

Self-supervised Hypergraph Transformer with
Alignment and Uniformity for Recommendation

XianFeng Yang, Yang Liu

Abstract—Graph neural networks have proven their

effectiveness for user-item interaction graph collaborative
filtering. However, most of the existing recommendation
models highly depended on abundant and high-quality datasets
and neglected the alignment and uniformity of embedding
representation. The noisy and skewed distribution of data from
real-world applications is ubiquitous. The alignment and
uniformity are crucial for representation learning. In this
paper, we propose SHTAU (self-supervised hypergraph
transformer with alignment and uniformity for the
recommendation) to address the problem. Specifically, we first
perform a graph neural network on the user-item interaction
graph, then captures the global collaboration relationship
between users and items through the hypergraph transformer
structure, and use the extracted global information to generate
self-supervised signals for data enhancement on the user-item
interaction graph to enhance the robustness of the
recommendation algorithm. Simultaneously, alignment and
uniformity auxiliary task update embeddings from different
angles to improve performance. Extensive experiments are
conducted on Yelp, Gowalla, MovieLens, Amazon-book and
Tmall datasets. The experimental results show that SHTAU
has obvious advantages over the baseline methods.

Index Terms—Recommendation, Self-Supervised Learning,

Hypergraph, Alignment and Uniformity

I. INTRODUCTION

ecommender systems play critical roles in various
applications and greatly affect the user experience. To

assist users in finding what they need, personalized
recommendation systems widely adopt collaborative
filtering (CF) techniques. The fundamental concept behind
collaborative filtering (CF) is that similar users tend to have
similar preferences. Collaborative filtering can utilize the
user-item interaction history to discover similar users and
generate recommendations for specific users based on this
similarity relation.

Earlier CF models employed matrix factorization (MF) to
project interaction data into latent user and item embeddings
[1]. As deep learning gained popularity, CF models
leveraging neural networks started to emerge, such as NCF
[2] and AutoR [3]. Recent years have witnessed notable
advancements in the development of graph neural networks
(GNNs) specifically designed to model graph structure data
[4,5]. The technique of recursively aggregating information
along user-item interactions to obtain node embeddings has
demonstrated its effectiveness in practice. For example,

Manuscript received September 25, 2023; revised January 11, 2024.
XianFeng Yang is a postgraduate student at School of Computer Science

and Software Engineering, University of Science and Technology Liaoning,
Anshan, China (e-mail: 1215867299@qq.com).

Yang Liu is a professor at School of computer Science and Software
Engineering, University of Science and Technology Liaoning, Anshan,
China (corresponding author to provide e-mail: liuyang_lnas@163.com).

GCMC [6] and STGCN [7] contain the GCN structure that
sense and aggregate neighbor information in the user-item
interaction graph. To simplify graph-based information
propagation, LightGCN [8] removes redundant nonlinear
transformers during information propagation and acquired
better performance. In order to further improve the
recommendation models based on graph neural networks,
some studies suggest using disentangled graph neural
frameworks to learn intent-aware representations (e.g.,
DisenHAN [9]) and using multi-relational graph neural
models to distinguish user behavior and generate
behavior-aware embeddings (e.g., MB-GMN [10]).

 Existing recommendation models based on graph neural
networks face the following challenges:
 Existing graph neural network recommendation

models have a high dependency on sufficient and
high-quality training data. However, noisy data is
common in many recommendation scenarios, and that
prevents the fulfillment of this essential need. For
example, popular items could be over-recommending
by the recommendation system, in this situation, users
may click on products they are not interested in [11]. As
a result, the user-item interaction graph could include
edges that are not correlated with user interests.
Ignoring the existence of these interest-uncorrelated
edges and treating all edges equally will harm the
accuracy of user representation. Taking a step further,
when it comes to interest-uncorrelated information,
recursively executing multi-hop information
propagation will spread the misleading information out
and amplify the influence of noise, eventually dragging
the performance down.

 Data sparsity and skewed distribution misleads
GNN recommendation models and cause the
recommendation to lean toward popular items
[12,13]. Therefore, important training signals could be
relatively weak, making it harder for the model to
discover them and process them appropriately. Although
there are some recently developed recommendation
models which utilize self-supervised learning to
optimize user representation. Most of them use a
random mask strategy that may preserve noisy
interactions or lose some important training signals
during data augmentation.

 Most recommendation models that are based on
graph neural networks mainly emphasize the
development of better encoders to acquire improved
embedding representations of users and items.
However, they often neglect the aligning and uniformity
of the embedded representations of users and items
within collaborative filtering.

 To address the aforementioned challenges, this study
proposes the Self-supervised Hypergraph Transformer with

R

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

Alignment and Uniformity for recommendation framework
(SHTAU) to enhance the robustness and generalization
performance of the collaborative filtering recommendation
model.

Specifically, this paper enhances the capabilities of the
model by utilizing self-supervised signals, hypergraph
transformers, and alignment-uniform learning auxiliary
tasks.

The primary contributions of this paper can be
summarized as follows:
 SHTAU, a recommendation framework based on a

self-supervised hypergraph transformer and alignment
uniformity is proposed to mitigate the negative impact
of noise.

 Considering the target properties of user and item
embedding representations in collaborative filtering, the
alignment-uniform learning objective is introduced to
enhance the performance of the model.

 A large number of experiments are carried out on five
public datasets, and the experimental results show that
the performance of the proposed SHTAU framework is
better than baseline methods.

II. RELATED WORK

The related works in this paper include recommendation
algorithms with graph neural networks, recommendation
algorithms with hypergraphs, and recommendation
algorithms with self-supervised learning.

A. Recommendation with graph neural network

Recent recommender system research has designed a
variety of graph neural network structures to learn the
information contained in user-item interactions. For example,
PinSage [14] and NGCF [15] propose graph convolutional
networks built on spectral domains. LightGCN [8] proposes
a simplified GCN for collaborative filtering and improves
performance by using sum-based pooling on interactions. In
the GCN-based model structure, every user and item is
encoded into an embedding by aggregating information
along the edges of the user-item interaction graph. In order
to refine user embedding, several disentangled graph neural
network architectures are proposed, including DGCF [16]
and DisenHAN [17]. Despite more effective CF models are
emerging, most of them rely only on observed interactions
for model training, which makes them ineffective in
modeling interactions when facing sparse and noisy signals.
In order to overcome these challenges, this work generates
higher-order knowledge by self-supervised learning
structure from hypergraph information to filter noises and to
focus on learning effective interactions.

B. Recommendation with hypergraph

Compared to ordinary graphs, hypergraphs can provide a
more accurate representation of the relationships between
nodes with multiple associations. Hypergraphs can represent
complex multivariate relationships and higher-order
relationships [26]. Some recent hypergraph-based models
have improved user-item relational learning for
recommender systems. DHCF [18] is a hypergraph
collaborative filtering model to learn the hybrid high-order

correlations. Where HyRec [19] treats the user as a series of
hyperedges that aggregate information from related nodes.
MHCN [20] is a multi-channel hypergraph convolutional
network to enhance social recommendation by leveraging
high-order user relations. Unlike the above models, SHTAU
automatically learns hypergraph structures through global
collaboration relationships instead of designing them
manually.

C. Contrastive learning using alignment and uniform

Recent studies [21, 22] in the field of contrastive learning
identify alignment and uniformity as two key properties that
can be used to efficiently build high-quality representations.
Given the distribution of data 𝑝ௗ௔௧௔(·) and the distribution
of positive pairs 𝑝௣௢௦(·) , alignment is defined as the
average distance between normalized embeddings of
positive pairs:

ℒ௔௟௜௚௡ ≜ 𝔼
(௫,௫శ)~௣೛೚ೞ

‖𝑓ேோ(𝑥) − 𝑓ேோ(𝑥ା)‖
ଶ (1)

Where 𝑓୒ୖ(·) indicates 𝑙ଶ normalized representations.
And we define the uniformity loss as the logarithm of the
average pairwise Gaussian potential:

ℒ𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ≜ 𝔼
(௫,௬)~௣೏ೌ೟ೌ

𝑒ିଶ‖௙ಿ ೃ(௫)ି௙ಿ ೃ(௬)‖
మ

(2)

The ideal embedding representation is highly consistent
with the state described by these two objective functions, i.e.,
the user and item representations of a pair of positive
samples should be close to each other, while the
representations of randomly selected samples should be as
far away from each other as possible, and scattered
throughout the embedding space. In this study, these two
additional learning objectives will be incorporated into
multi-objective learning to enhance the embedding's quality.

III. SYMBOL DEFINITIONS

This section explains the definitions of symbols used in
this work.

TABLE I
SYMBOLS AND THEIR DEFINITIONS

Symbol Definitions

𝐺 User-item interaction graph
𝐴 The adjacency matrix of the graph
�̅� Normalized adjacency matrix
𝐷 Degree matrix of graph
𝐸෠ Global user/item embedding
𝐸௟௢௖௔௟ Local user/item embedding
𝑍መ Hyperedge embedding
�̅� Multi-head hyperedge embedding
𝑞, 𝑘, 𝑣 Transformer parameter matrices
𝛤 User/item solidity embedding
𝑠 Edge solidity label
�̂� Edge solidity estimate

Definition 1. Collaborative Filtering. Let 𝑈 and 𝐼
denote the user and item set, respectively. Given a set of
observed user-item interactions R = {(𝑢,𝑖) | 𝑢 interacted with
𝑖}, CF methods aim to infer the score 𝑠(𝑢,𝑖) ∈ R for each
unobserved user-item pair which indicates how likely the
user 𝑢 tends to interact with the item 𝑖.

IV. METHODOLOGY

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

In this section, we elaborate on the architecture of the
SHTAU framework. The complete model architecture is
illustrated in Figure 1. The SHTAU framework structure
mainly includes the following components: graph neural
network for local learning, hypergraph encoder for global
embedding, local-global self-augmented learning, and
align-uniform learning.

A. Local graph structure learning

We initialize user and item representations in a
d-dimensional latent space, for user 𝑢i and item 𝑣j we get
embedding vectors 𝑒௜ , 𝑒௝ ∈ ℝௗ. Stack all embedding vectors

into embedding matrices 𝐸(௨) ∈ ℝூ×ௗ , 𝐸(௩) ∈ ℝ௃ ×ௗ . To
perform the local embedding, a two-layer Graph
Convolutional Network (GCN) is employed. In addition to
the graph convolutional layers, residual connections are
utilized in the model architecture. Residual connections
facilitate the flow of information through the network by
allowing the model to retain and propagate information from
previous layers. This helps to mitigate the problem of
vanishing gradients and can improve the training process.

𝐸௟௢௖௔௟
(௨)

= 𝐺𝐶𝑁ଶ൫𝐸(௩), 𝐺൯ = �̅� ⋅ �̅�்𝐸(௨) + �̅� · 𝐸(௩) (3)

Where 𝐸௟௢௖௔௟
(௨)

∈ ℝூ×ௗ denotes user side local embedding.
�̅� ∈ ℝூ×௃ denotes the normalized adjacency matrix. Where
𝐺 represents the user-item interaction graph

�̅�௜,௝ = 𝐴௜,௝/ ቀ𝐷 ௜
(௨)ଵ/ଶ

𝐷௝
(௩)ଵ/ଶ

ቁ (4)

𝐷 ௜
(௨)ଵ/ଶ , 𝐷௝

(௩)ଵ/ଶ denotes the degree of node 𝑢 i, 𝑣 j in

graph 𝐺. Item side local embedding calculated likewise.

B. Hypergraph global learning

Despite graph neural networks have shown their
effectiveness in recommender system, The model's
performance is still restricted by the sparse data problem. To
overcome this limitation, a hyper-graph encoder is
employed, which aims to extract and integrate global
information by leveraging a larger receptive field. By
utilizing a hyper-graph structure, the model can capture and
propagate information across a broader context, enabling it
to better understand the relationships and dependencies in
the data. The structure of the hypergraph encoder is shown
in Figure 2.

a) Node to hyperedge propagation
This section elaborates on the propagation process of

embedding from user nodes to user-side hyperedges. The
same processing method applies to the item side. The
objective is to effectively capture and preserve important
information during the propagation, rather than letting it
fade away in multiple hypergraph propagations. To achieve
this, a transformer-like structure is utilized. Transformers
have demonstrated their effectiveness in capturing and
leveraging long-range dependencies in various tasks,
including natural language processing and computer vision.
By adopting a transformer-like structure, the model aims to
capture valid information directly from the user nodes and
incorporate it into the hyperedge embeddings. The
procedures of node-hyperedge propagation can be expressed
as follows:

�̃�௞ = ൫𝑧௞̅,ଵ, 𝑧௞̅,ଶ, … , 𝑧௞̅,௛൯; 𝑧௞̅,௛ = ෍ 𝑣௞,௛

௄

௞ୀଵ
𝑘௞,௛

் 𝑞௜,௛ (5)

Where 𝑍෨௞ ∈ 𝑅ௗ represents the embedding of the k-th
hyperedge. Concatenated with H multi-head embeddings

Fig.1 Complete framework of SHTAU

Fig.2 Hypergraph encoder for global learning

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

�̅�௞,௛ ∈ ℝௗ/ு.
𝑞௞,௛ = 𝑍௞,௣೓షభ:௣೓

; 𝑘௜,௛ = 𝐾௣೓షభ:௣೓,:�̃�௜; 𝑣௜,௛ = 𝑉௣೓షభ:௣೓ ,:�̃�௜ (6)

Where 𝑞௞,௛, 𝑘௜,௛ , 𝑣௜,௛ ∈ ℝௗ/ு represents the query, key,
value in attention mechanism respectively. 𝑍 ∈ 𝑅௄×ௗ
represents the embedding matrix of the K hyperedge. The
final hyperedge embedding can be obtained as follows:

𝑍መ = 𝐻𝐻𝐺𝑁ଶ൫𝑍෨൯; 𝐻𝐻𝐺𝑁(𝑿) = 𝜎(𝐻 · 𝑋 + 𝑋) (7)

Where 𝑍መ represents the final hyperedge embedding. 𝑍෨ ∈

ℝ௄×ௗ represents the output of transformer. HHGNଶ (·)
represents performing the hierarchical hypergraph network
two times consecutively. 𝐻 ∈ ℝ௄×௄ represents the
parameter matrix of HHGN, it characterizes relationship
between hyperedges. 𝜎(·) denotes an activation function.

b) Hyperedge to node propagation
To get distilled information into use we need a

hyperedge-node propagation. In node-hyperedge
propagation, information flows from individual nodes to
hyperedges, allowing the hyperedges to capture and
aggregate the information from their neighboring nodes.
Conversely, in the hyperedge-node propagation, the distilled
information is propagated back from hyperedges to
individual nodes. This propagation process enables the
nodes to receive the aggregated information from the
hyperedges and update their representations accordingly.

𝒆෤ ௜
ᇱ = ൫�̅�௜,ଵ

ᇱ , �̅�௜,ଶ
ᇱ , … , �̅�௜,௛

ᇱ ൯; �̅�௜,௛
ᇱ = ෍ 𝑣௜,௛

ᇱ
ூ

௜ୀଵ
𝑘ᇱ

௞,௛
⊺

𝑞௞,௛
ᇱ (8)

Where �̃�௜
ᇱ ∈ ℝௗ means the hypergraph embedding of user

𝑢i that generated by hypergraph encoder �̅�௜,௛
ᇱ denotes the h-th

multi-head embedding of user 𝑢i.
𝑞௜,௛

ᇱ = 𝑘௜,௛; 𝑘௜,௛
ᇱ = 𝑞௜,௛; 𝑣௞,௛

ᇱ = 𝑉௣೓షభ:௣೓,:�̂�௞ (9)

This process shares parameters with note-hyperedge
propagation, the former key now is the new query and the
former query is the new key. �̂�௞ denotes the embedding of
k-th hyperedge.

c) Recursively hypergraph propagation
To enhance the receptive field and capture long-span

global dependencies, hypergraph propagation is employed

recursively. This approach allows information to propagate
through a hypergraph structure, enabling the model to gather
knowledge from a broader context. By recursively
performing hypergraph propagation, the model can
gradually incorporate information from distant nodes,
resulting in a larger receptive field. This expanded receptive
field helps the model to better understand and leverage
global relationships and dependencies within the data. The
final global embedding 𝐸෠ can be obtained by summing the
embeddings from each layer:

𝐸෠ = ෍ 𝐸෨௟;

௅

௟ୀଵ

𝐸෨௟ = 𝐻𝑦𝑝𝑒𝑟𝐸𝑛𝑑𝑐𝑜𝑑𝑒𝑟൫𝐸෨௟ିଵ൯ (10)

Where HyperEncoder(·) denotes the complete hypergraph
global learning process above.

C. Self-Augmented Learning

To further eliminate the influence of noise in user-item
interaction information on graph topology embedding.
Introduce self-augmented learning between graph
topological embeddings and hyperedge learning.
Specifically, an additional task is added to the graph
topology embedding information extraction process, which
distinguishes the solidity of user-item interaction. The
solidity of an edge in the user-item interaction graph
represents the probability that the edge is not noisy. Lower
solidity values indicate a higher likelihood of noise in the
edge. By calculating the solidity labeling, the framework
can quantify the noise levels in the user-item interactions
based on the learned hypergraph dependency representation.

a) Solidity labeling with meta network
To distinguish noisy data and leverage edge solidity for

guiding embedding learning, specific calculations are
needed to generate self-supervised labels based on the
solidity concept. These calculations involve using the
learned hypergraph dependency representation through
meta-networks. The meta-network utilizes the learned
hypergraph dependency representation as input to construct

Fig.3 Self-Augmented Learning

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

a perceptron. The perceptron is a type of neural network that
can learn to estimate the solidity of each edge in the
user-item interaction graph. By leveraging the hypergraph
dependency representation, the perceptron can assess the
solidity of each edge, indicating the likelihood of noise in
the data. The generated solidity labels serve as
self-supervised labels, guiding the embedding learning
process. By incorporating these labels into the training
process, the model can effectively denoise the observed
user-item interaction data. The hypergraph dependency
representation, being leveraged as useful knowledge, helps
the model prioritize reliable interactions and reduce the
impact of noise. Specifically, the parameter matrix K from
the hypergraph Transformer will be reused here since they
are generated for modeling relationships, and the
information they contain can guide the estimation of the
solidity of user-item interactions.

𝛤௜ = 𝜙(௨)൫∥௛ୀଵ
ு 𝑘௜,௛൯; 𝛤௝ = 𝜙(௩)൫∥௛ୀଵ

ு 𝑘௝,௛൯ (11)

where 𝛤௜ , 𝛤௝ denotes user and item solidity embedding.

𝜙(௨) (·), 𝜙(௩)(·) denotes user and item side perceptron. The
project of perceptron guided by a meta network, this meta
network takes user and item side hyperedge embedding as
input, and output the parameter of perceptron.

𝜙(𝑥; 𝑍) = 𝜎(𝑊𝑥 + 𝑏); 𝑊 = 𝑉ଵ𝑧̅ + 𝑊଴; 𝑏 = 𝑉ଶ𝑧̅ + 𝑏଴ (12)

Where 𝑥 ∈ ℝௗ is the input of the perceptron (e.g., 𝛤௜ , 𝛤௝).
𝑍 is the hyperedge embedding from user-side or item-side.
𝑊 ∈ ℝௗ×ௗ and 𝑏 ∈ ℝௗ is the parameters of perceptron
generated by the meta network. 𝑧̅ ∈ ℝௗ is the mean
pooling of hyperedge embedding. 𝑉ଵ ∈ ℝௗ×ௗ×ௗ 𝑊଴ ∈

ℝௗ×ௗ 𝑉ଶ ∈ ℝௗ×ௗ 𝑏଴ ∈ ℝௗ are parameters of the meta
network.

𝑠௜,௝ = 𝑠𝑖𝑔𝑚 ቀ𝑑⊺ ⋅ 𝜎൫𝑇 ⋅ ൣ𝛤௜; 𝛤௝൧ + 𝛤௜ + 𝛤௝ + 𝑐൯ቁ (13)

Where s௜,௝ denotes the solidity of edge (𝑢௜ , 𝑣௝). 𝑠𝑖𝑔𝑚(·

) denotes the sigmoid function. 𝑑 ∈ ℝௗ , 𝑇 ∈

 ℝௗ×ଶௗ , 𝑐 ∈ ℝௗ are parameter matrices. [·; ·] represents
vector concatenation.

b) Self-Augmented learning objective function
To enable the framework to handle interactions with

different solidities differently, a self-supervised objective
function is introduced. In order to guide the optimization
process of user and item embeddings, both the global
solidities obtained from the aforementioned process and the
local solidities predicted by the framework based on local
information are needed. By having both the global and local
solidities, the framework can handle interactions with
different solidities differently during the optimization
process of user and item embeddings. This function
performs contrastive learning of local embedding solidity
estimation and solidity labels:

ℒ௦௔ = ∑ 𝑚𝑎𝑥 (0, 1 − (�̂�௨೛,భ,௩೛,భ
− �̂�௨೛,మ,௩೛,మ

)௉
௣ୀଵ

∙ (𝑠௨೛,భ,௩೛,భ
− 𝑠௨೛,మ,௩೛,మ

))
 (14)

�̂�௨೛,భ,௩೛,భ
= 𝑒௨೛,భ

⊺ 𝑒௩೛,భ

⊺ ; �̂�௨೛,మ,௩೛,మ
= 𝑒௨೛,మ

⊺ 𝑒௩೛,మ

⊺ (15)

Where ℒ௦௔ represents the loss function of
Self-Augmented Learning. �̂� denotes the local embedding
estimate solidity. Where 𝑠 denotes the solidity label. If the
solidity labels for a pair of edges given by the hypergraph
transformer are close to each other, then the gradients on the
predicted solidity scores given by the topology-aware
embedding will become smaller. By adapting the gradients

based on the similarity of solidity labels, the model can
focus more on refining the embeddings for edges with larger
differences in solidity. This differential treatment enables the
model to allocate more attention and resources to instances
that are more likely to be noisy or unreliable, improving its
ability to handle noisy data. The ability to differentiate
between different solidities helps the model prioritize and
focus on more reliable interactions while downplaying the
influence of potentially noisy or unreliable interactions. By
doing so, the model can improve its performance and
robustness in handling real-world data with various levels of
noise.

D. Alignment and uniformity auxiliary task

In recent research on recommendation systems, there has
been a strong emphasis on designing complex encoders to
capture intricate patterns and relationships in the data.
However, less attention has been given to the desired
properties of user and item representations. The alignment
loss pushes up the similarity between representations of
positive-related user-item pairs, while the uniformity loss
measures how well the representations scatter on the
hypersphere. Ideally, the representations of a pair of positive
samples should exhibit similarity, and each representation
should convey as much information as possible. To achieve
these goals, two learning objectives can be considered:

ℒ௔௟௜௚௡ ≜ 𝔼
(௨,௜)~௣೛೚ೞ

‖𝑓ேோ(𝑢) − 𝑓ேோ(𝑖)‖
ଶ (16)

ℒ௨௡௜௙௢௥௠ = 𝔼
(௨,௨ᇲ)~௣ೠೞ೐ೝ

‖𝑓ேோ(𝑢) − 𝑓ேோ(𝑢ᇱ)‖
ଶ /2

+ 𝔼
(௜,௜ᇲ)~௣೔೟೐೘

‖𝑓ேோ(𝑖) − 𝑓ேோ(𝑖ᇱ)‖
ଶ /2 (17)

Where 𝑓୒ୖ(u) and 𝑓୒ୖ(i) indicates 𝑙ଶ normalized user
and item representations. Align loss is expected distance
between positive user and item pair. And we define the
uniformity loss as the logarithm of the average pairwise
Gaussian potential. Minimizing loss function ℒ௔௟௜௚௡ can
make the embeddings of positive sample pairs tend to be
similar. The minimization of loss function ℒ௨௡௜௙௢௥௠ first
prevents trivial solutions where all embeddings become
identical, which would excessively cater to objective
function ℒ௔௟௜௚௡ . Secondly, it enables embeddings to be
more evenly distributed in the latent space, thus expressing
more information. The structure of the alignment and
uniform learning is shown in Figure 4, and the embedding of
each pair of positive samples is calculated in each iteration,
and the uniformity calculation is performed on the
embedding on the item side and the user side respectively.

Fig.4 Alignment and uniformity learning

E. Model learning

The training of the model is accomplished by optimizing
a series of objective functions, including the main task
objective function, the self-augmented learning task
objective function, and the alignment and uniformity
objective function. The final loss is expressed as:

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

ℒ = ෍
𝑚𝑎𝑥 ቀ0,1 − ൫𝑝௨ೝ,భ,௩ೝ,భ

− 𝑝௨ೝ,మ,௩ೝ,మ
൯ቁ + 𝜆ଵℒ௦௔

+ 𝜆ଶℒ௔௟௜௚௡ + 𝜆ଷℒ௨௡௜௙௢௥௠ + 𝜆ସ‖𝛩‖ி
ଶ

ோ

௥ୀଵ

(18)

During training, sample r positive edges (in graph 𝐺) and
sample r negative edges (not in graph 𝐺)
form{(𝑒ଵ,ଵ, 𝑒ଵ,ଵ), (𝑒ଶ,ଵ, 𝑒ଶ,ଵ), . . . , (𝑒ோ,ଵ, 𝑒ோ,ଵ)}, where 𝑒௥,ଵ and
𝑒௥,ଶ are positive and negative samples, respectively.
𝑝௨ೝ,భ,௩ೝ,భ

 and 𝑝௨ೝ,మ,௩ೝ,మ
 represent the score predictions of

edge 𝑒௥,ଵ and 𝑒௥,ଶ, respectively.

V. EXPERIMENTS

A. Experimental datasets

The experiments use the Yelp, Gowalla, MovieLens,
Amazon-book and Tmall datasets, which are all collected
from real-world applications. The statistics of them are
shown in Table 2.
 Yelp: This dataset contains Yelp users' ratings of

merchants, including restaurants, shopping malls, hotels,
and more. Among them, the places that have been
evaluated by users are used as interactive items, and all
places that have not been evaluated are regarded as
non-interactive items.

 Gowalla: This dataset contains the user's check-in data
in the geographical location through Gowalla, and the
user shares his check-in locations through Gowalla.

 Tmall: This e-commerce dataset contains the online
shopping behavior of Tmall's users.

 MovieLens: It is a movie recommendation dataset.
 Amazon-book: this dataset records user ratings on

products with book category on Amazon with the
20-core setting.

TABLE II
STATISTICS OF DATASETS

Stat. Yelp Gowalla Tmall MovieLens Amazon
Number of

users
29601 50821 47939 69878 78578

Number of
items

24734 24734 41390 10196 77801

Number of
interactions

1517326 1069128 2357450 9988816 3190224

Density 2.1×10-3 4.0×10-4 1.2×10-3 1.4×10-2 5.2×10-4

A. Evaluation protocols

For each dataset, it is divided into training, validation, and
testing sets at a ratio of 7:2:1. Use Recall@N and
NDCG@N as evaluation metrics. Recall@N is the ratio of
the number of real interactive items in the top N items in the
recommended list to the total number of real interactive
items, which is used to measure the coverage of the
predicted results.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(19)

Where 𝑇𝑃 represents that the true class of the sample is
positive, and the final predicted result is also positive.
Where 𝐹𝑁 represents that the true class of the sample is
positive, but the final predicted result is negative.
NDCG@N further considers the positions of each item in
the recommended list.

𝑁𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
(20)

𝐷𝐶𝐺 = ෍
𝑟𝑒𝑙௜

𝑙𝑜𝑔ଶ(𝑖 + 1)

ே

௜ୀଵ
(21)

𝐼𝐷𝐶𝐺 = ෍
𝑟𝑒𝑙௜

𝑙𝑜𝑔ଶ(𝑖 + 1)

|ோா௅|

௜ୀଵ
(22)

Where 𝑟𝑒𝑙௜ represents whether the item at the i-th
position is a user's actual interaction. It is denoted as 1 for
true and 0 for false. Where 𝑅𝐸𝐿 represents ranking the
results in the optimal order.

B. Baselines

The following 12 baseline methods are selected for
comparison with the proposed SHTAU framework.
 NCF [2]: Instead of using the inner product, this method

employs a neural architecture capable of learning an
arbitrary function from the provided data. The NeuMF
variant is used here for comparison.

 AutoR [3]: This method uses a behavioral
reconstruction task to train for better user/item
representation.

 PinSage [14]: This method combines efficient random
walks and graph convolutions to generate embeddings
of nodes that incorporate both graph structure as well as
node feature information.

 NGCF [15]: This graph convolution-based approach
additionally takes source-target representation
interaction learning into consideration when designing
its graph encoder.

 STGCN [7]: This model combines a graph
convolutional encoder and a graph autoencoder to
enhance model robustness during cold start scenarios
and sample sparseness.

 GCCF [23]: This method improves recommendation
performance by eliminating non-linearities and
introduces a residual network structure tailored for
collaborative filtering with user-item interaction
modeling. This structure effectively addresses the
over-smoothing issue encountered in graph convolution
aggregation operations when dealing with sparse
user-item interaction data.

 LightGCN [8]: This method provides a deep analysis of
the efficiency of standard GCN and a simplified GCN
model for the recommendation.

 HyRec [19]: A sequence model using hypergraph
structures to learn high-dimensional connections for
items.

 DHCF [18]: This model is a dual-channel hypergraph
collaborative filtering framework.

 MHCN [20]: This model uses a multi-channel
hypergraph convolutional network to enhance social
recommendation by leveraging high-order user
relations.

 SLRec [24]: This model adds contrastive learning
between node features as a regular term to enhance the
existing recommender system.

 SGL [25]: The model leverages random walks and
feature dropout techniques to generate multiple views.
It augments LightGCN by incorporating self-supervised
contrastive learning, thereby enhancing its performance.

C. Experimental parameters

For a fair comparison, set the parameters of all baselines
to the best values in their original papers. For the framework
proposed in this paper, the implementation uses TensorFlow
and uses the Adam optimizer, with a learning rate of 1e-3

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

and a decay rate of 0.96.

D. Result analysis

Table 3 shows the experimental results.
From which the following conclusions can be drawn:

 The table indicates that the hypergraph neural
network-based method outperforms other GNN-based
baseline methods. This suggests that the incorporation
of hypergraphs effectively captures high-order global
connections and enhances recommendation
performance.

 The SHTAU framework proposed in this paper
consistently outperforms other baseline methods,
showcasing its superiority. This can be attributed to
several factors:

First, the SHTAU framework leverages the hypergraph
transformer module to effectively capture and utilize global
semantic connections.

Secondly, global-local self-Augmented learning extracts
information from the hypergraph transformer module and
guides the learning of local embeddings, thereby mitigating
the influence of noise in the data.

Finally, the introduced AU module effectively optimizes
the embeddings, achieving a good balance between

Alignment and uniformity. The AU module enables users to
be more evenly distributed in the latent space, thereby
making each embedding express more information.
Additionally, The AU module reduces the gap between
embeddings of positive samples, making the relationship
between users and items more explicit, eventually
improving the overall performance.

E. Ablation experiments

To verify the rationality of the SHTAU framework
structure, GCN, AU, and SSL modules were removed
respectively to obtain 3 variants. Several variants were
compared on three datasets, and the ablation experiment
used Recall@N and NDCG@N as evaluation metrics; the
experimental results are shown in Table 4. From the results,
the following conclusions can be drawn:
 After removing the GCN module, the overall

performance drops sharply. The results show that GCN
embedding in the learning process is quite necessary.

 The removal of self-supervised learning (SSL) or AU
modules significantly weakens the performance of
SHTAU. At the same time, the positive effects of
self-supervised learning and AU modules on
performance are verified.

TABLE III
PERFORMANCE COMPARISON ON FIVE DATASETS

data metric NCF AutoR PinSage NGCF STGCN LightGCN GCCF HyRec DHCF MHCN SLRec SGL SHTAU Improv.

yelp

Recall@20 0.0252 0.0259 0.0345 0.0294 0.0309 0.0482 0.0462 0.0472 0.0449 0.0503 0.0476 0.0526 0.0744 41.4%

NDCG@20 0.0202 0.0210 0.0288 0.0243 0.0262 0.0409 0.0398 0.0395 0.0381 0.0424 0.0398 0.0444 0.0652 46.8%

Recall@40 0.0371 0.0504 0.0585 0.0522 0.0504 0.0803 0.076 0.0774 0.0751 0.0826 0.0821 0.0869 0.1007 15.8%

NDCG@40 0.0227 0.0301 0.0373 0.033 0.0332 0.0527 0.0508 0.0511 0.0493 0.0544 0.0541 0.0571 0.0658 15.2%

Gowalla

Recall@20 0.0171 0.0239 0.0576 0.0552 0.0369 0.0985 0.0951 0.0901 0.0931 0.0955 0.0925 0.1030 0.1324 28.5%

NDCG@20 0.0106 0.0181 0.0373 0.0298 0.0217 0.0593 0.0535 0.0498 0.0505 0.0574 0.0581 0.0623 0.0786 26.1%

Recall@40 0.0216 0.0343 0.0892 0.081 0.0542 0.1431 0.1392 0.1306 0.1356 0.1392 0.1305 0.1500 0.1731 15.4%

NDCG@40 0.0118 0.016 0.0417 0.0367 0.0262 0.071 0.0684 0.0669 0.066 0.0689 0.068 0.0746 0.0874 17.1%

Tmall

Recall@20 0.0082 0.0103 0.0202 0.0180 0.0146 0.0225 0.0209 0.0233 0.0156 0.0203 0.0191 0.0268 0.0442 64.9%

NDCG@20 0.0059 0.0072 0.0136 0.0123 0.0105 0.0154 0.0141 0.0160 0.0108 0.0139 0.0133 0.0183 0.0301 63.4%

Recall@40 0.014 0.0174 0.0345 0.031 0.0245 0.0378 0.0356 0.035 0.0261 0.034 0.0301 0.0446 0.0628 40.8%

NDCG@40 0.0079 0.0097 0.0186 0.0168 0.014 0.0208 0.0196 0.0199 0.0145 0.0188 0.0171 0.0246 0.0437 77.6%

Amazon

Recall@20 0.0093 0.0131 0.0103 0.0222 0.0192 0.0319 0.0317 0.0302 0.0280 0.0296 0.0285 0.0327 0.0547 67.2%

NDCG@20 0.0049 0.0099 0.0158 0.0160 0.0144 0.0236 0.0243 0.0225 0.0202 0.0219 0.0268 0.0249 0.0407 63.4%

Recall@40 0.0223 0.0202 0.0366 0.0376 0.0312 0.0499 0.0483 0.0432 0.0471 0.0489 0.0463 0.0531 0.0834 57.0%

NDCG@40 0.0133 0.0123 0.0124 0.021 0.0184 0.029 0.0285 0.0246 0.0272 0.0284 0.0314 0.0312 0.0494 58.3%

Mlens

Recall@20 0.0878 0.1230 0.1706 0.1611 0.1298 0.1789 0.1742 0.1801 0.1363 0.1497 0.1758 0.1833 0.2490 35.8%

NDCG@20 0.1197 0.1667 0.2108 0.1961 0.1639 0.2128 0.2109 0.2178 0.1726 0.1814 0.2003 0.2205 0.2914 32.1%

Recall@40 0.1634 0.1908 0.2724 0.2594 0.2006 0.265 0.2606 0.2685 0.2171 0.225 0.2633 0.2768 0.3081 11.3%

NDCG@40 0.1427 0.1785 0.2362 0.2225 0.1782 0.2322 0.2331 0.234 0.1901 0.1962 0.236 0.2426 0.2853 17.6%

TABLE IV
ABLATION EXPERIMENT RESULTS

Variants
Yelp Gowalla Tmall

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
Off-GCN 0.0491 0.0413 0.0477 0.0275 0.0294 0.0198
Off-SSL 0.0701 0.0590 0.1276 0.0762 0.0430 0.0292
Off-AU 0.0651 0.0546 0.1232 0.0731 0.0387 0.0262
Full 0.0742 0.0652 0.1324 0.0786 0.0442 0.0301

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

F. Hyperparameter analysis

This section studies the impact of several key
hyperparameters in our SHTAU framework.

a) The impact of hyperparameter 𝜆ଷ
Fig 5 shows the performance comparison of different 𝜆ଷ,

which controls the scaling of ℒ௨௡௜௙௢௥௠. The lager the 𝜆ଷ,
the more scattered the embedding. The more evenly the
embedding is distributed in the latent space, the more
information can be expressed.

Fig.5 Performance comparison of different 𝜆ଷ

From the experimental results, it can be observed that the

optimal performance of the hyperparameter 𝜆ଷ varies for
different datasets. The best performance is achieved with 𝜆ଷ
is set to 2 on datasets yelp and tmall, while on dataset
gowalla, the best performance is obtained with 𝜆ଷ is set to
2.5.

b) The impact of latent dimension
Fig 6 shows the performance comparison of different

latent dimensions.

Fig.6 Performance comparison of different latent dimensions

Based on the experimental results, it can be observed that
the optimal performance of the latent dimension varies
across different datasets. Specifically, the best performance
is achieved with a latent dimension of 128 on datasets such
as Yelp and Tmall. This suggests that for these datasets, a
higher dimensional space (128 dimensions) is better suited
for capturing the underlying patterns and relationships in the
data, resulting in improved recommendation performance.
On the other hand, for the Gowalla dataset, the best
performance is obtained with a lower latent dimension of 64.
This indicates that for Gowalla, a lower-dimensional space
is more effective in representing the user-item interactions
and capturing the relevant information.

VI. CONCLUSION

This paper proposes a general self-supervised
recommendation framework SHTAU, aiming to enhance
robustness by self-reinforcing supervised signals, reduce the
influence of data noise, and further improve performance by
combining embedded aligned uniform auxiliary learning
objectives. Extensive experiments are conducted,
demonstrating the significant advantages over five real
datasets compared to baseline methods.

In future work, we will investigate more target features of
the embedded representation to improve recommendation
performance. We will research how to construct auxiliary
goals for multi-objective learning to improve
recommendation performance.

REFERENCES
[1] Yehuda Koren, Robert Bell, et al. 2009. Matrix factorization

techniques for recommender systems. Computer 8 (2009), 30–37.
[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and

Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–
182.FirstNameInitial.

[3] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing
Xie. 2015. Autorec: Autoencoders meet collaborative filtering. In
WWW. 111–112.

[4] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui,
and Philip S Yu. 2019. Heterogeneous graph attention network. In
WWW. 2022–2032.

[5] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, et
al. 2019. Simplifying graph convolutional networks. In ICML. PMLR,
6861–6871.

[6] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph
convolutional matrix completion. In KDD

[7] Jiani Zhang, Xingjian Shi, Shenglin Zhao, et al. 2019. Star-gcn:
Stacked and reconstructed graph convolutional networks for
recommender systems. In IJCAI.

[8] Xiangnan He, Kuan Deng, Xiang Wang, et al. 2020. Lightgcn:
Simplifying and powering graph convolution network for
recommendation. In SIGIR. 639–648.

[9] Yifan Wang, Suyao Tang, et al. 2020. Disenhan: Disentangled
heterogeneous graph attention network for recommendation. In CIKM.
1605–1614.

[10] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and
Jimmy Xiangji Huang. 2022. Hypergraph Contrastive Collaborative
Filtering. arXiv preprint arXiv:2204.12200 (2022).

[11] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, et al. 2021.
Causal intervention for leveraging popularity bias in recommendation.
In SIGIR. 11–20.

[12] Adit Krishnan, Ashish Sharma, et al. 2018. An adversarial approach
to improve long-tail performance in neural collaborative filtering. In
CIKM. 1491–1494.

[13] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi,
Lichan Hong, and Ed H Chi. 2021. A model of two tales: Dual
transfer learning framework for improved long-tail item
recommendation. In WWW. 2220–2231.

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

[14] Rex Ying, Ruining He, Kaifeng Chen, et al. 2018. Graph
convolutional neural networks for web-scale recommender systems.
In KDD. 974–983.

[15] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng
Chua. 2019. Neural Graph Collaborative Filtering. In SIGIR.

[16] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and
Tat-Seng Chua. 2020. Disentangled graph collaborative filtering. In
SIGIR. 1001–1010.

[17] Yifan Wang, Suyao Tang, et al. 2020. Disenhan: Disentangled
heterogeneous graph attention network for recommendation. In CIKM.
1605–1614.

[18] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and
Yue Gao. 2020. Dual channel hypergraph collaborative filtering. In
KDD. 2020–2029.

[19] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James
Caverlee. 2020. Next-item recommendation with sequential
hypergraphs. In SIGIR. 1101–1110.

[20] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen
Quoc Viet Hung, and Xiangliang Zhang. 2021. Self-Supervised
Multi-Channel Hypergraph Convolutional Network for Social
Recommendation. In WWW. 413–424.

[21] Tongzhou Wang and Phillip Isola. 2020. Understanding contrastive
representation learning through alignment and uniformity on the
hypersphere. In International Conference on Machine Learning.
PMLR, 9929–9939.

[22] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE:
Simple Contrastive Learning of Sentence Embeddings. arXiv preprint
arXiv:2104.08821 (2021).

[23] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020.
Revisiting Graph Based Collaborative Filtering: A Linear Residual
Graph Convolutional Network Approach. In AAAI, Vol. 34. 27–34.

[24] Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, et al. 2021.
Self-supervised Learning for Large-scale Item Recommendations. In
CIKM. 4321–4330.

[25] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen,
Jianxun Lian, et al. 2021. Self-supervised graph learning for
recommendation. In SIGIR. 726–735.Diederik P. Kingma, Jimmy Lei
Ba. Adam: A method for stochastic optimization[C]. //International
Conference on Learning Representations. 2015.

[26] Ziang Li, Jie Wu, Guojing Han, Chi Ma, and Yuenai Chen,
"Multi-hypergraph Neural Network with Fusion of Location
Information for Session-based Recommendation," IAENG
International Journal of Applied Mathematics, vol. 53, no.4,
pp1389-1398, 2023

IAENG International Journal of Computer Science

Volume 51, Issue 3, March 2024, Pages 292-300

__

