
 

  

Abstract—This research proposes a refined deep learning 

framework aimed at boosting the precision and efficacy of 

detecting surface imperfections in strip steel. This method 

integrates enhancement and simplification techniques inspired 

by the You Only Look Once version 7 (YOLOv7) detection 

method, resulting in significant enhancements in the model's 

accuracy, speed, and flexibility. The substitution of ELAN with 

Bottleneck Transformer 3 (BoT3) leads to improved accuracy 

and mean Average Precision (mAP) values, while also 

introducing a more lightweight network architecture. The 

incorporation of the Involution mechanism enhances the model's 

feature extraction capabilities, thereby improving its ability to 

recognize small targets through the utilization of local 

perceptual fields. The ASPP_CA architecture leverages a 

multi-scale feature fusion technique along with an attention 

mechanism to reduce model parameters and enhance inference 

speed. Furthermore, it extends the model's receptive field, 

allowing it to capture additional visual information. The 

enhanced algorithm, denoted as YOLOv7-IBA, demonstrates 

empirical results that underscore its superiority over the three 

current state-of-the-art detection techniques in identifying 

surface flaws on strip steel. The accuracy has been improved to 

82.9%, representing a significant increase of 7.2% compared to 

the previous performance. Furthermore, the mean mAP value 

has experienced a 3.2% increase, reaching a total of 79.9%. 

Moreover, there has been a remarkable 8.8% improvement in 

efficiency. The adoption of this approach holds the potential to 

enhance both the precision and productivity of strip surface flaw 

detection, while also providing valuable methodological support 

for the advancement of other related disciplines. 

 
Index Terms—ASPP_CA, BoT3, Involution, Object Detection, 

YOLOv7 

 

I. INTRODUCTION 

ITH the rapid development of industrial automation, 

strip steel is widely utilized in industry, construction, 

transportation, chemical industry, and other fields. However, 

surface defects such as cracks, bubbles, scratches, rust, and 

oxidation can gradually worsen, posing a significant safety 

risk. Some defects, such as tiny pits and micro-cracks, are 

challenging to detect and may go unnoticed. These defects 
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have the potential to worsen over time, leading to safety 

accidents. These defects also impact the corrosion and wear 

resistance of the final product. Therefore, there has been a 

continuous pursuit of advanced detection technologies for 

surface defects in steel strips.  

The manual method of defect detection can be both 

inaccurate and inefficient; thus, it is essential to develop 

algorithms that can automatically detect surface defects on 

production lines in real-time [1]. 

Studies on the detection of surface defects in strip steel can 

be categorized into traditional methods and deep 

learning-based methods. The traditional method has 

drawbacks, such as low efficiency, high error rates, and 

demanding skill requirements for inspectors [2]. In contrast, 

deep learning-based target detection methods can rapidly and 

accurately identify surface defects without requiring 

advanced skills. He et al. [3] proposed a novel defect 

detection system based on deep learning to identify steel plate 

defects. The system can capture specific categories and 

detailed information to identify steel defects by integrating 

multiple levels of features. Tasi et al [4] proposed a fast 

regularity metric for defect detection on non-textured and 

uniformly textured surfaces. These two methods were used to 

detect defects by only a single discriminative feature. It 

avoided the complexity of using classifiers in 

high-dimensional feature spaces. On the other hand, the 

method did not require learning from a set of defective and 

non-defective training samples. Guo et al. [5] proposed a 

transformer-based approach for detecting defects on steel 

surfaces. The researchers used a transformer in conjunction 

with global contextual information to enhance functionality 

and improve the detection of faulty targets. A method for 

calculating the surface corrosion area of steel bridges was 

proposed by Son and his colleagues [6]. Tong et al. [7] 

proposed a defect detection model using an optimal Gabor 

filter. The model can be significantly less computationally 

intensive and effectively address fabric detection problems by 

utilizing optimal Gabor filters. Compared to the method 

above, the "You Only Look Once" (YOLO) series represents 

the latest technology in single-stage object detection. 

Compared to two-stage detectors such as the region-based 

CNN (R-CNN) family, single-stage detectors integrate region 

and object classification in a simple architecture to achieve 

faster inference speeds [8]. Such algorithms have achieved 

significant success in the past decade [9]. In 2015, Redmon et 

al. [10] proposed YOLOv1, a pioneering single-stage object 

detection algorithm. The follow-up to YOLOv3 [11] 

introduced the residual module and FPN [12] architecture. 

While it improved the speed and accuracy of target detection, 
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it was relatively ineffective at detecting small targets. 

YOLOv5 [13] has optimized and enhanced the network 

structure, feature pyramid, and training strategy to improve 

detection speed and accuracy further. However, a more 

precise defect classification capability is needed to detect 

surface defects in strip steel. 

YOLOv7, an evolution of the object detection algorithm 

previously referred to as YOLOv5, introduces a series of 

substantial advancements. Compared to YOLOv5, YOLOv7 

features an improved model structure, anchor frame modeling, 

data augmentation, and model optimization. This leads to 

enhanced detection accuracy and faster detection speeds for 

the target detection task. Furthermore, due to its compatibility 

with various defect types, the YOLOv7 model stands out in 

terms of deployment convenience. However, the adopted 

anchor-based method needs to improve in detecting smaller 

targets. In contrast, the global detection method must be more 

effective for detecting defects distributed locally or at the 

edges of the strip. Therefore, there is an urgent need for an 

effective method to improve the detection capability of small 

targets and efficiently identify multiple categories of targets 

when detecting surface defects on strip steel. To address this 

issue, we propose YOLOv7-IBA, an enhanced approach 

based on deep learning networks, to improve the accuracy and 

efficiency of detecting surface defects in strip steel. Among 

them, the BoT3 module is used instead of the ELAN module. 

Using a lightweight network structure, this substitution 

improves the model's accuracy rate and mAP value. The 

involution mechanism enhances the model's feature extraction 

and improves its ability to recognize small targets by 

expanding the local perceptual field. Additionally, ASPP_CA 

is designed to reduce the model parameters and improve the 

speed of inference by integrating multi-scale feature fusion 

and an attention mechanism. Meanwhile, the sensory field of 

the model has been expanded, allowing it to capture more 

image details. The experimental results demonstrate that this 

method outperforms three existing state-of-the-art detection 

methods in identifying defects on strip steel surfaces. 

Specifically, it achieves an accuracy of 82.9% (an increase of 

7.2%) and a mAP value of 79.9% (an increase of 3.2%). 

Furthermore, the efficiency has improved by 8.8%. The data 

shows that YOLOv7-IBA is a practical and feasible method 

for detecting steel-strip surface defects. It can also serve as a 

valuable reference for advancing other related fields. 

 

II. MATERIALS AND METHODS 

A. ASPP_CA 

During strip steel inspection, the ASPP_CA technique is 

effectively employed to enhance inspection precision. Since 

the widths of the strips vary, it is necessary to detect strips of 

different sizes. By employing the ASPP_CA technique, 

detection accuracy can be improved by uti l izing 

multi-channel feature maps at various scales. This enables the 

network to detect strips of different sizes and positions. By 

integrating ASPP [14] and CA [15], model performance in 

complex scenes can be improved for more effective target 

detection. Specifically, ASPP is utilized for multi-scale 

feature extraction, extraction to detect objects at various  
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Fig.1.  ELAN Structure Diagram 
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Fig.2.  ELAN Add ASPP_ CA structure diagram 

 

locations and sizes, while CA employs an attention 

mechanism to minimize redundant information and reduce 

misclassification. This can improve the accuracy of target 

detection and effectively reduce the computational burden of 

the model. 

Furthermore, the ASPP_CA method not only enhances the 

robustness and generalization of the network but also 

improves the correlation among the feature map channels. 

Our research focuses on detecting surface defects on strips 

using the ASPP_CA module. By sampling the input feature 

maps and applying average pooling to the results, we can 

enhance the ability to detect small and dense defects in 

complex backgrounds. Meanwhile, in the second branch of 

the ELAN layer, the last 3×3 convolution module is replaced 

by ASPP_CA to improve the detection accuracy. The ELAN 

layer structure consists of two branches. The first branch is 

1×1 CBS, which adjusts the number of channels. The second 

branch consists of multiple CBSs, which first undergo a 1×1 

convolution, followed by four 3×3 convolutions for feature 

extraction. Finally, the outputs of both branches are combined 

using a concatenation operation, as illustrated in Figure 4 

below. Given that the strip defects dataset contains numerous 

small and dense defects that can easily be overlooked, we 

replaced the last 3×3 convolution module in the second 

branch with ASPP_CA. ASPP_CA can conduct multi-scale 

processing on the input features and achieve channel-attention 

weighting, effectively reducing redundancy and noise. This 

improves the performance of target detection or classification, 

especially in identifying small and dense defects against dense 

backgrounds. This is shown in Figure 5 below. 

ASPP_CA is a channel attention module constructed in this 

paper. The ASPP module and the channel attention 

mechanism are combined. During the fusion process, the 

ASPP module generates multiple feature maps. Meanwhile, 

the channel attention mechanism helps the model better learn 

key information from these feature maps and assign weights 

to obtain more accurate information. The ASPP module 

contains multiple parallel branches, each with a different 

dilation rate, to capture a broader range of features while 

preserving pixel-level information. The CAModule, on the 

other hand, utilizes the output of the ASPP branch to 

prioritize channel-specific information, thereby further 

enhancing network performance. The ASPP_CA module, 

which includes ASPP and CAModule, effectively extracts 

multi-scale features and applies channel-specific information 

weighting. This enables the network to adapt more effectively 

to various input data. Figure 6 illustrates the structure of the 

ASPP_CA module, which comprises multiple ASPP branches 
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Fig.3.  ASPP_ Structure diagram of CA module 

 

and the CAModule. The ASPP branches utilize multiple 

convolutional kernels with varying expansion rates to extract 

multi-scale features, which are then combined. The 

CAModule module utilizes the stack of outputs from the 

ASPP branches to weight the information of each channel, 

thus obtaining the channel-specific information weighting to 

enhance the network's performance further. To sum up, the 

ASPP_CA module serves as an effective feature extraction 

tool with diverse applications across numerous tasks. In 

conclusion, the ASPP_CA module is a powerful feature 

extraction module with various applications in various tasks. 

Through multi-scale feature extraction and channel-specific 

information weighting, it can effectively enhance the 

performance of neural networks, especially when dealing with 

datasets of diverse and complex nature. 

 

B. BoT3 

To tackle the challenges of significant dimensional 

variations and complex surface textures in the strip steel 

defects dataset, we propose optimization techniques for BoT3. 

These techniques aim to enhance feature extraction and more 

BoT3 = CBS
BOT

CBS

Concat

BOT
 

Fig.4.  Structural diagram of BoT3 

comprehensively understand semantic data more efficiently. 

This successfully tackled the challenge of distinguishing 

between targets and backgrounds within the model while 

mitigating concerns related to false positives and missed 

detections. BoT3 streamlines both the encoder and decoder 

components of the model. The model's maintainability and 

scalability are enhanced by incorporating adaptive techniques 

and modular functions. The BoT3 module we employ 

predominantly comprises Convolutional blocks and 

Bottleneck Transformers (BoT), as depicted in Figure 4. 

BoT stands for Bottleneck Transformer [16], a neural 

network module employed for image classification and object 

detection tasks. It represents an improved and optimized 

version of the Transformer network architecture. 

The BoT comprises three essential components: Expansion, 

Multi-Head Self-Attention (MHSA), and Contraction, as 

depicted in Figure 5. Multi-Head Self-Attention is a pivotal 

component of the BoT model, characterized by an enhanced 

channel attention mechanism derived from the self-attention 

mechanism. The primary formula can be expressed as 

follows: 

 

BoT =
MHSA

Contraction

Expansion

 
Fig.5.  BoT structure diagram 
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For input feature maps
× ×dH WX  ¡ , wherein H ,W and 

d  represents the respective dimensions of the individual 

tokens in the input feature matrix, including their height and 

width, The number of tokens is H W . The attention logic 

of the MHSA layer is 
T Tqr qk+ , wherein ,q k  and 

r represents the query, key, and location encoding, 

respectively.  and ⊗ represents the summation of elements 

and the multiplication of matrices, respectively. By 

computing the similarity between q  and every token, the 

attention weight is ultimately multiplied and added to the 

input value to yield the output result. Notably, the gray boxes, 

which encompass position encoding and value projection, are 

the only three elements that are absent in non-local layers 

[17]-[18]. In the BoT model, position encoding and value 

projection are exclusively used within the MHSA layer. 

 

C. Involution 

Due to the variations in size and shape among strip surface 

defects, the utilization of traditional fixed convolutional 

kernels encounters challenges in efficiently extracting crucial 

spatial features from these defects. Conversely, the Involution 

network employs trainable convolutional kernels that can 

adapt their size and shape to accommodate defects of varying 

sizes and shapes. This significantly enhances the accuracy and 

robustness of defect detection. When detecting surface 

defects on strip steel, the involution excels at extracting 

spatial features from the affected areas. Moreover, it can 

dynamically adjust the size and shape of convolutional 

kernels, resulting in more precise object positioning and 

detection. Despite the rapid progress of deep neural networks, 

conventional convolutional operations, with their ability to 

densely pool local features from a given input, continue to 

play a crucial role in deep learning.  However, traditional 

convolutional operations encounter challenges such as 

heightened computational complexity and excess redundant 

channels. These challenges can be effectively addressed with  
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Fig.7.  Schematic Diagram of Involution 
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Fig.8.  Improved YOLOv7-IBA structure diagram 

 

Involution. Involution's parameters can be learned through 

training and can dynamically perform operations at specific 

pixel locations. This approach substantially diminishes 

redundancy and enhances the efficiency and generalization 

capabilities of the model, both about channel and feature 

spaces of the input. Hence, we have opted to utilize Involution 

to enhance the model's accuracy in detecting surface 

irregularities on strip steel. 

The Involution core is specifically designed for the pixels 

,Xi j  located at the corresponding coordinates ( ,i j ), 

However, this information is shared uniformly across all 

channels. G calculates the count of groups that share the same 

Involution core for each group. When validating input for 

multiplication and addition operations with Involution, the 

output feature map of the Involution is expressed by the 

following formula: 

     , , , ,, , /2 , /2 , /
( , ) k

i j k i u j v ki j u k v K KG C
u v

Y P X + ++ +


= 
V

         (3) 

The format for the kernel is as follows: 

, , 1 0 ,( ) ( )
i j i j i jP X W W X =  =              (4) 

In 2021, Li Duo and his colleagues introduced a novel 

neural network operator named Involution [19]. Compared to 

convolution, this approach is lighter in weight and more 

efficient. It applies to various visual task models, enhancing 

their effectiveness and efficiency, as illustrated in Figure 7. 

Our model, incorporating Involution, significantly reduces 

network parameters and computational complexity. Our 

model, incorporating Involution, significantly reduces 

network parameters and computational complexity. 

 

D. Model Reconstruction 

To enhance the YOLOv7 network's performance in 

detecting small or densely packed objects, we introduce an 

improved YOLOv7-IBA algorithm and optimize the network 

structure. In contrast to the original YOLOv7 algorithm, the 

enhanced YOLOv7-IBA algorithm improves the network's 

resolution and feature expression capabilities, leading to 

better target localization. Specific optimizations are 

highlighted using differently colored rectangular boxes in the 

framework of the network structure, as shown in Figure 8. 

The involution convolution, added within the red box of the 

network structure, enhances the model's accuracy and 

efficiency by improving feature expression and detection 

precision. Furthermore, the inclusion of the BoT3 module, 

surrounded in the purple box, provides an upgrade over the 

previous green-labeled ELAN module, capturing a wider 

spectrum of contextual information. This enhancement 

improves the precision of the model's object detection. Within 

the green box, we have integrated the ASPP_CA module into 

the original ELAN module to obtain multi-scale target 

information and expand the perception range. This 

configuration demonstrates robust performance in detecting 

dense or small targets. With the optimizations and 

enhancements implemented, YOLOv7-IBA has demonstrated 

a significant improvement in its ability to detect surface 
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defects on strip steel compared to the original YOLOv7 

algorithm, resulting in improved target detection accuracy. 

III. EXPERIMENTS 

A. DataSets 

Surface defect detection is a critical aspect of steel 

production, with the primary objective being to identify and 

correct surface defects. This process plays a crucial role in 

improving steel products' overall quality and safety. The 

NEU-DET dataset utilized in this experiment was sourced 

from the Surface Defect Database provided by Northeastern 

University [20]. This dataset comprises six common surface 

abnormalities typically observed on hot-rolled steel strips, 

including rolled-in scale (Rs), patches (Pa), crazing (Cr), 

pitted surface (Ps), inclusions (In), and scratches (Sc). This 

dataset accurately represents the surface imperfections 

commonly encountered in most hot-rolled steel strips. The 

dataset consists of 1800 images and includes comprehensive 

annotations that provide essential details such as the type, 

location, size, and quantity of defects. Accurate annotation 

data is crucial for effectively training and testing the 

algorithm. The dataset includes 300 samples for each type of 

defect, with multiple defects present in each image sample. 

All images have dimensions of 200 by 200 pixels, and the data 

is split into training and testing sets in an 8:2 ratio. 

 

B. Experimental Configuration 

The experiment used a GEFORCE RTX 3090 graphics 

card, and PyTorch 1.13.1 was utilized as the deep learning 

framework with Cuda 11.7 for enhanced performance. The 

experiments ran for a total of 300 iterations. 

 

C. Performance Evaluation 

For a comprehensive and objective performance 

assessment of strip steel surface defect detection, we use two 

metrics: Precision and mAP. The formulas for calculating 

these metrics are as follows: 

TP
Precision

TP FP
=

+
                              (5) 

1

0
( )AP P R dR=                                     (6) 

1

c

ii
mAP AP

=
=                                     (7) 

In these formulas, TP represents the number of actual 

positive defects, FP represents the number of false positive 

defects, P(R) represents the precision-recall curve, I 

represents the defect category in this experiment, and c 

represents the number of defect categories considered in this 

experiment. The elements above are used to calculate the 

performance evaluation of defect detection. 

 

D. Ablation Experiment 

The IBA model incorporates YOLOv7, BoT3, ASPP_CA, 

and Involution, all utilizing convolutional modules. Ablation 

experiments were conducted to evaluate each module's 

effectiveness in improving the model's performance. In these 

experiments, specific modules were intentionally removed to  

 

 

 
Fig.9.  Dataset image 

 

evaluate the impact of module removal on the experimental 

outcomes. Table 1 displays the findings of the ablation study, 

providing insights into how these enhanced techniques affect 

the experimental outcomes. 

Table I shows the utilization of the YOLOv7 model, which 

integrates BoT3, ASPP_CA, and Involution techniques. 

Comparative experiments were conducted to evaluate a range 

of indicators, namely Rs, Pa, Cr, Ps, In, Sc, P, and mAP. The 

aim was to assess and compare their performance. We 

conducted comparative experiments using various indicators 

to determine these techniques' impact on identifying different 

categories of surface defects. We conducted comparative 

experiments using various indicators. The indicators include 

Rs, Pa, Cr, Ps, In, Sc, P, and mAP. The experimental results 

undeniably illustrate that the YOLOv7-IBA model has 

significantly improved in various metrics compared to other 

models using the same dataset. In summary, the 

YOLOv7-IBA model demonstrates exceptional detection 

capabilities and improved sensitivity in identifying surface 

defects on strip steel. 

 

E. Comparative Experiment 

This study conducted experiments to assess the impact of 

integrating an attention mechanism into the ASPP module of 

the strip steel surface defect detection model. The study 

evaluated the effect of three distinct attention mechanisms, 

namely GAM [21], ECA [22], and CA, on the performance of  
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TABLE I 

  ABLATION STUDY 

Scheme Rs Pa Cr Ps In Sc P mAP 

YOLOv7 0.750 0.788 0.569 0.895 0.686 0.852 0.757 0.767 

YOLOv7-ASPP_CA 

YOLOv7-BoT3 

0.696 

0.618 

0.841 

0.83 

0.546 

0.547 

0.867 

0.854 

0.788 

0.804 

0.947 

0.917 

0.781 

0.762 

0.788 

0.777 

YOLOv7-Involution 0.659 0.839 0.566 0.897 0.827 0.879 0.777 0.794 

YOLOv7-IBA 0.780 0.88 0.647 0.934 0.799 0.935 0.829 0.799 

 
TABLE II 

COMPARISON RESULTS WITH OTHER ATTENTION MECHANISMS 

Model Input size Batch size Epoch Precision mAP 

YOLOv7-GAM 640*640 16 300 74.80 77.10 

YOLOv7-ECA 640*640 16 300 75.70 77.20 

YOLOv7-CA 640*640 16 300 74.60 77.70 

YOLOv7-ASPP_CA 640*640 16 300 78.10 78.80 

 

the model. As shown in Table Ⅱ, including CA attention 

significantly improves the model's overall performance, 

particularly in accurately detecting small targets. Therefore, 

this article adopts the ASPP_CA module, which integrates a 

CA attention mechanism within the ASPP module. The 

experimental comparison showed that the attention 

mechanisms GAM and ECA had some impact, but their 

improvement compared to the CA attention mechanism was 

relatively modest. The CA attention mechanism itself is a type 

of channel attention mechanism. I am distinguishing it from 

ECA in its computational ASPP module. Creating the 

ASPP_CA module effectively handles multi-scale features 

and enhances the model's performance. 

Currently, widely used network models for object detection 

include YOLOv8, YOLOv7, YOLOX, and SSD. We have 

used these models and recent research to train them to identify 

strip steel surface defects. Next, we tested the effectiveness of 

our detection methods on a test dataset. After thoroughly 

comparing the models using precision metrics, it became 

evident that the YOLOv7-IBA model showcased significant 

improvements in detection efficiency. Through experimental 

comparison, it is evident that the YOLOv7-IBA model 

demonstrates significantly improved accuracy compared to 

traditional models. Compared to the latest YOLOv8 model, 

the YOLOv7-IBA model demonstrates an increase in 

accuracy of 8.1 percentage points. Additionally, compared to  

 
TABLE III 

COMPARISON OF STATE-OF-THE-ART MODELS 

Model Input size Batchsize Epoch Precision 

YOLOv8 640*640 16 300 74.80 

YOLOv7 640*640 16 300 75.70 

SSD 640*640 16 300 74.60 

YOLOX 640*640 16 300 72.80 

YOLOv5-v3 640*640 16 300 75.40 

YOLOv7-BES 640*640 16 300 79.20 

YOLOv7-IBA 640*640 16 300 82.90 

YOLOX and SSD [23], the YOLOv7-IBA model shows 

significant improvements in accuracy, with an increase of 

10.1 and 8.3 percentage points, respectively. Furthermore, 

compared to recent publications such as YOLOv7-BES [24] 

and YOLOv5-v3 [25], our approach outperforms others in 

detecting surface defects in strip steel datasets. The 

YOLOv7-IBA model has demonstrated exceptional 

proficiency in identifying surface I imperfections on strip 

steel.  

The enhanced YOLOv7-IBA model, introduced in this 

paper, is specifically designed to detect surface defects in 

strip steel. It has been trained using a dataset that is relevant to 

this domain. Following each training session, it is crucial to 

use a test set to evaluate the model's detection performance.  

A diverse range of images was chosen from the test dataset 

to assess the generalization capability of the improved model. 

The detection results for the enhanced YOLOv7-IBA 

algorithm and the original YOLOv7 algorithm in various 

scenarios are presented in Figures 10 and 11, respectively. In 

contrast to the improved YOLOv7-IBA algorithm, the 

original YOLOv7 algorithm exhibits challenges regarding 

missed detections and false positives. 

In summary, the improved YOLOv7-IBA network 

significantly reduces missed targets and false positives and 

has accurate detection capabilities for dense, blurry, and 

small-scale targets. Moreover, the upgraded YOLOv7-IBA 

architecture consistently achieves exceptional detection 

results, even in low-contrast and complex backgrounds, 

especially when identifying strip defects. According to the 

experimental findings, the improved YOLOv7-IBA algorithm 

outperforms existing models and holds significant practical 

potential for enhancing target detection accuracy. It 

effectively meets the requirements for target detection in the 

context of surface defects on strip steel. 

 

IV. CONCLUSION 

This study introduces an enhanced framework known as 

YOLOv7-IBA, which builds upon the original YOLOv7 

model. By integrating the BoT3 module and retaining a 

consistent feature size, the framework achieves improved 

detection precision.  Furthermore, the creation of 
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Fig.10.  YOLOv7 detection effect diagram 

 

 
Fig.11.  YOLOv7 IBA detection effect diagram 

 

ASPP_CA contributes to a reduction in model size and an 

increase in inference speed for essential computer 

architecture modules. The adoption of involuted convolution 

technology has further improved the model’s proficiency in 

detecting small targets, especially for the purpose of 

identifying surface defects on strip steel. Compared to the 

four conventional detectors, namely YOLOv8, YOLOv7, 

YOLOX, and SSD, our approach is uniquely tailored for 

surface defect detection in strip steel. It performs better by 

significantly improving accuracy and mAP values, ultimately 

leading to better and more accurate detection results. 

Detecting surface defects on strip steel is challenging and 

complex, but our research presents innovative concepts and 

approaches to tackle this issue effectively. We are confident 

that as technology advances and we explore new possibilities, 

the efficiency and accuracy of surface defect detection in strip 

steel will continue to improve. This will undoubtedly add 

even greater value and enhance safety within the industrial 

detection field. We aim to provide valuable references and 

insights through our research while contributing to the 

development and progress of related fields. 
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