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Abstract—Epilepsy is one of the most prevalent diseases of

the nervous system in the field of modern medicine, with abrupt
and repetitive characterization. Seizure prediction provides a
way to alleviate the lesions of the disease for refractory epilepsy
patients, which can significantly improve the living standards of
sufferers while safeguarding their physical and mental
well-being. However, most of the deep learning networks that
have been broadly applied in the field of epileptic seizure
prediction in recent years restrict their attention to the
interchannel information of the electroencephalogram (EEG)
and neglect the highly complex spatial and temporal
interactions of the EEG signals, so that the insufficiency of
cross-channel correlation features becomes an obstacle to
achieve high-precision prediction. In order to overcome the
above problems, this paper proposed the hierarchical
spatio-temporal-spectral multiple hybrid attention mechanism
(HSTS-MHAM) to extract spatial and temporal features of
transchannel. Capturing cross-domain multiscale correlation
features with distinguishability by using the hierarchical
spatio-temporal-spectral fusion attention network
(STS-HFANet), and constructing multichannel spatial
relationships of multidomain fusion features in three
dimensions via the multiple hybrid attention convolutional
network (MHAConvNet). Then, the spatial dynamic graph
convolutional network (SDGConvNet) is used to coordinate the
multirhythmic time-space dynamics in epileptic activity to
construct the brain cortical graph information to capture the
best biomarkers of epileptic seizures. The results show that the
approach we proposed can effectively reduce information
redundancy and achieve complementary multilevel feature
fusion, with excellent performance in terms of accuracy,
sensitivity, specificity, FPR/h and AUC.

Index Terms—epilepsy prediction, EEG signals, hierarchical
spatio-temporal-spectral fusion features, mixed attention
mechanisms.
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I. INTRODUCTION
pilepsy is a non-infectious chronic neurological disorder
caused by abnormal neuronal discharges in the brain, and

recurrent multiplicity is the main identifier of the syndrome.
Seizures occur without aura and last from a few seconds to
several minutes, accompanied by severe disturbances of
cerebral and organism dysfunction, showing typical
symptoms such as limb spasms, whole-body convulsions,
abnormal staring, and loss of consciousness [1]-[2].
Recent studies by the World Health Organization (WHO)

indicate that at least 50 million patients all over the world are
suffering from various types of seizures and that people with
epilepsy are more likely than the general population to be
subjected to psychological disorders and chronic illnesses
[3]-[5], including depression, anxiety, cardiovascular disease
and other comorbidities [6]-[7]. People with epilepsy are
three to five times more likely to commit suicide and 24 times
more likely to die prematurely than the general population,
with sudden death in epilepsy accounting for the highest
proportion of seizure-related causes of death [8]-[10]. Due to
the disease being so demanding in terms of avoiding risk
factors, patients and their families are confronted with
limitations in their daily activities, which makes it difficult to
ensure their long-term living standards [11]-[13]. In addition,
the stigma of epilepsy, social discrimination, and
ostracization over the centuries have led to patients being
prone to strong self-blame and negative self-perceptions, and
they often choose to conceal or evade the disease in order to
alleviate the spiritual burden brought about by the stigma of
the disease, which poses a formidable obstacle to the
treatment of the disease [14]. With the ever-increasing
development of modern medicine, 70% of patients can be
cured with appropriate treatment, but 30% still suffer from
intractable epilepsy and can only be prevented or reduced
symptomatic seizures by medication [15]. Therefore, an
effective seizure prediction technique will not only provide a
robust guarantee for the vitality and well-being of patients,
but also relieve their physical agony and psychological
burden, thus improving the quality of life of the patients and
their families, and enhancing the well-being of society as a
whole.
A variety of epilepsy screening techniques are available,

such as positron emission tomography (PET) [16], magnetic
resonance imaging (MRI) [17], and EEG [18]. Among these
methods, the identification of ictal episodes by EEG signals
has become a mainstream operation in epilepsy diagnosis.
Generally, EEG is categorized into two types: scalp
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electroencephalography (sEEG) and intracranial
electroencephalography (iEEG) [19], among which sEEG
has been more widely used in the field of seizure prediction
techniques because of its unique advantages such as the
possibility of noninvasive acquisition of neuronal signals
directly, the ability to continuously capture the electrical
activity, and implicit features of neurological disorders in the
nervous system [20].
Clinically, it is difficult to effectively determine the

preseizure and interseizure periods based on the different
phases of seizures, therefore, the main goal of seizure
prediction is to effectively distinguish the differences in
neurodynamic characteristics between preseizure and
interseizure EEG signals. Earlier, conventional methods of
visual analysis of EEG required domain-specific expertise,
which was not only tremendously time-consuming but also
impractical in terms of processing the information, hence
researchers have combined various algorithms of signal
processing with machine learning to come up with various
strategies for predicting epileptic seizures. For example, Xu
et al. [21] proposed an epilepsy seizure prediction method
based on nonlinear features of EEG signals and a
gradient-boosting decision tree, which classified the EEG
signals into two categories: seizure-onset seizures and
seizure-free seizures. After removing the noises of the EEG
signals using complementary ensemble empirical pattern
decomposition and wavelet threshold denoising, the
nonlinear features of the two types of EEG signals were
extracted and classified with a random forest classifier, in
which the nonlinear features include approximation entropy
[22], sample entropy [23], permutation entropy [24], spectral
entropy [25], and wavelet entropy [26]. Kapoor et al. [27]
proposed a hybrid seek optimization tuned ensemble
classifier consisting of an AdaBoost classifier, random forest
classifier, and decision tree classifier for automated analysis
of EEG signals for prediction of epileptic seizures. The
features such as statistical information, wavelet features, and
entropy-based features of the signal are extracted by a hybrid
optimization search algorithm. These extracted features are
fed into the proposed ensemble classifier to yield the ultimate
output forecasts. Husseina et al. [28] proposed a multistage
seizure prediction algorithm to achieve seizure prediction by
simulated annealing for feature selection. However machine
learning methods are associated with the best biomarkers to
extract, i.e., they depend on patient-specific features,
annotations of relevant seizures, and features that are not
discriminative generate more redundant information.
Furthermore, models that combine manually designed feature
extraction and classifiers tend to have lower generalization
capabilities in terms of sensitivity and classification
performance that are inextricably linked to the feature
extraction process.
In recent years, deep neural networks have received

considerable attention in the field of epilepsy seizure
prediction due to their superior generalization ability and
end-to-end output mode. For example, Lu et al. [29]
proposed a multiframe network model for predicting
epileptic seizures based on sEEG and iEEG datasets, which
can be directly applied to the raw data, without including
complicated preprocessing procedures, and perform
automatic feature extraction and classification. Georgis-Yap

et al. [30] combined convolutional neural networks (CNN),
long short-term memory (LSTM), and temporal
convolutional networks (TCN) using grid search to adjust the
sliding window size and preseizure time duration to identify
preseizure state by EEG and preseizure variability, which
does not require preseizure data for training, thus reducing
the data acquisition problem such as the effort and time spent
on labelling data. Alizadeh et al. [31] proposed an epileptic
seizure prediction and diagnosis method based on identical
and non-identical integral participation methods, i.e., using
the integral signal, the derivative signal, and the main signal
itself to form a hybrid function prior to the CNN, and then
realizing the final classification after selecting the
corresponding coefficients to amplify the changes of the EEG
signals in different periods using the hybrid function.
Saemaldahr et al. [32] employed the federated learning (FL)
technique by merging a spiking encoder with a graph
convolutional network (GCN) into a local model that was
trained using a bi-timescale methodology. Each local model
determines the preictal probability through FL and
determines the risk level of the preictal state from the preictal
odds ratios determined from the EEG signals.
Although most of the above methods obtained satisfactory

prediction performance comparatively, these models do not
applicable to real-time scenarios because the channels in the
spatial domain are heterogeneous and discontinuous, and
because the structure of the EEG determines that the
functional connectivity network is considered to be
non-Euclidean data, where there are multiscale information
interactions between each EEG channel. Nevertheless, CNN
makes it difficult to describe the correlation and positional
relationship between signal features, and the lack of
spatial-temporal information makes it hard to recover the
interchannel correlation of the EEG signals even if
reconstructed to generate the data [33].
To overcome the aforementioned challenges, this paper

proposes a novel hierarchical spatio-temporal-spectral
multiple hybrid attention mechanism (HSTS-MHAM) for
seizure prediction. HSTS-MHAM utilizes multiple fitness
subnetworks to explore the spatio-temporal-spectral
three-dimensional multichannel of the brain waveforms δ
(0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ
(30-50 Hz) in five different scales. It is able to adequately
capture and fuse extremely sophisticated spatial-temporal
interactive EEG features, acquire the most discriminative
ictal symbols, and effectively distinguish different periods of
seizures. Therefore, it solves the existing technical problems
such as the lack of multiscale features, insufficient
information fusion and low prediction accuracy.
The remainder of the paper is as follows. Section II details

the preparation of the data preprocessing process and the
definition of dataset division. Section III describes the
algorithms used and the structure of the model designed.
Section IV presents the evaluation metrics used in this study
and the performance comparison of the models. Finally,
Section V summarizes our work.

II. PRELIMINARY

In this study, the data set is denoised by a short-time
Fourier transform and low-pass filter. Additionally, a 5s
sliding window is set for segmental sampling to obtain data
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Fig. 2. The framework of HSTS-MHAM for seizure prediction

segments. Using 19 recording electrodes and two reference
electrodes in a single reference montage based on the
international 10-20 system to ensure the versatility of our
model. For seizure prediction, the data are divided into
seizure and nonseizure periods according to the patient’s
seizure situation. The nonseizure periods are then further
divided into preseizure and interseizure periods. The
preseizure periods are defined as the signal data between 15
minutes and 1 hour before the seizure time point. The
interictal periods are defined as the signal data 2 hours before
and 2 hours after the seizure. This allowed for the
compilation of a list of interictal, preictal, and ictal period
data corresponding to each patient. For seizure detection, we
use seizure and nonseizure segments from the official dataset.
The leave-one-out cross-validation (LOOCV) method is

used to divide the train and test sets to provide an unbiased
evaluation of the seizure prediction performance of the
method we proposed on the dataset. Specifically, it is
assumed that there are a total of N patients in the dataset and
each patient has a total of M seizures. For the i-th patient, all
of its data are defined as the target field data, and the data of
the remaining N－1 patients are defined as the source field
data. The test set consists of the continuous data of the
interictal, preictal, and ictal periods divided by the j-th
seizure of the i-th patient, while the training set consists of the
continuous data of the remaining M － 1 seizures and the
source field data.
In this paper, dynamic subband EEGs obtained from the

temporal embedding network (TENet) are used as inputs to
STS-HFANet to remove coupling factors without changing
the signal size. Specifically, the data segments obtained after
preprocessing are input to the TENet, which consists of a
temporal convolutional layer (TCL) and a standard residual
block, and the TCL and the standard residual block are
serially concatenated as shown in Fig. 1. In particular, the
TCL includes a sequentially concatenated convolutional
layer with kernel size of 1×3, stride of 1, padding of 1, group
of 4, batch normalization (BN), and an ELU activation
function. The residual block includes a sequentially

concatenated convolutional layer with a kernel size of 1×3,
group of 8, BN, a convolutional layer, BN, an ELU activation
function, and a skip connection layer with a kernel size of 1
×1. Nine temporal embedding EEGs are obtained after the
processing of TENet.

Fig. 1. The framework of TENet

III. METHODOLOGY

The framework of the HSTS-MHAM-based seizure
prediction method is shown in Fig. 2, which involves three
modular basic subnetworks, i.e., (1) hierarchical
spatio-temporal-spectral fusion attention network
(STS-HFANet); (2) multiple hybrid attention convolutional
network (MHAConvNet); (3) spatial dynamic graph
convolutional network (SDGConvNet). Detailed information
on each step is given in the following sections.

A. STS-HFANet
The framework of the mentioned STS-HFANet consists of

three submodules, i.e., (1) multilevel spectral analysis; (2)
multiscale temporal analysis; (3) layered attention module
(LAM). The subsections below provide details of each step.
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1) Design of the multilevel spectral analysis
Spikes in epileptic pathological waves are transient signals

with spiking characteristics, and neuronal spiking activity
can reflect the obvious and widespread physiological state of
focal epilepsy. It has been shown that the spike counts of
EEG signals increased progressively with the advancement
of the seizure in all three conditions: interictal, preictal, and
ictal, and the differences in the mean spike rate in the preictal
periods compared with the interictal periods were statistically
significant [34]. Furthermore, the correlation coefficients
between Daubechies wavelet convolution and the spike
signals are quite high, whereas the transform coefficients are
widely independent of each other [35]-[36]. Therefore, in this
paper, the fourth-order Db4 waveConv is used to construct a
multilevel spectral analysis module, which consists of
L-layers serially concatenated Db4 waveConv, as shown in
Fig. 3. The wavelet decomposition is carried out by taking the
nine dynamic subband EEGs obtained after TENet
processing as input for continuous L-layer periodic padding
wavelet decomposition [37], which is performed in a similar
way to the discrete wavelet transform. Further, the kernel size
and stride in the convolutional layer are set to 8 and 2,
respectively, and L is defined by the signal sampling rate fs:L
= [ log2 ( fs ) ]－3, fs is the sampling rate of the EEG signal,
and [·] denotes the rounding operation.
Since the wavelet transform process contains a low-pass

coefficient and a high-pass coefficient, the module extracts
the low-frequency information Sw° = (sδ°, sθ°, sα°, sβ°, sγ°) and
the high-frequency information Sw•= (sδ•, sθ•, sα•, sβ•, sγ•) of the
input dynamic subband EEGs in the bands corresponding to δ,
θ, α, β, and γ, respectively, where w∈{δ, θ, α, β, γ}. sδ°, sθ°,
sα°, sβ°, and sγ° are the low-frequency information under the
frequency bands corresponding to δ, θ, α, β, and γ,
respectively. sδ•, sθ•, sα•, sβ•, and sγ• are the high-frequency
information under the frequency bands corresponding to δ, θ,
α, β, and γ, respectively. Then, the output of low-frequency
information and high-frequency information is concatenated
along dimension 1 to obtain the frequency domain feature
with shape Sw= (sδ, sθ, sα, sβ, sγ).

Fig. 3. The structure of multilevel spectral analysis

2) Design of the multiscale temporal analysis
The multiscale temporal analysis module is implemented

by five parallel TCLs. The kernel size of the five
convolutional layers is {k/8, k/4, k/2, k, k}, and the
corresponding stride of the five convolutional layers is set to
{k/8, k/4, k/2, k, k}, where k = 2L, as shown in Fig. 4, the TCL
includes convolutional layers with trainable kernel
parameters, BN, and ELU activation functions concatenated
serially in sequence.
The multiscale temporal analysis module takes nine

dynamic subband EEGs obtained after TENet processing as
the input data and extracts the time-domain features under the
frequency bands corresponding to δ, θ, α, β, and γ in the input
dynamic subband EEGs as the output data Tw= (tδ, tθ, tα, tβ, tγ),
in which tδ, tθ, tα, tβ, and tγ are the time-domain features under
the frequency bands corresponding to δ , θ , α , β , and γ ,
respectively.

Fig. 4. The structure of multiscale temporal analysis

3) Design of the layered attention module
Considering the heterogeneity of transdomain features,

this paper designs the layered attention module (LAM) to
capture both spectral features Ṡ and temporal features Ṫ
in-depth simultaneously, thus enhancing the multidomain
channel response jointly.

Fig. 5. The structure of LAM

As shown in Fig. 5, the LAM consists of a sequentially
concatenated convolutional layer, BN, variant
squeeze-and-excitation network (SENet), an ELU activation
function, a convolutional layer, BN, variant SENet, an ELU
activation function, a convolutional layer, BN, variant SENet,
an ELU activation function, and adaptive average pooling. In
this case, the kernel size of the convolutional layer in LAM is
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set to 1×4, stride is set to 1, padding is set to 2, and group is
set to 3. The variant SENet consists of sequentially serially
concatenated adaptive average pooling, a fully concatenated
layer (FC) with an ELU activation function, an FC layer with
a sigmoid activation function, and finally, an ELU activation
function that further enhances the robustness of the structure.
Firstly, LAM concatenates the frequency-domain feature

output data and time-domain feature output data along
dimension 1 to obtain the multidomain fusion feature UST =
(sδ  tδ, sθ  tθ, sα  tα, sβ  tβ, sγ  tγ), where  is the
element-by-element summation method. Subsequently, UST

is input into the variant SENet after convolution and BN. The
variant SENet [38]-[40] is a computational unit that contains
two steps: squeeze and excitation. Squeeze is implemented
by adaptive average pooling of the variant SENet, which is
achieved by compressing the global spatial information after
convolution and BN of UST into a channel descriptor z∈
R1×1×(E+E), which fully captures the channel dependence,
where E is the number of channels corresponding to the EEG
signal data, and z is computed from the descriptive statistic,
defined as the statistic of the E-th channel for z :

  ,lE,,tsHz
l

E
w

E
wE 11

1







(1)

where δ, θ, α, β, and γ correspond to each sδ, sθ, sα, sβ, and sγ

have E EEG channels, then sw = {sw1, sw2,..., swE} is the set of
frequency-domain features of E channels inside the
brainwave w, and swE is the frequency-domain feature of the
E-th channel within the brainwave w. δ , θ , α , β , and γ
correspond to each tδ, tθ, tα, tβ, and tγ have E EEG channels,
then tw = {tw1, tw2,..., twE} is the set of time-domain features of
the E-th channel within brainwave w, and twE is the
time-domain feature of the E-th channel within brainwave w.
H(·) is the channel cascade function, and ρ is the spatial
dimension.
The excitation is implemented by the FC layer with an

ELU activation function, as well as the FC layer with a
sigmoid activation function, i.e., channel dependencies are
modelled by a simple self-gating mechanism to obtain the
channel weight z adapted to a specific channel descriptor z.
The weight parameter for the E-th channel of z is defined as
follows:

  EE zWβWαz 12 (2)
where W1∈R((E+E)/r)×(E+E) and W2∈R(E+E)×((E+E)/r) are two fully
concatenated layer weights, α(‧) and β(‧) represent the ELU
activation function and sigmoid activation function,
respectively. E is the number of EEG channels, and r is the
compression ratio parameter indicating the bottleneck of the
self-gating mechanism.
The distinguishability of the features in multidomain is

jointly improved by adaptively recalibrating the importance
of the input features UST under the different channels
corresponding to each brain waveform by means of
channel-by-channel operations. The computational formulae
are as follows:
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Finally, the distinguishable multidomain fusion features
with shape UṠṪ = (Ṡδ  Ṫδ, Ṡθ  Ṫθ, Ṡα  Ṫα, Ṡβ  Ṫβ, Ṡγ  Ṫγ)
corresponding to the five brain waveforms are obtained after

adaptive average pooling operation.

B. MHAConvNet
Although enriched feature extraction facilitates EEG

classification, inappropriate fusion methods may involve
redundant information [41]. Traditional methods compute
channel attention using a global average pooling method to
decompose the spatial dimension of the input tensor into
individual pixels in order to compute the channel weights,
which can lead to a significant loss of spatial information. As
a result, the interdependence between channel and space is
also absent when computing attention on a single-pixel
channel. The later proposed spatial and channel-based
convolutional block attention module (CBAM) [42]
alleviates the problem of spatial interdependence, but the
computation of channel attention and spatial attention are
independent of each other. In this paper, we design a mixed
attention module (MAM) by jointly improving the dual
attention module (DA) [43] and triple attention module (TA)
[44]. Consequently, we propose the MHAConvNet, which
can effectively capture the interactions between spatial
dimensions and channel dimensions, fully utilize the
spatio-temporal-spectral fusion information of EEG signals,
enhance the capability to characterize the multiscale features
of complex EEG signals and improve the learning ability and
robustness of the model.
MHAConvNet consists of a sequentially concatenated

convolutional layer, BN, MAM, and ELU activation function.
The output of the ELU activation function is then returned as
an input, resulting in a total of three cycles of data processing
between the convolutional layer, BN, MAM, and ELU
activation function. Finally, adapted average pooling and
TCL are concatenated in series. The network framework is
shown in Fig. 6.

Fig. 6. The framework of MHAConvNet

MHAConvNet inputs the output data of the LAM module
into the MAM after sequential convolution and BN
processing, where the structure of the MAM is shown in Fig.
7. Among them, the spatial attention module aims to establish
cross-dimensional dependencies between the height H and
width W contained in the spatial dimension and the channel
dimension C through branches with different orientations for
the five brain waveforms of δ, θ, α, β, and γ, respectively. The
first branch, XHW, establishes the spatial dependence between
dimension H and dimension W. The second branch, XCW, is
obtained by dimensional permutation of XHW, which
establishes the spatial-channel dependence between
dimension C and dimension W. The third branch, XHC, is
obtained by dimensional permutation of XHW, which
establishes the spatial-channel dependence between
dimension H and dimension C. The channel attention module
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Fig. 7. The structure of MAM

utilizes the output features after BN to establish channel
dependencies between dimension C and dimension C under
three different directions of branching for each of the five
brain waveforms: δ, θ, α, β, and γ.
The spatial attention module first performs pooling

operations on the data Xpq in the corresponding dimensions
through channel-based global maximum pooling and global
average pooling, respectively, and then connects the feature
aggregates to generate the feature Xpool, which is defined as
follows:

   pqpqpool X XX AvgPoolMaxPool  (4)

where Xpq (p∈{H, C}, q∈{H, C}, p ≠ q), and Xpool is the
pooling feature. MaxPool(·) and AvgPool(·) refer to the
channel maximum pooling and average pooling, and Θ is the
channel connection.
Subsequently, splicing and convolution operations are

performed on Xpool, and the features after BN are subject to
the sigmoid activation function to compute the generative
spatial attention Spq with the following formula:

 poolpq XhS 77  (5)

where h7×7 denotes a convolutional layer with kernel size 7×
7 and β(‧) is the sigmoid activation function.
Finally, the generated attention weight Spq is multiplied by

Xpq to get the output XSv (v = 1, 2, 3), where v refers to the v-th

branch.
The channel attention module first reshapes the feature Xpq

to obtain the reshaped feature Xre, then performs matrix
multiplication between Xre and the substitution of Xre. The
weights are normalized by the softmax function to obtain the
channel attention Cab:

 




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1a
XX

XX

ab b
pq

a
re

b
pq

a
re

e
eC (6)

where σ is the number of channels included in dimension C,
and Cab measures the influence of the a-th channel on the b-th
channel.
A matrix multiplication operation is then performed

between the reshaped feature Xre and the permutation of the
channel attention Cab, and the result is multiplied by the scale
parameter α(·) to reshape it into the original input shape. This
is followed by an element-by-element weighted summation
operation with Xpq, where the final feature for each channel is
the weighted sum XC of all the channel features and the
original feature Xpq:

  a
pq

a

a
reC XXCX  






1

ab
(7)

where the α(‧) is initialized to 0.
Ultimately, the outputs of the three branches are

aggregated by averaging to generate the most discriminating
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refinement feature, XRef. This can be expressed as follows:

 CSCSCSf XXXXXXX  321
Re 3

1 (8)

where  is the element-by-element summation method, and
||·|| denotes the permutation operation.
Finally, the refined features corresponding to the different

brain waveforms obtained are sequentially fed into adaptive
mean pooling and TCL to yield the most discriminative
fusion features with shape U = (μδ, μθ, μα, μβ, μγ).

C. SDGConvNet
In order to obtain the most discriminative epileptic seizure

markers, the SDGConvNet adopted in this paper applies a
self-gating method to dynamically simulate the dependencies
between electrodes, fully considers the spatial
synchronization and connectivity information inside the
brain, and extends the geometric graph-based deep learning
methods to improve the prediction accuracy. The
SDGConvNet consists of the sequentially serially
concatenated channel embedding network (CENet), dynamic
neighbourhood network (DNNet), dynamic graph
convolutional network (DGConvNet), and graph attention
network (GANet).
CENet aims to calculate the adjacency matrix Zds for EEG

electrodes 'AF7', 'FT7', 'TP7', 'PO7', 'AF3', 'FC3', 'CP3', 'PO3',
'FCz', 'CPz', 'AF4', 'FC4', 'CP4', 'PO4', 'AF8', 'FT8', 'TP8',
'PO8'. DNNet applies a self-gating mechanism to the
adjacency matrix Zds in order to establish the dependency
between electrodes and obtain the dynamic adjacency matrix
Ẑds. DNNet consists of sequentially concatenated adaptive
average pooling, the FC layer with an ELU activation
function, the FC layer with a Tanh activation function, and a
ReLU activation function. DGConvNet obtains a feature map
P characterizing the dynamic relationships of the five brain
waveforms by graph convolution of the degree matrix, Lϕϕ, of
the adjacency matrix Zds and the dynamic adjacency matrix
Ẑds. DGConvNet consists of a sequentially serially
concatenated graph convolutional layer, followed by BN, an
ELU activation function, another graph convolutional layer,
another BN, and a final ELU activation function. GANet
includes a serially concatenated MAM and an FC layer, and
the output of DGConvNet is filtered using MAM to select the
most representational feature map P* as the final output.
1) Design of the channel embedding network
CENet uses MNE-Python to create a list of electrode

locations for the 10-20 system. From the list, the distance
from each electrode to the reference electrode is obtained to
create the distance matrix Ldis. Ldis is a square matrix
containing the distances between all pairs of electrodes. In
this study, we define the set Z as the distances between any
two EEG electrodes, represented as Z = {dϕφ | ϕ, φ∈(1, λ), ϕ ≠
φ}. Here, dϕφ denotes the Euclidean distance between
electrode ϕ and electrode φ, and λ is the number of electrodes.
Two electrodes are considered adjacent if their distance, dϕφ,
is less than the average value of Z, Z


. The distance between

an electrode and itself is defined as the average distance from
all neighbouring electrodes. The spatial location information
of the 3D EEG, constructed using the electrodes, is embedded
into Zds ∈ Rλ×λ. The adjacency matrix, Zds, is created by
calculating the average distance between all pairs of
electrodes. Zds represents the connectivity information

between electrodes, where Zds is 1/dϕφ if dϕφ < Z

, and Zds is 0

if dϕφ ≥ Z

.

2) Design of the dynamic neighbourhood network
DNNet first performs adaptive average pooling of Zds to

spread it into a one-dimensional vector, followed by the FC
layer with an ELU activation function and the FC layer with a
Tanh activation function. It retains the nonnegative elements
using the ReLU activation function to obtain the distance
weight Ẑ* ∈ R(λ×λ)×1. By reshaping the Ẑ* to its original
dimensions, we obtain the dynamic adjacency matrix Ẑds∈

Rλ×λ. After the aforementioned self-gating mechanism, the
distance weight Ẑ* containing the interelectrode
dependencies is defined as follows:

  ZWβWαZ ˆˆ
12

*  (9)
where Ẑ∈R(λ×λ)×1 is reshaped by Z, W1∈R((λ×λ)/r)×(λ×λ) and W2

∈R(λ×λ)×((λ×λ)/r) are the weight matrices of two FC layers. The
compression ratio parameter r represents the bottleneck of the
gating mechanism, α(‧) and β(‧) denote the Tanh activation
function and the ELU activation function, respectively.
3) Design of the dynamic graph convolutional network
DGConvNet divides Ẑds and Ldis into five groups. For each

group, it calculates the weighted sum of the neighbouring
node features cyclically, with the weights determined by Ldis.
Subsequently, graph convolution is performed on each of the
five groups of features in U = (μδ, μθ, μα, μβ, μγ) and Ẑds, as
described in the following formula:

  21
ˆ1

ββμαZLαP wdsdis
w 

 (10)
where Pw represents the dynamic EEG feature map under the
brainwave w, α(‧) is the ELU activation function, Lϕϕ =
Σφ


dsZ is the degree matrix of Ẑds, F is the length of the

corresponding feature vector for each brainwave, β1∈RF×F

and β2∈RF×F denote the weight matrices of the convolution
kernels in the 1×1 convolutional layer, respectively.
The five output dynamic EEG feature maps were then

concatenated into one, resulting in the output P of
DGConvNet. P represents the epileptic brain cortex graph of
the input data.
4) Design of the graph attention network
GANet splits Pʹ into five tensors along dimension 1 and

then joins the five tensors along the channel dimension to
form a new brain cortex graph Pʹ. Subsequently, the MAM
module is used to filter out the refined feature cortical graph
PRef, which is the most representative of Pʹ in terms of
cross-dimensional dependencies. The output is then split into
five tensors. The importance of neighbouring nodes within
each graph is computed separately through a linear layer, and
finally, the five outputs are concatenated along dimension 1
as output P*.

IV. EXPERIMENTAL RESULTS

A. Dataset Description
1) CHB-MIT dataset
CHB-MIT is one of the few authoritative public datasets

on continuous long-term seizures, created by researchers
from the Massachusetts Institute of Technology (MIT) and
Children's Hospital Boston (CHB). As shown in Fig. 8, EEG
signals were collected from 21 electrodes at a sampling rate
of 256 Hz with 16-bit resolution using the bipolar montage
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technique of the international 10-20 system [45].

Fig. 8. Internationally standardized electrode systems

This dataset consists of 23 patients with refractory epilepsy,
which includes a total of 24 cases (case chb21 and case chb01
are from the same patient, with a 1.5-year interval between
case records; case chb24 was added to this collection in
December 2010 and is not currently included in
SUBJECT-INFO), with 5 male patients (aged 3-22 years), 17
female patients (aged 1.5-19 years), and 1 patient with
missing sex and age data, totalling 967.55 hours of
continuous EEG recordings and 198 seizures. The annotation
file of the dataset provides information about the channel,
seizure onset, and offset. For this paper, the preseizure
interval was set to 15 minutes, and recordings of at least 2
seizures and a 3-hour interictal interval were used for seizure
prediction evaluation to avoid the effect between different
ictal times and to ensure that the prediction results could be
evaluated by LOOCV in each patient. Specific information is
shown in TABLE I.

TABLE Ⅰ
EEG RECORDS FOR THE CHB-MIT DATASET

ID Gender Age Duration
of record

(h)

Duration
of seizure

(s)

Number
of

seizures

Number
of
used

seizures
1 F 11 40.55 449 7 7
2 M 11 175 175 3 3
3 F 14 28 409 7 7
5 F 7 39 563 5 5
6 F 1.5 66.7 147 10 7
7 F 14.5 68.1 328 3 3
8 M 3.5 20 924 5 5
9 F 10 67.8 280 4 4
10 M 3 50 454 7 6
11 F 12 34.8 809 3 3
13 F 3 33 547 12 5
14 F 9 26 117 8 6
16 F 7 19 94 10 8
17 F 12 21 296 3 3
18 F 18 36 323 6 6
20 F 6 29 302 8 8
21 F 13 33 203 4 4
22 F 9 31 207 3 3
23 F 6 28 431 7 7

2) TUSZ dataset
The Temple University Hospital (TUH) EEG Seizure

Corpus (TUSZ) dataset [46] is the only open-source EEG
dataset containing annotations for multiple epilepsy types.
Considering the superiority of the TUSZ dataset for
long-term maintenance and updating, we used TUSZ v2.0.1,
updated on 4 October 2023, as the experimental data source
for seizure detection. Table II summarizes the TUSZ data.
For this paper, we resampled the EEG recordings to 256 HZ
because of the heterogeneity of the sampling rate across
patients in the TUSZ.

TABLE Ⅱ
SUMMARY OF DATA IN TRAIN AND TEST SETS OF TUSZ V2.0.1

Number of
patients

Number of
seizure events

Duration of
record
(h)

Duration
of seizure

(h)
Train
Set

579 2,474 910.3 43.47

Test Set 43 469 129.9 7.56

B. Evaluation Metrics
For comparison with other state-of-the-art methods, the

overall performance of the different models on the test
dataset was evaluated using five evaluation metrics, namely,
accuracy (ACC), specificity (SPE), sensitivity (SEN), false
positive rate (FPR), and area under the curve (AUC).
Additionally, the assessment methodology uses LOOCV.
ACC denotes the ratio of the number of correct predictions

to the total number of samples, with larger results indicating a
better ability of the model to discriminate between categories.
SPE denotes the proportion of correct predictions among all
results with negative actual values, with larger results
indicating a better identification of predictions of the
interictal periods. SEN denotes the proportion of correct
prediction of the counts of seizures. FPR/h denotes the
number of incorrect predictions per hour. AUC is used to
evaluate the classification performance of the model. The
definition formula is as follows:

FPFNTNTP
TNTPACC




 (11)

TNTP
TNSPE


 (12)

FNTP
TPSEN


 (13)

TNFP
FPFPR


 (14)

  1
1

1
12

1AUC 




 




 -xy-xx (15)

where TP, FP, TN, and FN in (11) to (14) denote true positive,
false positive, true negative, and false negative, respectively,
and detailed explanations are listed in TABLE III. The x and
y in (15) are consecutive coordinates on the ROC, denoted as
{(x1 = 0, xξ = 1) | (x1, y1),(x2, y2),...,(xξ, yξ)}.

TABLE Ⅲ
CONFUSION MATRIX

Forecast Category

True Category
True False

True TP FP
False FN TN
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TABLE Ⅳ
PERFORMANCE COMPARISON OF SEIZURE DETECTION EXPERIMENTS ON TRAIN SET OF TUSZ

Method ACC(%) SPE(%) SEN(%)
STS-HGCN 81.44 87.34 66.32

TA-STS-ConvNet 83.76 89.15 68.17
Our Method 85.47 92.37 69.01

Where bold fonts indicate the best average results.

TABLE V
PERFORMANCE COMPARISON OF SEIZURE DETECTION EXPERIMENTS ON TEST SET OF TUSZ

Method ACC(%) SPE(%) SEN(%)
STS-HGCN 77.31 83.10 61.57

TA-STS-ConvNet 79.48 85.53 62.23
Our Method 82.60 90.12 65.33

Where bold fonts indicate the best average results.

An effective feature extraction process tends to have a
significant impact on seizure prediction results. The use of
datasets with richer types is also favourable for enhancing the
generalisability of the model. Therefore, in order to verify the
superiority of our method in the feature extraction process, in
this paper, we use the TUSZ dataset for seizure detection
experiments and the CHB-MIT dataset for seizure prediction
experiments.
The duration of seizures, characteristics, and dynamics of

EEG signals vary widely between patients depending on the
age, gender, seizure type, and the epileptogenic zone of the
subjects. Therefore, the typical characteristics of seizures in
some patients may not be applicable to other patients. Most of
the existing studies use only a limited quantity and a single
type of dataset, i.e., the training and test data are from the
same patient, which is only applicable to patient-specific
scenarios, making it difficult to establish a generalized
approach to achieve high prediction performance for each
patient [47]. Considering the aforementioned issues, we
separately evaluated the validity of the model for seizure
prediction using the single-subject experiments and the
cross-subject experiments.

C. Seizure Detection Experiments
We performed the detection of seizure events on the TUSZ

dataset with the aim of distinguishing different types of
seizures and overcoming the heterogeneity among patients.
TABLE IV shows the performance of three different

models for seizure detection on the train set of TUSZ. It can
be seen that the average ACC of STS-HGCN [40] and
TA-STS-ConvNet [36] is 81.44% and 83.76%, respectively,
and the average SPE is 87.34% and 89.15%, respectively,
whereas the average ACC of the model implemented in this
paper is 85.47%, and the average SPE is 92.37%.
Furthermore, the average SEN of the baseline methods is
66.32% and 68.17%, respectively, and 69.01% for the
method used in this paper.
TABLE V shows the performance of three different

models for seizure detection on the test set of TUSZ. It can be
seen that the average ACC of STS-HGCN and
TA-STS-ConvNet is 77.31% and 79.48%, respectively, and
the average SPE is 83.10% and 85.53%, respectively,
whereas the average ACC of the model implemented in this
paper is 82.60%, and the average SPE is 90.12%.
Furthermore, the average SEN of the baseline methods is
61.57% and 62.23%, respectively, and 65.33% for the
method used in this paper.

Competitive results show that our method extracts more
informative biomarker features.

D. Single-Subject Experiments
In a single-subject experiment, the effectiveness of the

method is validated by comparing its performance with
different existing state-of-the-art methods. Fig. 9 shows the
comparison of the AUC results of the CNN-LSTM [30], the
TCN [30], and the method used in this paper. In the vast
majority of patients, the AUC of our method is higher than
that of CNN-LSTM and TCN.

Fig. 9. AUC comparison of CNN-LSTM, TCN and our method

Fig. 10 shows the FPR/h results of Spiking-GCNN [32]
versus the model used in this paper. In the vast majority of
patients, the FPR/h of our method is higher than that of
Spiking-GCNN. Better FPR/h implies more false alarms in
the interictal periods, which is undesirable in clinical
applications. The significant improvement in FPR/h suggests
that the model employed in this paper does not suffer from
simple errors in the interictal periods, and captures the
preictal signals more accurately.

Fig. 10. FPR/h comparison of Spiking-GCNN and our method
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TABLEⅦ
PERFORMANCE COMPARISON OF SINGLE-SUBJECT EXPERIMENTS ON THE CHB-MIT DATASET

Authors Method No. of
patients

ACC(%) SPE(%) SEN(%) FPR/h

Xu et al. [21] RF+GBDT - 91.76 - 91.87 0.083
Kapoor et al. [27] AdaBoost+DT+RF - 93.81 88.57 91.68 -
Husseina et al. [28] PIL-SEG+SA 10 80.61 80.71 79.32 0.239

Lu et al. [29] CNN-LSTM 19 80.96 68.80 78.04 -
Alizadeh et al. [31] KP-Ki-KD+CNN 16 97.1 96.3 97.5 -
Gao et al. [41] MSPPNet 16 - - 93.8 0.054
Our Method HSTS-MHAM 19 95.31 99.08 94.67 0.027

Where bold fonts indicate our proposed method, No. of patients are total number of patients involved in the evaluation.

TABLE VI shows the performance of two different models
for seizure prediction on the CHB-MIT dataset. It can be seen
that the average ACC and average SPE of Spiking-GCNN are
90.71% and 91.18%, respectively, whereas the average ACC
of the model implemented in this paper is 95.31%, and the
average SPE is 99.08%. Furthermore, the average FPR/h of
the baseline method is 0.091/h, whereas the average FPR/h of
the proposed method is 0.027/h.

TABLE Ⅵ
PERFORMANCE COMPARISON OF SPIKING-GCNN AND OURMETHOD ON THE

CHB-MIT DATASET

ID Spiking-GCNN Our Method
ACC(%) SPE(%) FPR/h ACC(%) SPE(%) FPR/h

1 96.28 96.14 0.032 96.21 99.70 0.000
2 92.18 98.31 0.025 97.65 99.90 0.000
3 96.09 93.89 0.071 95.34 99.79 0.000
5 91.58 88.84 0.125 95.58 98.76 0.028
6 87.61 89.28 0.112 94.33 98.35 0.000
7 89.69 91.25 0.086 98.01 99.32 0.000
8 86.49 90.21 0.098 95.04 99.95 0.000
9 90.51 88.89 0.112 98.11 99.76 0.000
10 89.78 89.26 0.113 96.63 99.80 0.000
11 91.39 90.34 0.095 97.91 99.12 0.120
13 89.89 90.27 0.098 93.82 98.52 0.000
14 89.01 85.96 0.142 91.15 98.26 0.000
16 89.98 89.97 0.112 88.87 98.81 0.069
17 89.12 90.28 0.098 96.40 99.40 0.053
18 92.05 91.64 0.085 95.65 98.77 0.000
20 92.85 95.61 0.044 98.84 98.79 0.259
21 91.34 93.14 0.069 91.56 97.87 0.000
22 89.85 89.04 0.114 96.69 99.37 0.000
23 87.89 90.16 0.099 93.19 98.32 0.000
Avg 90.71 91.18 0.091 95.31 99.08 0.027

Where bold fonts indicate the best average results.

TABLE VII shows the performance of different models for
predicting seizures on the CHB-MIT dataset. It can be seen
that our method provides superior seizure prediction ability
and achieves higher ACC, SEN, SPE, and lower FPR/h.

E. Influence of the STS-HFANet
Based on the above overall performance, STS-HFANet in

HSTS-MHAM is able to capture spatio-temporal-spectral
fusion information characterizing epileptic seizures and
improve the prediction accuracy of epileptic seizures.
STS-HFANet takes multichannel spatial relationships as a
breakthrough to explore the contribution of connectivity and
dependency between cross-domain information within the
epileptic brain to the seizure prediction ability.
We demonstrated the efficacy of STS-HFANet in

capturing the dependency between multiscale features of
EEG by comparing the performance of HSTS-MHAM with
and without STS-HFANet. Fig. 11 shows the AUC results for

a single-subject experiment, and TABLE VIII shows the
average performance results for the other four metrics.

Fig. 11. AUC comparison of with and without STS-HFANet

TABLEⅧ
PERFORMANCE COMPARISON OF INFLUENCE OF THE STS-HFANET ON THE

CHB-MIT DATASET

Method ACC(%) SPE(%) SEN(%) FPR/h
without STS-HFANet 90.14 93.21 90.72 0.102
with STS-HFANet 93.82 96.70 91.34 0.045

Where bold fonts indicate the best average results.

F. Influence of the MHAConvNet
In addition to the exploration of multidimensional feature

dependencies via STS-HFANet, MHAConvNet is also used
to efficiently model multichannel and spatial interactions,
reducing information redundancy and fully integrating
spatio-temporal-spectral multiscale EEG information.

Fig. 12. AUC comparison of with and without MHAConvNet

TABLE Ⅸ
PERFORMANCE COMPARISON OF INFLUENCE OF THEMHACONVNET ON THE

CHB-MIT DATASET

Method ACC(%) SPE(%) SEN(%) FPR/h
without

MHAConvNet
91.47 95.38 89.01 0.148

with MHAConvNet 94.33 98.27 92.25 0.031
Where bold fonts indicate the best average results.
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TABLE Ⅹ
PERFORMANCE COMPARISON OF CROSS-SUBJECT EXPERIMENTS ON THE CHB-MIT DATASET

Group STS-HGCN TA-STS-ConvNet Our Method
SEN(%) FPR/h AUC SEN(%) FPR/h AUC SEN(%) FPR/h AUC

A 91.22 0.077 0.851 85.71 0.081 0.849 90.16 0.098 0.857
B 85.21 0.162 0.818 83.33 0.198 0.822 85.96 0.132 0.820
C 88.19 0.156 0.842 91.34 0.058 0.875 89.56 0.099 0.913
D 86.11 0.041 0.902 90.51 0.044 0.915 88.87 0.112 0.927
E 83.64 0.192 0.837 87.45 0.177 0.887 93.27 0.086 0.892
Avg 86.87 0.126 0.850 87.67 0.112 0.870 89.56 0.105 0.882

Where bold fonts indicate the best average results.

In order to evaluate the effectiveness of MHAConvNet in
capturing the best biomarkers of seizures, we compared the
performance of HSTS-MHAM with MHAConvNet to that of
HSTS-MHAM without MHAConvNet. Fig. 12 shows the
AUC results for the single-subject experiment, and TABLE
IX shows the average performance results for the other four
metrics.

G. Cross-Subject Experiments
In the cross-subject experiments, we sequentially divided

the data from 19 patients into five groups, specifically A:
chb01, chb02, chb03, chb05; B: chb06, chb07, chb08, chb09;
C: chb10, chb11, chb13, chb14; D: chb16, chb17, chb18,
chb20; E: chb21, chb22, chb23.
TABLE X shows the performance of the three models in

predicting seizures on the CHB-MIT dataset. It can be seen
that the average SEN of STS-HGCN and TA-STS-ConvNet
is 86.87% and 87.67%, respectively, and the average AUC is
0.850 and 0.870, respectively, whereas the average SEN of
the model implemented in this paper is 89.56%, and the
average AUC is 0.882. Furthermore, the average FPR/h of
the baseline methods is 0.126/h and 0.112/h, respectively,
and 0.105/h for the method used in this paper. From the
experimental results, the model can effectively distinguish
between interictal and preictal states.

V. CONCLUSION
In this paper, we propose a new processing framework for

EEG analysis that combines deep learning methods for
geometric graphs to achieve automatic prediction of seizures.
Specifically, HSTS-MHAM first extracts distinguishable
cross-scale fused features from EEG via STS-HFANet.
Further, MHAConvNet combines spatial attention and
channel attention to enhance discriminative
spatio-temporal-spectral features. Finally, SDGConvNet
captures the most discriminative preseizure biomarkers by
modeling spatiotemporal dependencies and maps the final
results into a classification network. The method
significantly improves the accuracy of seizure prediction.
The performance of our model is evaluated on two publicly

available datasets, showing promising applications in
common clinical scenarios through seizure detection and
seizure prediction. Patient heterogeneity is overcome by
designing single-subject experiments and cross-subject
experiments. In addition, the impact of STS-HFANet and
MHAConvNet on model robustness enhancement is
validated. Our approach produced excellent results in ACC,
SPE, SEN, AUC, and FPR/h demonstrating the feasibility of
the system.
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