-
don partial words serve as a bridge between the idealized,
complete DNA sequences and the complex, often imper-
fect data obtained through sequencing processes. They
allow for a more faithful representation of biological real-
ity, enabling researchers to work with and analyze genetic
information in a manner that acknowledges and accom-
modates the uncertainties and gaps that are inherent to
DNA sequencing.

The following are key characteristics and applications of
Lyndon partial words:

1. Representation of Uncertainty: In DNA sequenc-
ing, it’s common to encounter regions with uncertain
bases due to sequencing errors or low-quality data. Lyn-
don partial words allow for the representation of these
uncertainties by using gap symbols in the sequence.

2. Capturing Partial Information: Lyndon partial
words can capture partial information about a DNA se-
quence. Instead of completely discarding regions with
gaps, they preserve the available data while indicating
where gaps exist.

3. Sequence Alignment: In bioinformatics, Lyndon
partial words can be used in sequence alignment algo-
rithms, such as pairwise or multiple sequence alignment,
where gaps need to be introduced to align sequences with
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insertions or deletions.

4. Error-Tolerant Matching: When comparing se-
quences with errors, Lyndon partial words are helpful in
performing error-tolerant matching or searching, as they
consider gaps and uncertainties in the comparison.

5. Phylogenetic Analysis: Lyndon partial words can
be applied in phylogenetic analysis to account for missing
or uncertain data in DNA sequences when constructing
phylogenetic trees.

6. Fragment Assembly: In DNA sequence assembly,
which involves piecing together shorter DNA reads to re-
construct the full genome, Lyndon partial words can be
used to represent partial sequences when dealing with
gaps or ambiguous data.

These partial words are a valuable tool for DNA sequence
analysis, especially in scenarios where data quality is a
concern, or when dealing with ancient or degraded DNA
samples where uncertainty is high. They provide a way
to incorporate and work with incomplete or uncertain
information within the context of DNA sequences.

Algorithm 1 Generate Lyndon Partial Words
1: function GenerateLyndonPartial-

Words(length, alphabet, partial_word)
2: if length = 0 then
3: word ← concatenate symbols in partial_word
4: if IsLyndon(word) then
5: Print word
6: end ifreturn
7: end if
8: for symbol in alphabet do
9: GenerateLyndonPartialWords(length −

1, alphabet, partial_word+ [symbol])
10: GenerateLyndonPartialWords(length −

1, alphabet, partial_word+ [′∗′])
11: end for
12: end function
13: function IsLyndon(word)
14: n ← length of word
15: for i in 1 to n− 1 do
16: if word[: i] > word[−i :] then
17: return False
18: end if
19: end for
20: return True
21: end function

4 Finite Nyldon and Inverse Lyndon Par-
tial Words

Here we introduce and study the properties of finite Nyl-
don partial words with respect to the properties of Lyn-
don partial words. We take partial words over Σ♦ with a
single hole into consideration throughout the work. The
symbol ♦ is not an element of the ordered alphabet Σ but
a back-up symbol for the unknown letter and is compat-
ible or matches to any of the symbol in Σ.

In [1], the authors have defined that a primitive partial
word is a partial Lyndon word iff it is minimal in its
conjugate class with respect to alphabetical order by as-
suming the order of ♦ as {a ≺ b ≺ ....♦}. The order
of ♦ does not play a special role in the definition for
studying properties of partial Lyndon words since the ♦
is considered as a letter with highest order which makes
the definition of partial Lyndon words similar to that of
Lyndon words. In the following definition of Lyndon par-
tial word, the order of ♦ plays a special role in studying
properties. Here we assume the order of ♦ as a1 � ♦ and
♦ � ak such that ♦ is compatible with all the elements
of Σk = {a1 ≺ a2 ≺ ... ≺ ak}, k � 1.

Definition 4.1. A finite Lyndon partial word l♦ be-
longing to the set of all Lyndon partial words L♦ over
the ordered alphabet Σ♦ = Σk

⋃{♦} = {a1 ≺ a2 ≺ ... ≺
ak}

⋃{♦}, k > 1 is a non-empty primitive partial word
which is less than all its conjugates (rotations) with
respect to the alphabetical order.

In other words, a finite primitive partial word l♦ of length
at least two is recursively defined as a Lyndon partial
word if it cannot be factorized into an alphabetically non-
increasing sequence of shorter Lyndon partial words.

Example 4.2. Consider the ordered alphabet Σ♦ =

{a ≺ b}⋃{♦} with order {a � ♦ and ♦ � b}. The fi-
nite Lyndon partial words set of length ≤ 4 are

{a♦,♦b, aa♦, a♦b,♦bb, aaa♦, aa♦b, a♦bb,♦bbb} .

Remark 4.3. Any Lyndon partial word is primitive but
the converse may not be true. For instance ♦abb is a
primitive partial word but its conjugacy class does not
contain a Lyndon partial word. This shows that the lexi-
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cographical order relation among Lyndon partial words is
not always a total order relation due to the existence of
hole.

Definition 4.4. A Nyldon partial word over the ordered
alphabet Σ♦ is recursively defined as any non-empty
primitive word of length at least two in the set of words
N such that it cannot be factorized into an alphabetically
non-decreasing sequence of shorter words of N♦. Here N♦
is called as the finite set of Nyldon partial words over Σ♦.

Any factorization (n1
♦, ....., n

r
♦) of n♦ into Nyldon partial

words such that n1
♦ � ...... � nr

♦ is called Nyldon factor-
ization of n♦ ∈ N♦

Table 2 shows the collection of Lyndon words along with
Lyndon partial words and Nyldon words with Nyldon
partial words of length atmost five over the ordered al-
phabet Σ♦ = {a ≺ b}⋃{♦}.

Table 2: Illustration of Lyndon words along with Lyn-
don partial words and Nyldon words with Nyldon partial
words

Length Lyndon words and Nyldon words and
Lyndon partial
words

Nyldon partial
words

1 a, b a, b
2 a♦, ab,♦b b♦, ba,♦a
3 aa♦, aab, a♦b, b♦b, b♦a, bab,

abb,♦bb baa
4 aaa♦, aaab, aa♦b, b♦bb, b♦ba, b♦ab,

aabb, a♦ab, a♦bb, b♦aa, ba♦a, babb,
abbb, ab♦b,♦bbb baab, baaa

5 aaaa♦, aaaab, aaa♦b, baaaa, baaab, baaba,
aabab, aab♦b, aabbb, ba♦ab, b♦abb, babbb,
ababb, abbbb,♦bbbb, b♦bab, b♦aab, b♦aaa,
aaabb, aa♦ab, a♦abb, baabb, babba, ba♦aa,
aa♦bb, a♦bbb, ab♦bb b♦bbb, bab♦a, b♦bba

Remark 4.5. All Nyldon partial words are primitive but
the converse may not be true.

Example 4.6. Let y♦ = bba♦b be a primitive par-
tial word over Σ♦. The conjugacy class of y♦ contains
{bba♦b, ba♦bb, a♦bbb,♦bbba, bbba♦}. All the words con-
tained in the conjugacy class are primitive but none of
them is a Nyldon partial word.

Remark 4.7. Nyldon partial words are not always al-
phabetically extremal among their rotation.

Figure 2: Estimated automaton for some Nyldon Partial
Words in Table 2

Example 4.8. Let the partial word v♦ = b♦ab ∈
N♦ over Σ♦. The conjugacy class of v♦ contains
{b♦ab,♦abb, abb♦, bb♦a}. Among the conjugacy class
bb♦a is the maximal but it is not a Nyldon partial word.

Proposition 4.9. Each Lyndon partial word u♦ over Σ♦
is unbordered but the converse is not true.

Proof. Assume that u♦ has a non-overlapping border x.
Then u♦ = xu♦x. Let igeq0 be maximal such that
u♦ = xiu1

♦. Then u♦ = xi+1u1
♦x. Then xi+2u1

♦ is lexi-
cographically smaller than xi+1u1

♦, a contradiction with
u♦ = xi+1u1

♦x being Lyndon partial word. The following
example illustrates that the converse is not true.

Example 4.10. For instance consider the unbordered
partial word u♦ = bb♦aa over Σ♦ which is also primi-
tive. But u♦ is not a Lyndon partial word.

Proposition 4.11. Each Nyldon partial word v♦ is not
unbordered.

For instance ba♦b is a Nyldon partial word which is bor-
dered.

Proposition 4.12. For any partial word v♦ over Σ+
♦ , a

factorization (n1
♦, ....., n

r
♦) of v♦ as N♦ over the alphabet

Σ+
♦ exists such that n1

♦ � ...... � nr
♦.

Theorem 4.13. Each Nyldon partial word of length at
least 2 over Σ♦ starts with ba or b♦.

Proof. We prove by contradiction. Consider n♦ = baq♦
with q♦ ∈ Σ+

♦ . Let (n1
♦, ....., n

r
♦) be Nyldon partial fac-

torization of aq♦. Then n1
♦ begins with a. Since b is a

Nyldon word, b � a � n1 and rgeq1. By Proposition
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4.12, we get the Nyldon factorization of n♦ of length at
least2 in the form (b, n1

♦, ....., n
r
♦). Hence n♦ is not Nyl-

don.

Theorem 4.14. [15] A proper subword cannot exist as
prefix as well as suffix of a Lyndon partial word.

Theorem 4.15. A proper subword cannot exist as prefix
as well as suffix of a Nyldon partial word.

Proof. Consider v♦ to be a partial word over Σ+
♦ . Assume

a proper subword of v♦ say p♦ with p♦ exists as both
prefix and suffix of v♦. The partial word v♦ = p♦qi♦ and
v♦ = qj♦p♦ for some qi♦, q

j
♦ ∈ Σ+

♦ . Consider v♦ ∈ N♦ over
Σ+

♦ . Then according to the notion of finite Nyldon partial
words, v♦ � qi♦p♦ and v♦ � p♦q

j
♦. Then qj♦p♦ � qi♦p♦

and p♦qi♦ � p♦q
j
♦. This implies that qj♦ � qi♦ and qi♦ � qj♦

which is impossible. Thus a Nyldon partial word does not
have a proper subword as both prefix and suffix.

Theorem 4.16. [15] Any partial word u♦ ∈ L♦ if and
only if u♦ ≺ q♦ for each proper suffix q♦ of u♦.

Example 4.17. Consider a Lyndon partial word u♦ =

aaa♦b = p♦q♦ where p♦ = a and q♦ = aa♦b. Here u♦ =

aaa♦b ≺ aa♦b = q♦ and q♦ is also a proper suffix of u♦.

Theorem 4.18. Any partial word v♦ ∈ N♦ if v♦ � q♦
for each proper suffix q♦ of v♦ but the converse is not
true.

Proof. Consider v♦ = p♦q♦ to be a finite Nyldon partial
word such that p♦ and q♦ are non-empty. Let q♦ be a
proper suffix of v♦ = p♦q♦. Then q♦p♦ ≺ p♦q♦. By
Theorem 4.15, q♦ is not a proper prefix of p♦q♦. Thus
we get q♦ ≺ v♦ for each proper suffix q♦. The converse
is not true in the case of Nyldon partial words. For in-
stance consider the partial word u♦ = ba♦bab. The Nyl-
don proper suffixes of u is (b, bab) but u is not a Nyldon
partial word.

Theorem 4.19. Any partial word v♦ over Σ+
♦ such that

v♦ = n1
♦.....n

r
♦ and n1

♦, ....., n
r
♦ ∈ N♦ has

(i) nr
♦ as the maximum suffix of v♦,

(ii) nr
♦ as the longest suffix of v♦.

Proof. Consider the partial word v♦ over Σ+
♦

(i) Let q♦ be a suffix of v♦ in the form

q♦ = nj
♦n

i+1
♦ ......nr

♦

such that nj
♦ is non-empty and it is the suffix of ni

♦
with igeqr. Then we have nj

♦ � ni
♦. This implies

nj
♦ � ni

♦...... � nr
♦. Therefore nr

♦ as the maximum suffix
of v♦.
(ii) Assume that q♦ is the longest suffix of v♦ ∈ N♦. Then
i > m and nj

♦ � q♦. This shows nr
♦ � q♦ and q♦ /∈ N♦.

Therefore nr
♦ as the longest suffix of v♦.

Theorem 4.20. A Nyldon factorization of a Nyldon par-
tial word always exists.

Proof. Let n♦ be a Nyldon partial word over the ordered
alphabet Σ♦. We want to show that there exists a Nyldon
factorization of n♦, i.e., a factorization (n♦

1 , n
♦
2 , . . . , n

♦
r )

such that n♦
1 � n♦

2 � . . . � n♦
r .

Base Case (|n♦| = 2: If n♦ is a primitive word of length
two, it is, by definition, a Nyldon partial word. The Nyl-
don factorization is trivially (n♦) itself, and the theorem
holds.

Inductive Step: Assume the theorem holds for all Nyl-
don partial words of length less than k. Now, consider
a Nyldon partial word n♦ of length k ≥ 3. Since n♦ is
a Nyldon partial word, it cannot be factorized into an
alphabetically non-decreasing sequence of shorter words
of N♦. Therefore, n♦ itself is a Nyldon partial word.

Consider the factorization (n♦
1 , n

♦
2 , . . . , n

♦
r ) where n♦

i is
the maximal Nyldon partial word starting at the i-th po-
sition in n♦. By the induction hypothesis, each n♦

i has
a Nyldon factorization. Since n♦

i is maximal, it cannot
be further factorized into shorter Nyldon partial words.
Therefore, we have a Nyldon factorization of n♦ as de-
sired.

Theorem 4.21. Every factor of a Nyldon partial word
is also a Nyldon partial word.

Proof. Let n♦ be a Nyldon partial word. We want to
show that every factor of n♦ is also a Nyldon partial
word.
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We will prove this by contradiction. Assume there exists
a factor x♦ of n♦ such that x♦ is not a Nyldon partial
word. Then, x♦ can be factorized into an alphabetically
non-decreasing sequence of shorter words of N♦. How-
ever, x♦ is also a factor of n♦, which is a Nyldon partial
word, and it cannot be factorized in such a way. This
contradiction implies that our assumption was incorrect.
Therefore, every factor of n♦ is also a Nyldon partial
word.

Theorem 4.22. Factorization Theorem Any partial
word u♦ over Σ+

♦ can be uniquely represented as u♦ =

l1♦.....l
r
♦ with l1♦ � ...... � lr♦ where l1♦, ....., l

r
♦ ∈ L♦.

Theorem 4.23. Any partial word v♦ over Σ+
♦ can be

uniquely represented as v♦ = n1
♦.....n

r
♦ with n1

♦ � ...... �
nr
♦ where n1

♦, ....., n
r
♦ ∈ N♦ .

Proof. Proposition 4.12 shows the existence of factoriza-
tion. We prove the uniqueness of factorization by in-
duction. Consider |v♦| of minimal length 2. All finite
words shorter than v♦ admits a unique Nyldon factor-
ization. Assume v♦ as a non-Nyldon partial word. Let
(n1

♦, ....., n
r
♦) be the factorization of v♦. By Theorem

4.19, nr
♦ is the longest suffix of the Nyldon partial word

v♦ such that by induction v♦ determines the subwords
n1
♦, ....., n

r
♦. Thus there does not exist another factoriza-

tion of v♦ other than n1
♦, ....., n

r
♦.

Definition 4.24. A partial word u♦ over Σ♦ is an in-
verse Lyndon partial word if u♦ � q♦ for each non-empty
proper suffix q♦ of u♦.

Example 4.25. The partial words bb♦a, baaa♦, bb♦ba
are inverse Lyndon partial words on Σ♦.

Theorem 4.26. Every proper suffix of an inverse Lyn-
don partial word is also an inverse Lyndon partial word.

Proof. Let u♦ be an inverse Lyndon partial word. We
need to show that every proper suffix of u♦ is also an
inverse Lyndon partial word.

By the definition of an inverse Lyndon partial word, u♦ �
q
 for each non-empty proper suffix q♦ of u♦. Since q♦
is a proper suffix of u♦, the last symbol of q♦ is the last
symbol of u♦. Now, consider any proper suffix q♦ of u♦.

Since u♦ is an inverse Lyndon partial word, u♦ � q♦,
and this relationship holds for every proper suffix q♦.
Therefore, every proper suffix of u♦ is also an inverse
Lyndon partial word.

Algorithm 2 Generate Inverse Lyndon Partial Words
1: function GenerateInverseLyndonPartial-

Words(length, alphabet, partial_word)
2: if length = 0 then
3: word ← concatenate symbols in partial_word
4: if IsLyndon(word) then
5: Print word−1 � Print the inverse of the

Lyndon word
6: end ifreturn
7: end if
8: for symbol in alphabet do
9: GenerateInverseLyndonPartial-

Words(length − 1, alphabet, partial_word +
[symbol])

10: GenerateInverseLyndonPartial-
Words(length− 1, alphabet, partial_word+ [′∗′])

11: end for
12: end function
13: function IsLyndon(word)
14: n ← length of word
15: for i in 1 to n− 1 do
16: if word[: i] > word[−i :] then
17: return False
18: end if
19: end for
20: return True
21: end function

Theorem 4.27. A concatenation of inverse Lyndon par-
tial words is an inverse Lyndon partial word if and only
if the last symbol of each component is greater than the
first symbol of the next component.

Proof. Let u1♦, u2♦, . . . , uk♦ be inverse Lyndon partial
words such that ui♦ � ui+1♦ for 1 ≤ i < k.

Assume that u = u1♦u2♦ . . . uk♦ is an inverse Lyndon
partial word. We need to show that ui♦ � q♦ for every
non-empty proper suffix q♦ of ui♦ and every i (where
1 ≤ i ≤ k). Consider i = 1. For any proper suffix q♦
of u1♦, q♦ is also a proper suffix of u since u1♦ is the
first component of u. Therefore, u � q♦. Now, consider
i > 1. Since ui−1♦ � ui
, any proper suffix q♦ of ui♦ is
also a proper suffix of ui−1♦ui♦ . . . uk♦ = u. Therefore,
u � q♦.
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Conversely, assume that ui♦ � q♦ for every non-empty
proper suffix q♦ of ui♦ and every i (where 1 ≤ i ≤ k).
We need to show that u = u1♦u2♦ . . . uk♦ is an inverse
Lyndon partial word. Consider any proper suffix q♦ of u.
It must be a proper suffix of one of the components ui♦.
Since ui♦ � q♦, it follows that u � q♦. Therefore, u is
an inverse Lyndon partial word.

Proposition 4.28. If u♦ over Σ+
♦ is not an inverse

Lyndon partial word, then a non-empty proper suffix
q♦ of u♦ exists such that u♦ is not a proper prefix of
q♦(u♦ ≺≺ q♦).

Proof. Let u♦ be a non-inverse Lyndon partial word over
the alphabet Σ+, and let v♦ be the longest proper prefix
of u♦ that is also a Lyndon partial word. Since u♦ is not
an inverse Lyndon partial word, v♦ is a proper prefix of
u♦.

Now, let q♦ be the shortest non-empty proper suffix of u♦
such that u♦ is a proper prefix of q♦(u♦ ≺≺ q♦. Since v♦
is the longest proper prefix of u♦ that is also a Lyndon
partial word, q♦ cannot be equal to u♦, and therefore, q♦
is a non-empty proper suffix of u�.

Theorem 4.29. Any non-empty prefix of an inverse
Lyndon partial word is an inverse Lyndon partial word.

Proof. Let us prove by contradiction. Assume u♦ over
Σ+

♦ to be an inverse Lyndon partial word of the form
u♦ = p♦q♦ where p♦ is a non-empty proper prefix of u♦
such that it is not an inverse Lyndon partial word. By
Proposition 4.28, a non-empty proper suffix of p♦ say r♦
exists such that p♦ ≺≺ r♦. For q♦ ∈ Σ+

♦ , if p♦ such that
p♦ ≺≺ r♦ then p♦q♦ ≺≺ r♦q♦. Thus u♦ ≺≺ r♦q♦. This
shows that u♦ is smaller than its non-empty proper suffix
r♦q♦ which contradicts the assumption.

Theorem 4.30. For any partial word u♦ over Σ+
♦ , there

exists a non-unique factorization (s1♦, ....., s
r
♦) of u♦ into

inverse Lyndon partial words such that u♦ = (s1♦.....s
r
♦)

and s1♦ ≺≺ .... ≺≺ sr♦.

Proof. Unlike Lyndon partial words and Nyldon par-
tial words, factorization of inverse Lyndon partial words

Table 3: Characteristics of Inverse Lyndon Words

Characteristic Description

Lexicographic
Order

Inverse Lyndon words are arranged
in non-increasing lexicographic or-
der.

Factorization Every factor of an inverse Lyn-
don word is also an inverse Lyndon
word.

Length
Property

An inverse Lyndon word cannot be
the prefix of a longer inverse Lyn-
don word.

Conjugacy
Class

Inverse Lyndon words in the same
conjugacy class are cyclic shifts of
each other.

Lyndon
Factorization

Every inverse Lyndon word has a
Lyndon factorization.

Generation Inverse Lyndon words can be gener-
ated iteratively using a specific al-
gorithm.

Uniqueness Inverse Lyndon words are unique
representatives of their conjugacy
classes.

Subword
Complexity

The subword complexity of inverse
Lyndon words is known and can be
calculated efficiently.

Applications Used in various applications, such
as data compression, genomics, and
coding theory.

is not unique. For instance, consider the inverse Lyn-
don partial word u♦ = baabb♦abbbaa over Σ♦.We get
three sequences (baa, bb♦a, bbbaa), (baabb♦a, bbbaa) and
(baab, b♦abbbaa) as factorizations of the inverse Lyn-
don partial word u♦. Thus u♦ = (baa, bb♦a, bbbaa) =

(baabb♦a, bbbaa) = (baab, b♦abbbaa). Here baa,bb♦a,
bbbaa, baabb♦a, baab, b♦abbbaa are all inverse Lyn-
don partial words. Further baa ≺≺ bb♦a ≺≺ bbbaa,

baabb♦a ≺≺ bbbaa and baab ≺≺ b♦abbbaa.

5 Conclusion and Future Work

In this paper, we studied properties of two distinct vari-
ants of Lyndon partial words defined over a binary al-
phabet. These variants are carefully examined and their
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properties are established. Moreover, as we look ahead to
future research, we turn our attention to the study of free
monoid morphisms that possess the remarkable quality
of preserving finite Lyndon partial words. This investi-
gation promises to shed light on the profound interplay
between structural transformations and Lyndon partial
words, a relationship that holds significant implications
in various areas of computer science and mathematical
formalism.

A key aspect of the future exploration involves

• Study free monoid morphisms that preserve finite
Lyndon partial words.

• Investigate whether these morphisms maintain or
disrupt the lexicographic order.

• Explore the interplay between structural transforma-
tions and Lyndon partial words.

• Examine the impact of these investigations on com-
puter science and mathematical formalism.

• Extend our understanding of Lyndon partial words
and their applications in diverse domains.
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