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Abstract—Graph neural networks have proven their 

effectiveness for user-item interaction graph collaborative 
filtering. However, most of the existing recommendation 
models highly depended on abundant and high-quality datasets 
and neglected the alignment and uniformity of embedding 
representation. The noisy and skewed distribution of data from 
real-world applications is ubiquitous. The alignment and 
uniformity are crucial for representation learning. In this 
paper, we propose SHTAU (self-supervised hypergraph 
transformer with alignment and uniformity for the 
recommendation) to address the problem. Specifically, we first 
perform a graph neural network on the user-item interaction 
graph, then captures the global collaboration relationship 
between users and items through the hypergraph transformer 
structure, and use the extracted global information to generate 
self-supervised signals for data enhancement on the user-item 
interaction graph to enhance the robustness of the 
recommendation algorithm. Simultaneously, alignment and 
uniformity auxiliary task update embeddings from different 
angles to improve performance. Extensive experiments are 
conducted on Yelp, Gowalla, MovieLens, Amazon-book and 
Tmall datasets. The experimental results show that SHTAU 
has obvious advantages over the baseline methods. 
 

Index Terms—Recommendation, Self-Supervised Learning, 

Hypergraph, Alignment and Uniformity  

I. INTRODUCTION 

ecommender systems play critical roles in various 
applications and greatly affect the user experience. To 

assist users in finding what they need, personalized 
recommendation systems widely adopt collaborative 
filtering (CF) techniques. The fundamental concept behind 
collaborative filtering (CF) is that similar users tend to have 
similar preferences. Collaborative filtering can utilize the 
user-item interaction history to discover similar users and 
generate recommendations for specific users based on this 
similarity relation. 

Earlier CF models employed matrix factorization (MF) to 
project interaction data into latent user and item embeddings 
[1]. As deep learning gained popularity, CF models 
leveraging neural networks started to emerge, such as NCF 
[2] and AutoR [3]. Recent years have witnessed notable 
advancements in the development of graph neural networks 
(GNNs) specifically designed to model graph structure data 
[4,5]. The technique of recursively aggregating information 
along user-item interactions to obtain node embeddings has 
demonstrated its effectiveness in practice. For example, 
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GCMC [6] and STGCN [7] contain the GCN structure that 
sense and aggregate neighbor information in the user-item 
interaction graph. To simplify graph-based information 
propagation, LightGCN [8] removes redundant nonlinear 
transformers during information propagation and acquired 
better performance. In order to further improve the 
recommendation models based on graph neural networks, 
some studies suggest using disentangled graph neural 
frameworks to learn intent-aware representations (e.g., 
DisenHAN [9]) and using multi-relational graph neural 
models to distinguish user behavior and generate 
behavior-aware embeddings (e.g., MB-GMN [10]). 

 Existing recommendation models based on graph neural 
networks face the following challenges: 
 Existing graph neural network recommendation 

models have a high dependency on sufficient and 
high-quality training data. However, noisy data is 
common in many recommendation scenarios, and that 
prevents the fulfillment of this essential need. For 
example, popular items could be over-recommending 
by the recommendation system, in this situation, users 
may click on products they are not interested in [11]. As 
a result, the user-item interaction graph could include 
edges that are not correlated with user interests. 
Ignoring the existence of these interest-uncorrelated 
edges and treating all edges equally will harm the 
accuracy of user representation. Taking a step further, 
when it comes to interest-uncorrelated information, 
recursively executing multi-hop information 
propagation will spread the misleading information out 
and amplify the influence of noise, eventually dragging 
the performance down. 

 Data sparsity and skewed distribution misleads 
GNN recommendation models and cause the 
recommendation to lean toward popular items 
[12,13]. Therefore, important training signals could be 
relatively weak, making it harder for the model to 
discover them and process them appropriately. Although 
there are some recently developed recommendation 
models which utilize self-supervised learning to 
optimize user representation. Most of them use a 
random mask strategy that may preserve noisy 
interactions or lose some important training signals 
during data augmentation. 

 Most recommendation models that are based on 
graph neural networks mainly emphasize the 
development of better encoders to acquire improved 
embedding representations of users and items. 
However, they often neglect the aligning and uniformity 
of the embedded representations of users and items 
within collaborative filtering. 

 To address the aforementioned challenges, this study 
proposes the Self-supervised Hypergraph Transformer with 
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Alignment and Uniformity for recommendation framework 
(SHTAU) to enhance the robustness and generalization 
performance of the collaborative filtering recommendation 
model. 

Specifically, this paper enhances the capabilities of the 
model by utilizing self-supervised signals, hypergraph 
transformers, and alignment-uniform learning auxiliary 
tasks. 

The primary contributions of this paper can be 
summarized as follows:  
 SHTAU, a recommendation framework based on a 

self-supervised hypergraph transformer and alignment 
uniformity is proposed to mitigate the negative impact 
of noise. 

 Considering the target properties of user and item 
embedding representations in collaborative filtering, the 
alignment-uniform learning objective is introduced to 
enhance the performance of the model. 

 A large number of experiments are carried out on five 
public datasets, and the experimental results show that 
the performance of the proposed SHTAU framework is 
better than baseline methods.  

II. RELATED WORK 

The related works in this paper include recommendation 
algorithms with graph neural networks, recommendation 
algorithms with hypergraphs, and recommendation 
algorithms with self-supervised learning. 

A. Recommendation with graph neural network 

Recent recommender system research has designed a 
variety of graph neural network structures to learn the 
information contained in user-item interactions. For example, 
PinSage [14] and NGCF [15] propose graph convolutional 
networks built on spectral domains. LightGCN [8] proposes 
a simplified GCN for collaborative filtering and improves 
performance by using sum-based pooling on interactions. In 
the GCN-based model structure, every user and item is 
encoded into an embedding by aggregating information 
along the edges of the user-item interaction graph. In order 
to refine user embedding, several disentangled graph neural 
network architectures are proposed, including DGCF [16] 
and DisenHAN [17]. Despite more effective CF models are 
emerging, most of them rely only on observed interactions 
for model training, which makes them ineffective in 
modeling interactions when facing sparse and noisy signals. 
In order to overcome these challenges, this work generates 
higher-order knowledge by self-supervised learning 
structure from hypergraph information to filter noises and to 
focus on learning effective interactions.  

B. Recommendation with hypergraph 

Compared to ordinary graphs, hypergraphs can provide a 
more accurate representation of the relationships between 
nodes with multiple associations. Hypergraphs can represent 
complex multivariate relationships and higher-order 
relationships [26]. Some recent hypergraph-based models 
have improved user-item relational learning for 
recommender systems. DHCF [18] is a hypergraph 
collaborative filtering model to learn the hybrid high-order 

correlations. Where HyRec [19] treats the user as a series of 
hyperedges that aggregate information from related nodes. 
MHCN [20] is a multi-channel hypergraph convolutional 
network to enhance social recommendation by leveraging 
high-order user relations. Unlike the above models, SHTAU 
automatically learns hypergraph structures through global 
collaboration relationships instead of designing them 
manually. 

C. Contrastive learning using alignment and uniform 

Recent studies [21, 22] in the field of contrastive learning 
identify alignment and uniformity as two key properties that 
can be used to efficiently build high-quality representations. 
Given the distribution of data 𝑝ௗ௔௧௔(·) and the distribution 
of positive pairs 𝑝௣௢௦(·) , alignment is defined as the 
average distance between normalized embeddings of 
positive pairs: 

ℒ௔௟௜௚௡ ≜ 𝔼
(௫,௫శ)~௣೛೚ೞ

‖𝑓ேோ(𝑥) − 𝑓ேோ(𝑥ା)‖ 
ଶ (1) 

Where 𝑓୒ୖ(·) indicates 𝑙ଶ normalized representations. 
And we define the uniformity loss as the logarithm of the 
average pairwise Gaussian potential: 

ℒ𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ≜ 𝔼
(௫,௬)~௣೏ೌ೟ೌ

𝑒ିଶ‖௙ಿ ೃ(௫)ି௙ಿ ೃ(௬)‖ 
మ

(2) 

The ideal embedding representation is highly consistent 
with the state described by these two objective functions, i.e., 
the user and item representations of a pair of positive 
samples should be close to each other, while the 
representations of randomly selected samples should be as 
far away from each other as possible, and scattered 
throughout the embedding space. In this study, these two 
additional learning objectives will be incorporated into 
multi-objective learning to enhance the embedding's quality. 

III. SYMBOL DEFINITIONS 

This section explains the definitions of symbols used in 
this work. 

TABLE I 
SYMBOLS AND THEIR DEFINITIONS 

Symbol Definitions 

𝐺 User-item interaction graph 
𝐴 The adjacency matrix of the graph 
�̅� Normalized adjacency matrix 
𝐷 Degree matrix of graph 
𝐸෠ Global user/item embedding 
𝐸௟௢௖௔௟ Local user/item embedding 
𝑍መ  Hyperedge embedding 
�̅� Multi-head hyperedge embedding 
𝑞, 𝑘, 𝑣 Transformer parameter matrices 
𝛤 User/item solidity embedding 
𝑠 Edge solidity label 
�̂� Edge solidity estimate 

 

Definition 1. Collaborative Filtering. Let 𝑈  and 𝐼 
denote the user and item set, respectively. Given a set of 
observed user-item interactions R = {(𝑢,𝑖) | 𝑢 interacted with 
𝑖}, CF methods aim to infer the score 𝑠(𝑢,𝑖) ∈ R for each 
unobserved user-item pair which indicates how likely the 
user 𝑢 tends to interact with the item 𝑖. 

IV. METHODOLOGY 
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In this section, we elaborate on the architecture of the 
SHTAU framework. The complete model architecture is 
illustrated in Figure 1. The SHTAU framework structure 
mainly includes the following components: graph neural 
network for local learning, hypergraph encoder for global 
embedding, local-global self-augmented learning, and 
align-uniform learning. 

A. Local graph structure learning 

We initialize user and item representations in a 
d-dimensional latent space, for user 𝑢i and item 𝑣j we get 
embedding vectors 𝑒௜ , 𝑒௝ ∈ ℝௗ. Stack all embedding vectors 

into embedding matrices 𝐸(௨) ∈ ℝூ×ௗ , 𝐸(௩) ∈ ℝ௃ ×ௗ . To 
perform the local embedding, a two-layer Graph 
Convolutional Network (GCN) is employed. In addition to 
the graph convolutional layers, residual connections are 
utilized in the model architecture. Residual connections 
facilitate the flow of information through the network by 
allowing the model to retain and propagate information from 
previous layers. This helps to mitigate the problem of 
vanishing gradients and can improve the training process.  

𝐸௟௢௖௔௟
(௨)

= 𝐺𝐶𝑁ଶ൫𝐸(௩), 𝐺൯ = �̅� ⋅ �̅�்𝐸(௨) + �̅� · 𝐸(௩) (3) 

Where 𝐸௟௢௖௔௟
(௨)

∈ ℝூ×ௗ denotes user side local embedding. 
�̅� ∈ ℝூ×௃ denotes the normalized adjacency matrix. Where 
𝐺 represents the user-item interaction graph 

�̅�௜,௝ = 𝐴௜,௝/ ቀ𝐷 ௜
(௨)ଵ/ଶ

𝐷௝
(௩)ଵ/ଶ

ቁ (4) 

𝐷 ௜
(௨)ଵ/ଶ , 𝐷௝

(௩)ଵ/ଶ  denotes the degree of node 𝑢 i, 𝑣 j in 

graph 𝐺. Item side local embedding calculated likewise. 

B. Hypergraph global learning 

Despite graph neural networks have shown their 
effectiveness in recommender system, The model's 
performance is still restricted by the sparse data problem. To 
overcome this limitation, a hyper-graph encoder is 
employed, which aims to extract and integrate global 
information by leveraging a larger receptive field. By 
utilizing a hyper-graph structure, the model can capture and 
propagate information across a broader context, enabling it 
to better understand the relationships and dependencies in 
the data. The structure of the hypergraph encoder is shown 
in Figure 2. 

a) Node to hyperedge propagation 
This section elaborates on the propagation process of 

embedding from user nodes to user-side hyperedges. The 
same processing method applies to the item side. The 
objective is to effectively capture and preserve important 
information during the propagation, rather than letting it 
fade away in multiple hypergraph propagations. To achieve 
this, a transformer-like structure is utilized. Transformers 
have demonstrated their effectiveness in capturing and 
leveraging long-range dependencies in various tasks, 
including natural language processing and computer vision. 
By adopting a transformer-like structure, the model aims to 
capture valid information directly from the user nodes and 
incorporate it into the hyperedge embeddings. The 
procedures of node-hyperedge propagation can be expressed 
as follows: 

�̃�௞ = ൫𝑧௞̅,ଵ, 𝑧௞̅,ଶ, … , 𝑧௞̅,௛൯; 𝑧௞̅,௛ = ෍ 𝑣௞,௛

௄

௞ୀଵ
𝑘௞,௛

் 𝑞௜,௛ (5) 

Where 𝑍෨௞ ∈ 𝑅ௗ  represents the embedding of the k-th 
hyperedge. Concatenated with H multi-head embeddings 

 
Fig.1 Complete framework of SHTAU 

 
Fig.2 Hypergraph encoder for global learning 
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�̅�௞,௛ ∈ ℝௗ/ு. 
𝑞௞,௛ = 𝑍௞,௣೓షభ:௣೓

; 𝑘௜,௛ = 𝐾௣೓షభ:௣೓,:�̃�௜; 𝑣௜,௛ = 𝑉௣೓షభ:௣೓ ,:�̃�௜ (6) 

Where 𝑞௞,௛, 𝑘௜,௛ , 𝑣௜,௛ ∈ ℝௗ/ு represents the query, key, 
value in attention mechanism respectively. 𝑍 ∈ 𝑅௄×ௗ 
represents the embedding matrix of the K hyperedge. The 
final hyperedge embedding can be obtained as follows: 

𝑍መ = 𝐻𝐻𝐺𝑁ଶ൫𝑍෨൯; 𝐻𝐻𝐺𝑁(𝑿) = 𝜎(𝐻 · 𝑋 + 𝑋) (7) 

Where 𝑍መ represents the final hyperedge embedding. 𝑍෨ ∈

ℝ௄×ௗ  represents the output of transformer. HHGNଶ ( · ) 
represents performing the hierarchical hypergraph network 
two times consecutively. 𝐻 ∈ ℝ௄×௄  represents the 
parameter matrix of HHGN, it characterizes relationship 
between hyperedges. 𝜎(·) denotes an activation function. 

b) Hyperedge to node propagation 
To get distilled information into use we need a 

hyperedge-node propagation. In node-hyperedge 
propagation, information flows from individual nodes to 
hyperedges, allowing the hyperedges to capture and 
aggregate the information from their neighboring nodes. 
Conversely, in the hyperedge-node propagation, the distilled 
information is propagated back from hyperedges to 
individual nodes. This propagation process enables the 
nodes to receive the aggregated information from the 
hyperedges and update their representations accordingly. 

𝒆෤ ௜
ᇱ = ൫�̅�௜,ଵ

ᇱ , �̅�௜,ଶ
ᇱ , … , �̅�௜,௛

ᇱ ൯;     �̅�௜,௛
ᇱ = ෍ 𝑣௜,௛

ᇱ
ூ

௜ୀଵ
𝑘ᇱ

௞,௛
⊺

𝑞௞,௛
ᇱ (8) 

Where �̃�௜
ᇱ ∈ ℝௗ means the hypergraph embedding of user 

𝑢i that generated by hypergraph encoder �̅�௜,௛
ᇱ  denotes the h-th 

multi-head embedding of user 𝑢i.  
𝑞௜,௛

ᇱ = 𝑘௜,௛; 𝑘௜,௛
ᇱ = 𝑞௜,௛; 𝑣௞,௛

ᇱ = 𝑉௣೓షభ:௣೓,:�̂�௞ (9) 

This process shares parameters with note-hyperedge 
propagation, the former key now is the new query and the 
former query is the new key. �̂�௞ denotes the embedding of 
k-th hyperedge. 

c) Recursively hypergraph propagation 
To enhance the receptive field and capture long-span 

global dependencies, hypergraph propagation is employed 

recursively. This approach allows information to propagate 
through a hypergraph structure, enabling the model to gather 
knowledge from a broader context. By recursively 
performing hypergraph propagation, the model can 
gradually incorporate information from distant nodes, 
resulting in a larger receptive field. This expanded receptive 
field helps the model to better understand and leverage 
global relationships and dependencies within the data. The 
final global embedding 𝐸෠  can be obtained by summing the 
embeddings from each layer: 

𝐸෠ = ෍ 𝐸෨௟; 

௅

௟ୀଵ

𝐸෨௟ = 𝐻𝑦𝑝𝑒𝑟𝐸𝑛𝑑𝑐𝑜𝑑𝑒𝑟൫𝐸෨௟ିଵ൯ (10) 

Where HyperEncoder(·) denotes the complete hypergraph 
global learning process above. 

C. Self-Augmented Learning 

To further eliminate the influence of noise in user-item 
interaction information on graph topology embedding. 
Introduce self-augmented learning between graph 
topological embeddings and hyperedge learning. 
Specifically, an additional task is added to the graph 
topology embedding information extraction process, which 
distinguishes the solidity of user-item interaction. The 
solidity of an edge in the user-item interaction graph 
represents the probability that the edge is not noisy. Lower 
solidity values indicate a higher likelihood of noise in the 
edge. By calculating the solidity labeling, the framework 
can quantify the noise levels in the user-item interactions 
based on the learned hypergraph dependency representation. 

a) Solidity labeling with meta network 
To distinguish noisy data and leverage edge solidity for 

guiding embedding learning, specific calculations are 
needed to generate self-supervised labels based on the 
solidity concept. These calculations involve using the 
learned hypergraph dependency representation through 
meta-networks. The meta-network utilizes the learned 
hypergraph dependency representation as input to construct 

 
Fig.3 Self-Augmented Learning 
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a perceptron. The perceptron is a type of neural network that 
can learn to estimate the solidity of each edge in the 
user-item interaction graph. By leveraging the hypergraph 
dependency representation, the perceptron can assess the 
solidity of each edge, indicating the likelihood of noise in 
the data. The generated solidity labels serve as 
self-supervised labels, guiding the embedding learning 
process. By incorporating these labels into the training 
process, the model can effectively denoise the observed 
user-item interaction data. The hypergraph dependency 
representation, being leveraged as useful knowledge, helps 
the model prioritize reliable interactions and reduce the 
impact of noise. Specifically, the parameter matrix K from 
the hypergraph Transformer will be reused here since they 
are generated for modeling relationships, and the 
information they contain can guide the estimation of the 
solidity of user-item interactions. 

𝛤௜ = 𝜙(௨)൫∥௛ୀଵ
ு 𝑘௜,௛൯; 𝛤௝ = 𝜙(௩)൫∥௛ୀଵ

ு 𝑘௝,௛൯ (11) 

where 𝛤௜  , 𝛤௝  denotes user and item solidity embedding. 

𝜙(௨) (·),  𝜙(௩)(·) denotes user and item side perceptron. The 
project of perceptron guided by a meta network, this meta 
network takes user and item side hyperedge embedding as 
input, and output the parameter of perceptron. 

𝜙(𝑥; 𝑍) = 𝜎(𝑊𝑥 + 𝑏);  𝑊 = 𝑉ଵ𝑧̅ + 𝑊଴; 𝑏 = 𝑉ଶ𝑧̅ + 𝑏଴ (12) 

Where 𝑥 ∈ ℝௗ is the input of the perceptron (e.g., 𝛤௜  , 𝛤௝). 
𝑍 is the hyperedge embedding from user-side or item-side. 
𝑊 ∈ ℝௗ×ௗ  and 𝑏 ∈ ℝௗ  is the parameters of perceptron 
generated by the meta network. 𝑧̅ ∈ ℝௗ  is the mean 
pooling of hyperedge embedding. 𝑉ଵ ∈ ℝௗ×ௗ×ௗ 𝑊଴ ∈

ℝௗ×ௗ 𝑉ଶ ∈ ℝௗ×ௗ  𝑏଴ ∈ ℝௗ  are parameters of the meta 
network. 

𝑠௜,௝ = 𝑠𝑖𝑔𝑚 ቀ𝑑⊺ ⋅ 𝜎൫𝑇 ⋅ ൣ𝛤௜; 𝛤௝൧ + 𝛤௜ + 𝛤௝ + 𝑐൯ቁ (13) 

Where s௜,௝ denotes the solidity of edge (𝑢௜ , 𝑣௝). 𝑠𝑖𝑔𝑚(·

)  denotes the sigmoid function. 𝑑 ∈  ℝௗ  , 𝑇 ∈

 ℝௗ×ଶௗ   , 𝑐 ∈  ℝௗ are parameter matrices. [·; ·] represents 
vector concatenation. 

b) Self-Augmented learning objective function 
To enable the framework to handle interactions with 

different solidities differently, a self-supervised objective 
function is introduced. In order to guide the optimization 
process of user and item embeddings, both the global 
solidities obtained from the aforementioned process and the 
local solidities predicted by the framework based on local 
information are needed. By having both the global and local 
solidities, the framework can handle interactions with 
different solidities differently during the optimization 
process of user and item embeddings. This function 
performs contrastive learning of local embedding solidity 
estimation and solidity labels: 
 

ℒ௦௔ = ∑ 𝑚𝑎𝑥 (0, 1 − (�̂�௨೛,భ,௩೛,భ
− �̂�௨೛,మ,௩೛,మ

)௉
௣ୀଵ

∙ (𝑠௨೛,భ,௩೛,భ
− 𝑠௨೛,మ,௩೛,మ

))
              (14)  

�̂�௨೛,భ,௩೛,భ
= 𝑒௨೛,భ

⊺ 𝑒௩೛,భ

⊺ ;   �̂�௨೛,మ,௩೛,మ
= 𝑒௨೛,మ

⊺ 𝑒௩೛,మ

⊺ (15) 

Where ℒ௦௔  represents the loss function of 
Self-Augmented Learning. �̂� denotes the local embedding 
estimate solidity. Where 𝑠 denotes the solidity label. If the 
solidity labels for a pair of edges given by the hypergraph 
transformer are close to each other, then the gradients on the 
predicted solidity scores given by the topology-aware 
embedding will become smaller. By adapting the gradients 

based on the similarity of solidity labels, the model can 
focus more on refining the embeddings for edges with larger 
differences in solidity. This differential treatment enables the 
model to allocate more attention and resources to instances 
that are more likely to be noisy or unreliable, improving its 
ability to handle noisy data. The ability to differentiate 
between different solidities helps the model prioritize and 
focus on more reliable interactions while downplaying the 
influence of potentially noisy or unreliable interactions. By 
doing so, the model can improve its performance and 
robustness in handling real-world data with various levels of 
noise. 

D. Alignment and uniformity auxiliary task 

In recent research on recommendation systems, there has 
been a strong emphasis on designing complex encoders to 
capture intricate patterns and relationships in the data. 
However, less attention has been given to the desired 
properties of user and item representations. The alignment 
loss pushes up the similarity between representations of 
positive-related user-item pairs, while the uniformity loss 
measures how well the representations scatter on the 
hypersphere. Ideally, the representations of a pair of positive 
samples should exhibit similarity, and each representation 
should convey as much information as possible. To achieve 
these goals, two learning objectives can be considered: 

ℒ௔௟௜௚௡ ≜ 𝔼
(௨,௜)~௣೛೚ೞ

‖𝑓ேோ(𝑢) − 𝑓ேோ(𝑖)‖ 
ଶ (16) 

ℒ௨௡௜௙௢௥௠ = 𝔼
(௨,௨ᇲ)~௣ೠೞ೐ೝ

‖𝑓ேோ(𝑢) − 𝑓ேோ(𝑢ᇱ)‖ 
ଶ /2

+ 𝔼
(௜,௜ᇲ)~௣೔೟೐೘

‖𝑓ேோ(𝑖) − 𝑓ேோ(𝑖ᇱ)‖ 
ଶ /2 (17)

 

Where 𝑓୒ୖ(u) and 𝑓୒ୖ(i) indicates 𝑙ଶ normalized user 
and item representations. Align loss is expected distance 
between positive user and item pair. And we define the 
uniformity loss as the logarithm of the average pairwise 
Gaussian potential. Minimizing loss function ℒ௔௟௜௚௡  can 
make the embeddings of positive sample pairs tend to be 
similar. The minimization of loss function ℒ௨௡௜௙௢௥௠ first 
prevents trivial solutions where all embeddings become 
identical, which would excessively cater to objective 
function ℒ௔௟௜௚௡ . Secondly, it enables embeddings to be 
more evenly distributed in the latent space, thus expressing 
more information. The structure of the alignment and 
uniform learning is shown in Figure 4, and the embedding of 
each pair of positive samples is calculated in each iteration, 
and the uniformity calculation is performed on the 
embedding on the item side and the user side respectively. 

 
Fig.4 Alignment and uniformity learning 

E. Model learning  

The training of the model is accomplished by optimizing 
a series of objective functions, including the main task 
objective function, the self-augmented learning task 
objective function, and the alignment and uniformity 
objective function. The final loss is expressed as: 
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ℒ =  ෍
𝑚𝑎𝑥 ቀ0,1 − ൫𝑝௨ೝ,భ,௩ೝ,భ

− 𝑝௨ೝ,మ,௩ೝ,మ
൯ቁ + 𝜆ଵℒ௦௔ 

+ 𝜆ଶℒ௔௟௜௚௡ + 𝜆ଷℒ௨௡௜௙௢௥௠ + 𝜆ସ‖𝛩‖ி
ଶ

ோ

௥ୀଵ

(18) 

During training, sample r positive edges (in graph 𝐺) and 
sample r negative edges (not in graph 𝐺 ) 
form{(𝑒ଵ,ଵ, 𝑒ଵ,ଵ), (𝑒ଶ,ଵ, 𝑒ଶ,ଵ), . . . , (𝑒ோ,ଵ, 𝑒ோ,ଵ)}, where 𝑒௥,ଵ and 
𝑒௥,ଶ  are positive and negative samples, respectively. 
𝑝௨ೝ,భ,௩ೝ,భ

 and 𝑝௨ೝ,మ,௩ೝ,మ
 represent the score predictions of 

edge 𝑒௥,ଵ and 𝑒௥,ଶ, respectively. 

V. EXPERIMENTS 

A. Experimental datasets 

The experiments use the Yelp, Gowalla, MovieLens, 
Amazon-book and Tmall datasets, which are all collected 
from real-world applications. The statistics of them are 
shown in Table 2. 
 Yelp: This dataset contains Yelp users' ratings of 

merchants, including restaurants, shopping malls, hotels, 
and more. Among them, the places that have been 
evaluated by users are used as interactive items, and all 
places that have not been evaluated are regarded as 
non-interactive items. 

 Gowalla: This dataset contains the user's check-in data 
in the geographical location through Gowalla, and the 
user shares his check-in locations through Gowalla. 

 Tmall: This e-commerce dataset contains the online 
shopping behavior of Tmall's users. 

 MovieLens: It is a movie recommendation dataset. 
 Amazon-book: this dataset records user ratings on 

products with book category on Amazon with the 
20-core setting. 

TABLE II  
STATISTICS OF DATASETS 

Stat. Yelp Gowalla Tmall MovieLens Amazon 
Number of 

users 
29601 50821 47939 69878 78578 

Number of 
items 

24734 24734 41390 10196 77801 

Number of 
interactions 

1517326 1069128 2357450 9988816 3190224 

Density 2.1×10-3 4.0×10-4 1.2×10-3 1.4×10-2 5.2×10-4 

A. Evaluation protocols 

For each dataset, it is divided into training, validation, and 
testing sets at a ratio of 7:2:1. Use Recall@N and 
NDCG@N as evaluation metrics. Recall@N is the ratio of 
the number of real interactive items in the top N items in the 
recommended list to the total number of real interactive 
items, which is used to measure the coverage of the 
predicted results. 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(19) 

Where 𝑇𝑃 represents that the true class of the sample is 
positive, and the final predicted result is also positive. 
Where 𝐹𝑁 represents that the true class of the sample is 
positive, but the final predicted result is negative. 
NDCG@N further considers the positions of each item in 
the recommended list. 

𝑁𝐷𝐶𝐺@𝑁 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
(20) 

𝐷𝐶𝐺 = ෍
𝑟𝑒𝑙௜

𝑙𝑜𝑔ଶ(𝑖 + 1)

ே

௜ୀଵ
(21) 

𝐼𝐷𝐶𝐺 = ෍
𝑟𝑒𝑙௜

𝑙𝑜𝑔ଶ(𝑖 + 1)

|ோா௅|

௜ୀଵ
(22) 

Where 𝑟𝑒𝑙௜  represents whether the item at the i-th 
position is a user's actual interaction. It is denoted as 1 for 
true and 0 for false. Where 𝑅𝐸𝐿 represents ranking the 
results in the optimal order. 

B. Baselines 

The following 12 baseline methods are selected for 
comparison with the proposed SHTAU framework. 
 NCF [2]: Instead of using the inner product, this method 

employs a neural architecture capable of learning an 
arbitrary function from the provided data. The NeuMF 
variant is used here for comparison.  

 AutoR [3]: This method uses a behavioral 
reconstruction task to train for better user/item 
representation. 

 PinSage [14]: This method combines efficient random 
walks and graph convolutions to generate embeddings 
of nodes that incorporate both graph structure as well as 
node feature information. 

 NGCF [15]: This graph convolution-based approach 
additionally takes source-target representation 
interaction learning into consideration when designing 
its graph encoder. 

 STGCN [7]: This model combines a graph 
convolutional encoder and a graph autoencoder to 
enhance model robustness during cold start scenarios 
and sample sparseness. 

 GCCF [23]: This method improves recommendation 
performance by eliminating non-linearities and 
introduces a residual network structure tailored for 
collaborative filtering with user-item interaction 
modeling. This structure effectively addresses the 
over-smoothing issue encountered in graph convolution 
aggregation operations when dealing with sparse 
user-item interaction data. 

 LightGCN [8]: This method provides a deep analysis of 
the efficiency of standard GCN and a simplified GCN 
model for the recommendation. 

 HyRec [19]: A sequence model using hypergraph 
structures to learn high-dimensional connections for 
items. 

 DHCF [18]: This model is a dual-channel hypergraph 
collaborative filtering framework. 

 MHCN [20]: This model uses a multi-channel 
hypergraph convolutional network to enhance social 
recommendation by leveraging high-order user 
relations. 

 SLRec [24]: This model adds contrastive learning 
between node features as a regular term to enhance the 
existing recommender system. 

 SGL [25]: The model leverages random walks and 
feature dropout techniques to generate multiple views. 
It augments LightGCN by incorporating self-supervised 
contrastive learning, thereby enhancing its performance. 

C. Experimental parameters  

For a fair comparison, set the parameters of all baselines 
to the best values in their original papers. For the framework 
proposed in this paper, the implementation uses TensorFlow 
and uses the Adam optimizer, with a learning rate of 1e-3 
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and a decay rate of 0.96. 

D. Result analysis  

Table 3 shows the experimental results. 
From which the following conclusions can be drawn: 

 The table indicates that the hypergraph neural 
network-based method outperforms other GNN-based 
baseline methods. This suggests that the incorporation 
of hypergraphs effectively captures high-order global 
connections and enhances recommendation 
performance. 

 The SHTAU framework proposed in this paper 
consistently outperforms other baseline methods, 
showcasing its superiority. This can be attributed to 
several factors: 

First, the SHTAU framework leverages the hypergraph 
transformer module to effectively capture and utilize global 
semantic connections.  

Secondly, global-local self-Augmented learning extracts 
information from the hypergraph transformer module and 
guides the learning of local embeddings, thereby mitigating 
the influence of noise in the data. 

Finally, the introduced AU module effectively optimizes 
the embeddings, achieving a good balance between 

Alignment and uniformity. The AU module enables users to 
be more evenly distributed in the latent space, thereby 
making each embedding express more information. 
Additionally, The AU module reduces the gap between 
embeddings of positive samples, making the relationship 
between users and items more explicit, eventually 
improving the overall performance. 

E. Ablation experiments 

To verify the rationality of the SHTAU framework 
structure, GCN, AU, and SSL modules were removed 
respectively to obtain 3 variants. Several variants were 
compared on three datasets, and the ablation experiment 
used Recall@N and NDCG@N as evaluation metrics; the 
experimental results are shown in Table 4. From the results, 
the following conclusions can be drawn: 
 After removing the GCN module, the overall 

performance drops sharply. The results show that GCN 
embedding in the learning process is quite necessary. 

 The removal of self-supervised learning (SSL) or AU 
modules significantly weakens the performance of 
SHTAU. At the same time, the positive effects of 
self-supervised learning and AU modules on 
performance are verified. 

TABLE III 
PERFORMANCE COMPARISON ON FIVE DATASETS 

data metric NCF AutoR PinSage NGCF STGCN LightGCN GCCF HyRec DHCF MHCN SLRec SGL SHTAU Improv. 

yelp 

Recall@20 0.0252 0.0259 0.0345 0.0294 0.0309 0.0482 0.0462 0.0472 0.0449 0.0503 0.0476 0.0526 0.0744 41.4% 

NDCG@20 0.0202 0.0210 0.0288 0.0243 0.0262 0.0409 0.0398 0.0395 0.0381 0.0424 0.0398 0.0444 0.0652 46.8% 

Recall@40 0.0371 0.0504 0.0585 0.0522 0.0504 0.0803 0.076 0.0774 0.0751 0.0826 0.0821 0.0869 0.1007 15.8% 

NDCG@40 0.0227 0.0301 0.0373 0.033 0.0332 0.0527 0.0508 0.0511 0.0493 0.0544 0.0541 0.0571 0.0658 15.2% 

Gowalla 

Recall@20 0.0171 0.0239 0.0576 0.0552 0.0369 0.0985 0.0951 0.0901 0.0931 0.0955 0.0925 0.1030 0.1324 28.5% 

NDCG@20 0.0106 0.0181 0.0373 0.0298 0.0217 0.0593 0.0535 0.0498 0.0505 0.0574 0.0581 0.0623 0.0786 26.1% 

Recall@40 0.0216 0.0343 0.0892 0.081 0.0542 0.1431 0.1392 0.1306 0.1356 0.1392 0.1305 0.1500 0.1731 15.4% 

NDCG@40 0.0118 0.016 0.0417 0.0367 0.0262 0.071 0.0684 0.0669 0.066 0.0689 0.068 0.0746 0.0874 17.1% 

Tmall 

Recall@20 0.0082 0.0103 0.0202 0.0180 0.0146 0.0225 0.0209 0.0233 0.0156 0.0203 0.0191 0.0268 0.0442 64.9% 

NDCG@20 0.0059 0.0072 0.0136 0.0123 0.0105 0.0154 0.0141 0.0160 0.0108 0.0139 0.0133 0.0183 0.0301 63.4% 

Recall@40 0.014 0.0174 0.0345 0.031 0.0245 0.0378 0.0356 0.035 0.0261 0.034 0.0301 0.0446 0.0628 40.8% 

NDCG@40 0.0079 0.0097 0.0186 0.0168 0.014 0.0208 0.0196 0.0199 0.0145 0.0188 0.0171 0.0246 0.0437 77.6% 

Amazon 

Recall@20 0.0093 0.0131 0.0103 0.0222 0.0192 0.0319 0.0317 0.0302 0.0280 0.0296 0.0285 0.0327 0.0547 67.2% 

NDCG@20 0.0049 0.0099 0.0158 0.0160 0.0144 0.0236 0.0243 0.0225 0.0202 0.0219 0.0268 0.0249 0.0407 63.4% 

Recall@40 0.0223 0.0202 0.0366 0.0376 0.0312 0.0499 0.0483 0.0432 0.0471 0.0489 0.0463 0.0531 0.0834 57.0% 

NDCG@40 0.0133 0.0123 0.0124 0.021 0.0184 0.029 0.0285 0.0246 0.0272 0.0284 0.0314 0.0312 0.0494 58.3% 

Mlens 

Recall@20 0.0878 0.1230 0.1706 0.1611 0.1298 0.1789 0.1742 0.1801 0.1363 0.1497 0.1758 0.1833 0.2490 35.8% 

NDCG@20 0.1197 0.1667 0.2108 0.1961 0.1639 0.2128 0.2109 0.2178 0.1726 0.1814 0.2003 0.2205 0.2914 32.1% 

Recall@40 0.1634 0.1908 0.2724 0.2594 0.2006 0.265 0.2606 0.2685 0.2171 0.225 0.2633 0.2768 0.3081 11.3% 

NDCG@40 0.1427 0.1785 0.2362 0.2225 0.1782 0.2322 0.2331 0.234 0.1901 0.1962 0.236 0.2426 0.2853 17.6% 

 

TABLE IV 
ABLATION EXPERIMENT RESULTS 

Variants 
Yelp Gowalla Tmall 

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 
Off-GCN 0.0491 0.0413 0.0477 0.0275 0.0294 0.0198 
Off-SSL 0.0701 0.0590 0.1276 0.0762 0.0430 0.0292 
Off-AU 0.0651 0.0546 0.1232 0.0731 0.0387 0.0262 
Full 0.0742 0.0652 0.1324 0.0786 0.0442 0.0301 
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F. Hyperparameter analysis 

This section studies the impact of several key 
hyperparameters in our SHTAU framework. 

a) The impact of hyperparameter 𝜆ଷ 
Fig 5 shows the performance comparison of different 𝜆ଷ, 

which controls the scaling of ℒ௨௡௜௙௢௥௠. The lager the 𝜆ଷ, 
the more scattered the embedding. The more evenly the 
embedding is distributed in the latent space, the more 
information can be expressed. 

 

 
Fig.5 Performance comparison of different 𝜆ଷ 

 
From the experimental results, it can be observed that the 

optimal performance of the hyperparameter 𝜆ଷ varies for 
different datasets. The best performance is achieved with 𝜆ଷ 
is set to 2 on datasets yelp and tmall, while on dataset 
gowalla, the best performance is obtained with 𝜆ଷ is set to 
2.5. 

b) The impact of latent dimension  
Fig 6 shows the performance comparison of different 

latent dimensions. 
 

 
Fig.6 Performance comparison of different latent dimensions  

Based on the experimental results, it can be observed that 
the optimal performance of the latent dimension varies 
across different datasets. Specifically, the best performance 
is achieved with a latent dimension of 128 on datasets such 
as Yelp and Tmall. This suggests that for these datasets, a 
higher dimensional space (128 dimensions) is better suited 
for capturing the underlying patterns and relationships in the 
data, resulting in improved recommendation performance. 
On the other hand, for the Gowalla dataset, the best 
performance is obtained with a lower latent dimension of 64. 
This indicates that for Gowalla, a lower-dimensional space 
is more effective in representing the user-item interactions 
and capturing the relevant information. 

 

VI. CONCLUSION 

This paper proposes a general self-supervised 
recommendation framework SHTAU, aiming to enhance 
robustness by self-reinforcing supervised signals, reduce the 
influence of data noise, and further improve performance by 
combining embedded aligned uniform auxiliary learning 
objectives. Extensive experiments are conducted, 
demonstrating the significant advantages over five real 
datasets compared to baseline methods.  

In future work, we will investigate more target features of 
the embedded representation to improve recommendation 
performance. We will research how to construct auxiliary 
goals for multi-objective learning to improve 
recommendation performance. 
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