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Abstract—The class of maximal non-diagonal CNF-base hy-
pergraphs resides below the hierarchy of diagonal base hyper-
graphs. It is extreme in the respect that its members are only
one hyperedge away from diagonality. Here we prove a general
criterion for maximal non-diagonality, provide connections to
minimal diagonality, and elaborate the relationship to maximal
satisfiable CNF formulas. Further, the stronger notion of dense
maximal-non diagonality is studied and several concrete classes
of BHGs of that property are constructed. We also provide non-
diagonal base hypergraphs based on finite projective planes
that become minimal diagonal and even non-simple via a
specific retraction operation. Finally, a non-commutative joining
operation for base hypergraphs is introduced and investigated.
On that basis maximal non-diagonal base hypergraphs of
arbitrary size can be constructed that especially are uniform.

Index Terms—hypergraph, CNF-satisfiability, orbit, transver-
sal, finite-projective-plane

I. INTRODUCTION

THE genuine and one of the most important NP-complete
problems is the propositional satisfiability problem

(SAT) for conjunctive normal form (CNF) formulas [6].
More precisely, SAT is the natural NP-complete problem
and thus lies at the heart of computational complexity theory.
Moreover, numerous computational problems can be encoded
as equivalent instances of CNF-SAT via reduction [7]. From a
theoretical point of view on the one hand subclasses are to be
detected for which SAT can be decided efficiently. There are
known several of them such as quadratic formulas, (extended
and q-)Horn formulas, matching formulas, nested, co-nested
formulas, and exact linear formulas etc. [2], [4], [5], [8],
[10], [11], [12], [19], [22].

On the other hand it might be purposeful to reveal the
structural aspects of CNF-SAT from diverse perspectives in
order to attack the complexity issues among others. So here
the focus lies on the concept of the (CNF-)base hypergraph
which can be viewed as the projection of a collection of
CNF formulas of a specific structure. A hierarchy of diagonal
base hypergraphs has been proposed in [16], such that its
ith level collects all instances with exactly i members in
the orbit space of the diagonal, meaning unsatisfiable, fibre-
transversals with respect to the action of the complementation
group on clauses.

In the present paper the class of maximal non-diagonal
base hypergraphs as introduced in [20] is studied further.
Such instances are extreme among all members below the
first level of the mentioned hierarchy: By definition they are
only one hyperedge away from diagonality. Using variants of
base hypergraphs defined via specific combinatorial designs
it is shown in particular that there exist arbitrary large in-
stances that are non-diagonal but not maximal non-diagonal,
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so the concept is far from trivial. The connection to minimal
diagonal base hypergraphs is considered which are diagonal
but none of their subhypergraphs have this property. Further,
it is shown that not every maximal non-diagonal base hy-
pergraph is derived from a minimal diagonal one. A general
equivalent criterion is proven for maximal non-diagonality
based on the concept of a minimal transversal meeting all
minimal diagonal subhypergraphs of a given diagonal base
hypergraph. Also the relationship to the concept of maximal
satisfiable formulas as defined in [14] is exhibited.

Moreover a stronger notion, that of dense maximal non-
diagonality is considered. Instances of that property become
diagonal when adding an arbitrary further hyperedge of their
smallest complete superhypergraph. Constructive existence
results for dense maximal non-diagonal instances of arbitrary
size are estabished, also showing that for every complete base
hypergraph there are dense maximal non-diagonal subhyper-
graphs.

A retraction operation that was introduced for CNF formu-
las in [13] is transfered to base hypergraphs. Applying it to
certain finite projective planes even yields minimal diagonal
base hypergraphs that are non-simple, i.e., have more than
one diagonal orbits. Those instances then are exploited for
the construction of arbitrary large maximal non-diagonal base
hypergraphs via iterating an enlargement step called lifting.
This procedure also results in base hypergraphs of arbitrary
size becoming members of the ith level of the diagonal
hierarchy when adding a single edge, for certain integers
i > 1.

Finally we define a non-commutative join-operation on
base hypergraphs. Its structural properties are illuminated so
that maximal non-diagonal base hypergraphs of arbitrary size
can be constructed which are k-uniform, for every integer
k ≥ 2, so they are loopless and also Sperner. Thereby
one even is lead to certain members of higher levels of the
diagonal hierarchy.

Several concluding remarks reveal directions for future
work on this topic.

II. NOTATION AND PRELIMINARIES

A Boolean or propositional variable, for short variable, x
taking values from {0, 1} can appear as a positive literal
which is x or as a negative literal which is the negated
variable x. The negation of a literal is also termed as its
complement, so complementation always means the negation
of the underlying variable. Setting a literal to 1 means to
set the corresponding variable accordingly. A clause c is a
finite non-empty disjunction of literals over mutually distinct
variables which is represented as a set c = {l1, . . . , lk}, or for
simplyfying the notation, as a no-order-imposing sequence
of its literals: c = l1 · · · lk. Occasionally l(x) ∈ c is used to
denote the literal over x in c.
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A conjunctive normal form formula, for short formula, C
is a finite conjunction of different clauses and is considered
as a set of these clauses C = {c1, . . . , cm}. A formula has a
pure literal if there is a variable occurring as the same literal
in each clause. Let CNF be the collection of all formulas.

For a formula C (clause c), by V (C) (V (c)) denote the set
of variables occurring in C (c). Note that |V (c)| = |c|. As
usual |C| is the size, i.e., the cardinality and ‖C‖ =

∑
c∈C |c|

is the length of C.
Given C ∈ CNF, SAT means to decide whether there is a

(truth value) assignment w : V (C) → {0, 1} such that (s.t.)
there is no c ∈ C all literals of which are set to 0. In that
case w is a model of C, and M(C) is the space of all models
of C. Let SAT ⊆ CNF denote the collection of all formulas
for which there is a model, and UNSAT := CNF \ SAT.

Let V be a set of propositional variables, an assignment w
can be regarded as the clause {xw(x) : x ∈ V } of length |V |,
where x0 := x̄, x1 := x. Similarly, for b ⊆ V , we identify
the restriction w|b =: w(b) with the clause {xw(x) : x ∈ b}.
The collection of all clauses over V of length |V | is denoted
as WV which therefore also can be regarded as the set of all
mappings V → {0, 1}. For a clause c we denote by cγ the
clause in which all its literals are complemented. In case of
an assignment w ∈WV , we have the correspondence of wγ

to the assignment 1 − w : V → {0, 1} complementing all
truth values. Similarly, let Cγ = {cγ : c ∈ C}.

For C ∈ CNF, and ∅ 6= U ⊆ V (C) the subformula
C(U) ⊆ C consists of all clauses possessing a literal over
a variable in U . For short we identify C({x}) with C(x)
whenever x ∈ V (C), for which oC(x) := |C(x)| denotes its
occurrence number in C. Restricting every c ∈ C(U) to the
literals over U , denoted as c[U ], yields the (U -)retraction
C[U ] of C [13]. Observe that the satisfiability of C[U ]
implies that of C(U).

As introduced in [13] a formula C determines its base
hypergraph (BHG) H(C) = (V (C), B(C)) where B(C) =
{V (c) : c ∈ C}. Let Cb = {c ∈ C : V (c) = b} = C ∩Wb

denote the fibre of C over b, thus C =
⋃

b∈B(C) Cb. Also a
given hypergraph H = (V,B) yields a BHG when regarding
its vertices as Boolean variables s.t. for each x ∈ V there is
a (hyper)edge b ∈ B containing x. Every w ∈ WV induces
a clause set over B, namely w(B) := {w(b) : b ∈ B}. The
size of H is |H| := |B| and ‖H‖ :=

∑
b∈B |b| is its length.

Occasionally the vertex set, edge set of an unspecified BHG
H is refered to as V (H), B(H).

Given ∅ 6= U ⊆ V s.t. b ∩ U , for b ∈ B with b ∩ U 6= ∅,
all are mutually distinct, also the (U -)retraction H[U ] :=
(U,B[U ]) of H can be defined, where as above B[U ] =
{b ∩ U : b ∈ B, b ∩ U 6= ∅}.

Let H be the collection of all (CNF-)BHGs, and let Hcon

be the subclass of all connected instances. H = (V,B) is
connected iff its bipartite incidence graph IH is connected
in the usual meaning. Here and henceforth ‘iff’ means if
and only if. Recall that IH has the vertex set decomposition
V ∪B, and v ∈ V is joined by an edge to b ∈ B iff v ∈ b.

A BHG is linear if distinct hyperedges pairwise intersect
in at most one vertex; if each of these intersections has size
1 the BHG even is exact linear. We use Hlin, resp., Hxlin to
denote the collections of all linear, resp., exact linear BHGs.
A hypergraph is loopless if none of its hyperedges has size 1.
A hypergraph is Sperner if no hyperedge is a proper subset

of another one [3]. Adding a further edge b /∈ B(H) to the
edge set of H sometimes is abbreviated by H∪{b}. In case
b = {x} is a loop, for simplicity we shall write H ∪ {x}
instead of H ∪ {{x}}.

A formula C s.t. |Cb| = 1, for all b ∈ B(C), is (exact)
linear if H(C) is (exact) linear [19]. Observe that a linear
formula cannot contain a pair of complementary unit clauses.

As usual KH :=
⋃

b∈B(H)Wb is the set of all clauses over
H. A H-based formula is C ⊆ KH s.t. Cb 6= ∅, for each
b ∈ B(H). Given a H-based formula C with the additional
property that C̄b := Wb \Cb 6= ∅ holds, for each b ∈ B(H),
then its H-based complement formula is C̄ := KH \ C.

A fibre-transversal, for short transversal, of KH is a H-
based formula F with |Fb| = 1, for all b ∈ B(H). Let its
unique clause over b be refered to as Fb, so for simplicity the
fibre may be identified with the clause it contains. Observe
that, in general, F (b) 6= Fb. The set of all transversals of
KH is denoted as F(H).

An important type of transversals F over H = (V,B) are
the compatible ones having the property

⋃
b∈B Fb ∈ WV ,

collected in Fcomp(H) ⊆ SAT. Whereas a transversal F
is diagonal if F ∩ F ′ 6= ∅, for all F ′ ∈ Fcomp(H). Let
Fdiag(H) be the subspace of all diagonal transversals of KH.
Note that exactly the members of Fdiag(H) are unsatisfiable
transversals. A BHG H is diagonal if Fdiag(H) 6= ∅, and it
is minimal diagonal if no subhypergraph of H is diagonal.
Let Hdiag be the class of all diagonal BHGs, and Hmdiag

denote the subcollection of all minimal diagonal instances.
The group GV of variable complementation on clauses

over V induces a corresponding action on the space of all
CNF formulas over V [17]. The number of the orbits in
the quotient space Fdiag(H)/GV with respect to this action
is denoted as δ(H) [15]; for short the term orbit is used
in the sequel. It is δ = 0 for all non-diagonal instances,
collected in H0. A BHG with δ = 1 is called simple; all
simple BHGs are collected in Hsimp. As defined in [16] let
Hi denote the set of all BHGs with δ ≤ i, and Ĥi ( Hdiag

denote the set of those with δ = i. So especially Hsimp =
Ĥ1. We shall also make use of the further parameters of a
BHG defined in [15]: β(H) = ‖H‖ − |V |, ω(H) = 2β(H)

which is the number of all GV -orbits of transversals over H:
|F(H)/GV |. As well as ρ(H) [16] which is the fraction of
all satisfiable but not compatible GV -orbits in F(H)/GV ,
so ω(H) = 1 + δ(H) + ρ(H).

We use [n] = {1, . . . , n}, where n is a positive integer, and
N for the set of all positive integers. For two finite sets A,B
of equal cardinality let Bij(A,B) denote the collection of
all bijections A → B. As usual Sn := Bij([n], [n]) denotes
the symmetric group of all bijections on [n], for n ∈ N. If
A,B are structured spaces, an isomorphism between both
induces a bijection but not vice versa, in general. Especially
the BHGs Hj = (Vj , Bj), j ∈ [2], are isomorphic if there is
σ ∈ Bij(V1, V2) s.t. b ∈ B1 iff {σ(x) : x ∈ b} ∈ B2.

Next we collect several useful properties of minimal un-
satisfiable formulas. To that end the following result proven
in [13] is needed, which characterizes the satisfiability of a
formula C in terms of the compatible transversals in its based
complement formula C̄. Here a transversal of a H-based
formula C ⊂ KH is a transversal of KH that is contained
in C.

Theorem 1: [13] For H = (V,B), let C ⊂ KH be a H-
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based formula s.t. C̄ is H-based, too. Then C is satisfiable
iff C̄ admits a compatible transversal F . Moreover, the union
of all clauses in F γ is a model of C.
Recall that C ∈ UNSAT is minimal unsatisfiable if C \ {c}
is satisfiable, for every c ∈ C [1]; then evidently V (C) =
V (C \ {c}). We denote the class of exactly those instances
by I ⊂ UNSAT.

Lemma 1: Let C ∈ I with H(C) =: H = (V,B):

(i) For every w ∈WV one has w(B) ∩ C 6= ∅.
(ii) There is w ∈WV , s.t. |w(B) ∩ C| = 1.

(iii) For every b ∈ B there is w ∈ WV , s.t. w(B) ∩ C =
{w(b)}.

(iv) If |B| > 1 then, in general, there are w ∈ WV s.t.
|w(B) ∩ C| > 1, and c ∈ C with |M(C \ {c})| > 1.

(v) Let w ∈ WV . Then |w(B) ∩ C| = 1, and there is
b ∈ B s.t. w(B)∩C = {w(b)} iff wγ ∈M(C ′) where
C ′ := C \ {w(b)}.

PROOF. If |B| = 1 then C = Wb = WV is the only
possible member of I, for the unique b = V ∈ B. All
assertions except for (iv) are evidently true. Now assume
|B| > 1 then H(C) = H(C̄) because C ∈ I. As every
w ∈ WV can be identified with a compatible transversal
of KH, (i) is a direct consequence of Thm. 1, because
C ∈ UNSAT. Since (ii) is implied by (iii) let b ∈ B and
c ∈ Cb be arbitrary. Then C ′ := C \{c} ∈ SAT has a model
w′ ∈ WV s.t. w′(b) = cγ , recall that V = V (C) = V (C ′).
Hence w′γ(b) = c ∈ C ∩ C̄ ′ which clearly is the unique
clause of C of that property. Moreover by Thm. 1 w′γ(B)
can be identified with a compatible transversal of C̄ ′ in
case that |Cb| > 1 because then H(C̄ ′) = H(C ′), so
w′γ(B) ∩ C = {w′γ(b)}. Finally, if |Cb| = 1 then Wb ⊂ C̄
and w′γ(B \ {b}) is a compatible transversal of C̄ ′ \ Wb

because H(C̄ ′ \Wb) = H(C ′), so (iii) and (ii) are verified.
Evidently C = {xy1, xy2, x̄y3, x̄y4, ȳ1ȳ2, ȳ3ȳ4} belongs

to I. Set w0(B) := {xy1, xy2, xȳ3, xȳ4, y1y2, ȳ3ȳ4} then
|w0(B) ∩ C| = 3, where B := B(C). Let c = ȳ3ȳ4
and w1(B) := {xy1, xȳ2, xy3, xy4, y1ȳ2, y3y4}, w2(B) :=
{xȳ1, xy2, xy3, xy4, ȳ1y2, y3y4} then wj ∈ M(C \ {c}),
j ∈ [2], implying (iv).

Let w ∈ WV , b ∈ B and set C ′ := C \ {w(b)} ∈ SAT
because C ∈ I. First assume |Cb| > 1 then H(C) = H(C ′).
Let w(B) ∩ C = {w(b)} then w(B) ∈ Fcomp(C̄ ′) because
C̄ ′ = C̄ ∪ {w(b)} implying wγ ∈ M(C ′) by Thm. 1.
Conversely let wγ ∈ M(C ′) then by the same theorem
w ∈ Fcomp(C̄ ′). So w(B)∩C = {w(b)} because otherwise
wγ ∈ M(C) yielding a contradiction. Finally let |Cb| = 1
and w(B)∩C = {w(b)} then w(B \{b}) ∈ Fcomp(C̄ ′ \Wb)
because H(C̄ ′ \Wb) = H(C ′), so wγ ∈M(C ′) by Thm. 1
recalling that V (C ′) = V . Conversely let wγ ∈ M(C ′)
then by the same theorem w ∈ Fcomp(C̄ ′ \ Wb). So
w(B)∩C = {w(b)} because otherwise wγ ∈M(C) yielding
a contradiction, finishing the argumentation. 2

The next notion shall become purposeful below.
Definition 1: H is called a unique-vertex BHG if every

b ∈ B(H) contains an unique vertex, hence not contained
in another hyperedge. Moreover an all-unique-vertex BHG
in addition has the property that all its edges are mutually
vertex-disjoint.

Proposition 1: For H = (V,B) denoting an appropriate
unique-vertex BHG one has:

(1) For each m ∈ N there is H s.t. |B| = m, and β(H) =
(m− 1)n, for every n ∈ N.

(2) An arbitrary H′ can be modified to H s.t. β(H′) =
β(H).

(3) For C ⊂ KH one has C ∈ SAT if every unique vertex
of H becomes a pure literal in C. The latter especially
is true if C ∈ F(H).

(4) One has H ∈ H0. If H in addition is an all-unique-
vertex BHG then it is trivial β(H) = 0, and vice versa.

PROOF. For (1) let U := {uj : j ∈ [m]} and V0 be an
arbitrary vertex set of size n s.t. U ∩ V0 = ∅. Setting bj :=
uj ∪ V0, j ∈ [m], V = U ∪ V0 and B := {bj : j ∈ [m]}
provides H = (V,B) with the required properties. Assertions
(2), (3), (4) are obvious. 2

Let us mention a sometimes useful sufficient but, in
general, not necessary criterion for the non-diagonality of a
BHG H′ relying on a BGH H that neither is a subhypergraph
nor, in general, a retraction of H′.

Lemma 2: Let H = (V,B),H′ = (V ′, B′) with V ⊆ V ′,
|B| = |B′| and ϕ ∈ Bij(B,B′) s.t. b ⊆ ϕ(b), for all b ∈ B.
Then H ∈ H0 implies H′ ∈ H0.
PROOF. Let H ∈ H0 and suppose there is F ′ ∈ Fdiag(H′).
For every c′ ∈ F ′ let c := c′[ϕ−1(V (c′))] ∈ KH then the
collection F of the resulting clauses is a member of F(H)
because ϕ−1(V (c′)) ∈ B. By assumption F ∈ SAT has a
model w ∈ WV . Evidently with c ⊆ c′ also c′ is solved by
w, for all c′ ∈ F ′ yielding a contradiction. 2

III. UNIFORM-, REGULAR-, OR
FINITE-PROJECTIVE-PLANE-BHGS AND

NON-DIAGONALITY BY RETRACTION

As indicated in the introduction, BHGs parameterized
analogous to combinatorial designs might be helpful to
answer existence questions in our context. In this section
we provide several classes of minimal diagonal BHGs on
that basis. To that end, H is called regular or more precisely
r-regular, if there is r ∈ N s.t. every vertex is contained
in exactly r edges. Then H has the degree deg(H) = r.
Similarly, if every edge has a fixed size k, then H is k-
uniform, k ∈ N. In particular, for k = 2 a BHG becomes a
simple, undirected graph: each edge has size 2. We shall call
a 2-uniform BHG that is isomorphic to a cycle a cycle-BHG,
which therefore also is 2-regular.

Lemma 3: Let C ∈ CNF with regular BHG H(C). Then
oC(x) = deg(H(C)), for all x ∈ V (C) iff C is a transversal
over H(C).
PROOF. Let H := H(C) = (V,B) then, for x ∈ V , C(x) =
{c ∈ C : x ∈ V (c)} =

⋃
b∈B:x∈b Cb as disjoint union. Thus

oC(x) = |C(x)| ≥ |{b ∈ B : x ∈ b}| = deg(H(C)), and
equality holds true iff there is no b ∈ B s.t. |Cb| > 1 hence
iff C is a transversal. 2

A special case occurs if H is r-regular and k-uniform, and
even more specific, if both parameters are equal: r = k. In
the last case and if in addition H = (V,B) ∈ Hxlin ⊂ H0,
then one has |V | = m(k) = |B|, where m(k) := 1+k(k−1)
[19]. Moreover H then is isomorphic to a finite projective
plane of order o = k−1, denoted as FPP(k−1), for k ∈ N,
k ≥ 2, [19]. Thereby the lines of the plane are identified with
the hyperedges and the points of the plane with the vertices
of H which in turn are viewed as Boolean variables. The
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base case here is given by FPP(1) which is isomorphic to
a cycle-BHG of 3 vertices, and 3 edges. It is well known
(cf. e.g. [21], [23]) that a finite projective plane of order o
at least exists if o is the cardinality of a finite field, hence is
a prime power. Recall that the case o = 2 is named as the
Fano plane. In terms of combinatorial designs, FPP(o) is
a Steiner system, because every pair of points, i.e., vertices
occurs in exactly one block, resp. line, resp. hyperedge. That
crucial property throughout refered to as the unique-pair-rule
turns out to be useful.

In the sequel we shall call H a FPP(o)-BHG if each of
its connected components can be identified with FPP(o),
where those are defined over mutually disjoint point sets.
Then H is disconnected if it has more than one component.
Similarly H(x) is called a x-connected FPP(o)-BHG if it
is derived from a FPP(o)-BHG by replacing exactly one
(arbitrary) vertex of each component by the new vertex x,
refered to as the connecting vertex, yielding a connected
BHG. Observe that also every x-connected FPP(k − 1)-
BHG obeys the unique-pair-rule, and that every vertex has
the degree k, except for x. The degree of x is k · s, if s is
the number of the FPP(k − 1) instances involved.

Example 1: Below left: hyperedges of a FPP(2)-BHG
H of two (disjoint) components. Below right: x-connected
FPP(2)-BHG H(x) derived form H by replacing x1 resp.
x2 by the connecting vertex x of degree 3 · 2.

H :

{x1y1 z1,
x1 u1v1,
x1 p1 q1,
y1 u1p1,
y1 v1 q1,
z1 u1q1,
z1 v1 p1}

∪

{x2 y2 z2
x2 u2 v2,
x2 p2 q2,
y2 u2 p2,
y2 v2 q2,
z2 u2 q2,
z2 v2 p2}

H(x) :

{xy1 z1,
x u1 v1,
x p1 q1,
y1 u1 p1,
y1 v1 q1,
z1 u1 q1,
z1 v1 p1}

∪

{xy2 z2,
x u2 v2,
x p2 q2,
y2 u2 p2,
y2 v2 q2,
z2 u2 q2,
z2 v2 p2}

Next 2-uniform and small minimal diagonal BHGs are de-
fined by members of the classes above that shall become
useful. Result (ii) below is remarkable in the sense that it
provides an even non-simple BHG. Recall that a minimal
diagonal BHG does not contain any proper sub-BHG which
is diagonal. Thm. 6 in [16] states that H is minimal diagonal
iff Fdiag(H) ⊆ I.

Lemma 4: A BHG isomorphic to one of the following
structures is loopless, uniform, Sperner and minimal dia-
gonal:

(i) two x-connected FPP(1)-components being simple,
(ii) the retraction H[V \ b], where H = (V,B) is a one-

component FPP(2)-BHG, and b ∈ B is arbitrary;
moreover then δ(H[V \ b]) = 3.

PROOF. The looplessness and Spernerian property in both
assertions directly are implied by the k-uniformity, for k ∈
{2, 3}. Let H = (V,B) be the x-connected union of two
FPP(1), namely Hj = (Vj , Bj), j ∈ [2], with V1 = {x} ∪
{y1, y2}, V2 = {x} ∪ {y3, y4}, and B1 = {xy1, xy2, y1y2},
B2 = {xy3, xy4, y3y4}. Hence V = V1 ∪ V2, B = B1 ∪B2.
The transversal {xy1, xy2, x̄y3, x̄y4, ȳ1ȳ2, ȳ3ȳ4} ∈ UNSAT
already used in the proof of La. 1 shows that H ∈ Hdiag.
The assertion then follows from the proof of Thm. 8 in [16].

Regarding (ii), consider the first component of the set
of hyperedges on the left hand side in Example 1. Let
the corresponding BHG be H = (V,B) which is non-
diagonal and isomorphic to FPP(2). For simplicity drop-
ping the index 1 from the vertex-symbols yields V =
{x, y, z, u, v, p, q}. Evidently the retractions H[V \ b], for
all b ∈ B, are isomorphic. Thus it suffices to establish

the assertion for H′ = (V ′, B′) := H[V \ {x, y, z}]
with B′ := {uv, up, vp, vq, pq, uq}. The transversal F ′

0 :=
{pu, ūv, v̄p, v̄q, p̄q̄, uq} ∈ UNSAT shows that H′ ∈ Hdiag.

Let H′ =: H′
1 ∪ H′

2 with B′
1 := {uv, up, vp} and B′

2 :=
{vq, pq, uq}. So H′

1 is isomorphic to FPP(1) hence is a
cycle-BHG. A member of F(H′

1) can fix at most one variable
among {u, v, p} to have the same assignment in each of its
models. Such a variable is called a backbone (BB): The cycle-
pattern pu, ūv, v̄p contained in F ′

0 e.g. fixes only p to 1. Also
for u, v there are analogous cyle patterns fixing exactly one
of them.

Each edge of B′
2 contains q thus both H′

1, H′
2 are exact

linear. If a transversal F ′ ∈ F(H′) has a pure literal over q
hereby all its clauses over B2 can be satisfied. All clauses
over B1 can then be satisfied independently by the exact
linearity. Thus it suffices to consider transversals having
property (∗), namely exactly two equal literals over q are set
to solve the corresponding clauses over B2. In the remaining
clause over B2 thereby the assignment of exactly one in
{u, v, p} is fixed.

Now first let any b ∈ B′
1 be removed from B′ and let

F ∈ F(H′ \{b}) be arbitrary of property (∗). Since H′
1 \{b}

contains each of {u, v, p}, there remains a distinct variable
for each of the remaining F -clauses over B′

1, hence F ∈
SAT.

Next remove any b ∈ B′
2 from B′, and let F ∈ F(H′\{b})

be arbitrary of property (∗). W.l.o.g. assume that F contains
a BB in {u, v, p}. Case (1): b contains the BB, then assign
one of {u, v, p} except for the BB s.t. its clause over B′

2

is solved. The remaining clause can be satisfied by q, and
the last variable in {u, v, p} can be assigned accordingly to
solve all B′

1-clauses.
Case (2) b does not contain the BB, so it occurs in a

clause of F over B′
2 \ {b}, which must be solved by q. The

remaining clause can then be satisfied by one of {u, v, p}
which is no BB. Since the BB solves two clauses over B′

1

there is left one in {u, v, p} for solving the last clause over
B′

1. Hence in either case F ∈ SAT establishing the minimal
diagonality of H′.

Observe that F ′
0 6= F̂0 := {uv, up̄, v̄p, vq, p̄q, ūq̄} ∈

Fdiag(H′) contains a cycle-pattern over B′
1 that fixes u to

1. Moreover it provides a bifurcation (cf. [15]) for p at
the clauses up, v̄p ∈ F ′

0 respectively up̄, v̄p ∈ F̂0. Thus
δ(H′) ≥ 2 implying H′ ∈ Hmdiag \ Hcon

simp.
The last cycle-pattern over B′

1 that fixes v to 1 provides
a last inequivalent diagonal transversal. Indeed it is easily
verified that it admits a distinct bifurcation for either of
{u, v} regarding F ′

0, F̂0. So δ(H′) = 3. 2

Notice that the previous result shows that a non-diagonal
BHG might be modifiable yielding a diagonal one by a
retraction involving exactly one edge. So the following
concept is motivated:

Definition 2: H = (V,B) ∈ H0 is called retraction non-
diagonal if there exists b ∈ B, b 6= V , s.t. either H[V \ b] ∈
Hdiag, or there is F ∈ F(H) s.t. F [V \b] ∈ UNSAT. Further,
for integer i > 1, H is strict retraction i-non-diagonal if
there exists b ∈ B, b 6= V , s.t. H[V \ b] ∈ Ĥi. Let Hretnd

(H(i)
retnd ( Hretnd) denote the class of all (strict) retraction

(i)-non-diagonal BHGs.
Observe that the first alternative in the previous definition is
well-defined as long as b′ \ b are mutually distinct, for all
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b′ ∈ B with b′ \ b 6= ∅.
If e.g. H = (V,B) is isomorphic to FPP(1) then there

is no b ∈ B s.t. H[V \ b] is defined. But obviously there is
F ∈ F(H) s.t. F [V \ b] ≡ {x, x̄} ∈ UNSAT, where {x} =
V \b. In that perspective any FPP(1)-BHG is retraction non-
diagonal. On behalf of the unique-pair-rule it is easy to verify
that H[V \ b] is well-defined, for every b ∈ B, if H is any
FPP(o)-BHG, for o ≥ 2 appropriate. In particular one has:

Proposition 2: Let H = (V,B) be

(1) an arbitrary FPP(2)-BHG then H ∈ Hretnd, even
H[V \ b] ∈ Hdiag, for each b ∈ B, and H[V \ b] ∈
Hmdiag, for each b ∈ B if H is connected,

(2) an arbitrary x-connected FPP(2)-BHG then H ∈
Hretnd, even H[V \ b] ∈ Hdiag, for each b ∈ B, and
even H[V \ b] ∈ Hcon

diag, for each b ∈ B with x 6∈ b.
PROOF. Let s ∈ N, Hj = (Vj , Bj) be isomorphic to FPP(2),
j ∈ [s], H =

⋃
j∈[s]Hj and b ∈ B be arbitrary. For statement

(1), let H be a disjoint union. Then there is j′ ∈ [s] unique
with b ∈ Bj′ hence H[V \ b] = Hj′ [Vj′ \ b]∪

⋃
j∈[s]\{j′}Hj .

Since the first component here is diagonal by La. 4 (ii), the
assertion follows by symmetry. Also the connected case is
clear by the same lemma because then s = 1.

For statement (2) let the components of H mutually have
in common only the connecting vertex x. As above there is
j′ ∈ [s] unique with b ∈ Bj′ . If x 6∈ b then x ∈ V \ b and
so H[V \ b] = Hj′ [Vj′ \ b] ∪

⋃
j∈[s]\{j′}Hj ∈ Hcon

diag. Since
b∩Vj = {x}, for all j ∈ [s]\{j′}, if x ∈ b one has H[V \ b]
= Hj′ [Vj′ \ b] ∪

⋃
j∈[s]\{j′}Hj [Vj \ {x}] ∈ Hdiag which is

disconnected as a disjoint union. For both alternatives again
La. 4 (ii) was used ensuring that the first components are
diagonal. 2

Remark 1: Not every FPP(o)-BHG is retraction non-
diagonal: Let e.g. H = (V,B) be a one-component FPP(3)-
BHG hence non-diagonal, and b ∈ B be arbitrary. The edge
set of its retraction H′ = (V ′, B′) := H[V \b] is (isomorphic
to) the one shown below left:

B
′
=

{a11a12 a13,
a21 a22 a23,
a31 a32 a33,
a11 a21 a31,
a12 a22 a32,
a13 a23 a33,
a11 a23 a32,
a12 a21 a33,
a13 a22 a31,
a11 a22 a33,
a12 a23 a31,
a13 a21a32}

B̂ =

{a11 a12 a13,
a21 a22,
a31 a32,
a11 a21 a31,
a22 a32,
a23 a33,
a11 a23 a32,
a12 a33,
a13 a31,
a11 a22 a33,
a12 a23,
a13 a21}

Hence H′ containing 12 edges and 9 = 13− 4 variables is
3-uniform and 4-regular. Let Ĥ = (V ′, B̂) be obtained from
H′ by reducing 8 of its edges about exactly one variable,
s.t. V ′ and the remaining edges remain unaltered; B̂ is
shown above right. Assume that Ĥ ∈ H0 then La. 2 implies
that also H′ remains in H0. So H cannot be retraction
non-diagonal because all these retractions are isomorphic.
To verify this assumption consider the two variable-disjoint
cycle-sub-BHGs of Ĥ with the edge sets:

B̂1 := {a32a22, a22a21, a21a13, a13a31, a31a32}
B̂2 := {a23a12, a12a33, a33a23}

By cycle-patterns at most one variable in either of them can
be fixed as a BB in a transversal F , so there are two cases.
(i): Both fixed variables occur together with a11 in a common

remaining clause. This situation is given e.g. via setting

F1 := {a32ā22, a22ā21, a21ā13, a13ā31, a31a32}
F2 := {a23ā12, a12ā33, a33a23}

exactly fixing a32 in F1, and a23 in F2 to 1 thereby solving 2
clauses of either of F1, F2. Setting a11ā23ā32 fixes a11 to 1.
Negating a11 in the 3 remaining clauses containing it, there
remain seven 2-uniform unsolved clauses. There always is
a variable, say a21 having 3 occurrences, of which exactly
2 belong to the same literal: one remaining in F1, and the
second where a21 occurs together with a31 which are solved
via setting a21 accordingly. It is easy to verify that each of
the remaining clauses can be satisfied by a seperate variable.
The other variants of case (i) behave analogously.

(ii): Both fixed variables occur together with a11 in distinct
clauses. This situation is given e.g. via permuting and setting

F ′
1 := {a22ā32, a32ā31, a31ā13, a13ā21, a21a22}
F ′

2 := {a12ā23, a23ā33, a33a12}

fixing a22, a12 to 1 solving 2 clauses of either of F ′
1, F ′

2. In
this case a11 cannot be fixed in either of its 4 occurrences; of
which at least 2 must be of the same literal. Thus fixing a11

accordingly solves two of these clauses. In the remaining,
a11 is removed yielding a current formula of 6 clauses and
6 variables. It is easy to check that for every clause there
remains a variable for solving it. The further variants of case
(ii) behave analogously. In summary one obtains Ĥ ∈ H0.2

Regarding the general case one has:
Proposition 3: For every i ∈ N s.t. Ĥi 6= ∅ there is a

retraction non-diagonal BHG, which even is strict retraction
i-non-diagonal BHG if i > 1.
PROOF. Let H′ = (V ′, B′) ∈ Ĥi 6= ∅ be of size m s.t. its
edges have a fixed labeling. Let B be obtained from B′ by
adding to b′j ∈ B′ the new vertex uj yielding bj ∈ B, for all
j ∈ [m], finally add the edge b0 := {u1, . . . , uj}. Moreover
set V := V ′ ∪ b0 and H := (V,B), then evidently H[V \ b0]
= H[V ′] = H′ is well-defined, for all i ∈ N. Let F ∈ F(H)
be arbitrary. Solve its clause cm over bm by any of its literals
except for l(um) ∈ cm, hence um is free for solving c0 ∈ F
over b0. Then uj independently solves cj ∈ F over bj , for
all j ∈ [m − 1]. So H′ ∈ H0 implying its (strict) retraction
(i-)non-diagonality. 2

IV. MAXIMAL NON-DIAGONALITY VERSUS MINIMAL
DIAGONALITY

As a proposal for clarifying the structure of all non-
diagonal BHGs that hence reside below the hierarchy of the
diagonal instances, here we focus on the notion of maximal
non-diagonality as defined below. BHGs of that property
are extreme in the non-diagonal range as they are exactly
one hyperedge away from diagonality. Especially it shall
be shown also that there are arbitrary large non-diagonal
BHGs which are not maximal non-diagonal, so the concept
is far from trivial. Moreover Prop. 4 in [18] states a criterion
for a non-diagonal BHG becoming a diagonal instance of i
diagonal orbits, for i > 0 arbitrary, by adding exactly one
further edge.

Definition 3: A non-diagonal H = (V,B) is called maxi-
mal non-diagonal if there is a diagonal BHG H′ = (V,B′),
with B ⊆ B′, s.t. for every b ∈ B′ \B one has δ(H∪{b}) >
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0. Then H also is called maximal non-diagonal with respect
to (wrt.) H′. Let Hmaxnd denote the class of all maximal
non-diagonal BHGs.
Equivalently, a non-diagonal H = (V,B) is maximal non-
diagonal iff there is b ⊆ V , b /∈ B s.t. H∪{b} ∈ Hdiag. The
non-trivial existence of a maximal non-diagonal BHG can
be established on the basis of the members of Hdiag, among
which also are loopless instances according to La. 4 (i), (ii).

Lemma 5: Let H ∈ Hmdiag then H \ {b} ∈ Hmaxnd, for
every b ∈ B(H). 2

According to Cor. 3 in [16] stating Hcon
simp ⊆ Hmdiag one

obtains:
Corollary 1: Let H ∈ Hcon

simp be loopless then H \ {b} ∈
Hmaxnd is loopless, for every b ∈ B(H). 2

It is not difficult to verify that every non-diagonal BHG
containing at least two loops is maximal non-diagonal. So the
loopless case is of specific interest. The next lemma provides
a general necessary and sufficient criterion for a loopless,
maximal non-diagonal BHG.

Lemma 6: Let H ∈ H0 be loopless. Then H ∈ Hmaxnd iff
there is x ∈ V (H) s.t. H ∪ {x} ∈ Hdiag.
PROOF. The sufficiency directly follows from the definition
because looplessness is assumed. Next let H = (V,B) ∈
Hmaxnd and b ⊆ V , b 6∈ B s.t. H ∪ {b} ∈ Hdiag. So there
is F ∈ F(H) and cF ∈ Wb s.t. for all w ∈ M(F ), w(b) =
cγF ∈Wb. Since |b| ≥ 1 there is x ∈ V ∩b with l(x) ∈ cF and
w(x) = l(x), for all w ∈M(F ), hence H∪{x} ∈ Hdiag. 2

Observe that FPP(1)-BHGs are maximal non-diagonal.
But the classes FPP(o), o ≥ 2 appropriate, and their x-
connected enlargements in fact provide concrete arbitrary
large, connected and non-diagonal BHGs which fail to be
maximal non-diagonal:

Theorem 2: Let H be any x-connected FPP(o)-BHG of
s ∈ N components, where o is an arbitrary prime power.
Then H ∈ H0 \ Hmaxnd.
PROOF. Let o be a fixed prime power, hence k := o+ 1 ≥ 3
and first assume that s = 1. So H = (V,B) is loopless and
isomorphic to FPP(k − 1) which then exists. Recall that
H obeys the unique-pair-rule. As stated above H ∈ Hxlin

implying its non-diagonality. Evidently IH is k-regular and
so it admits a partition of its edge set into k edge-disjoint
perfect matchings [9]. Thus for arbitrary x ∈ V , b ∈ B
with x ∈ b, there is a perfect matching M(x, b) of IH that
contains {x, b}.

Relying on La. 6 let x ∈ V and set H′ := H ∪ {x}.
For arbitrary F ′ ∈ F(H′) its clause over {x} must be
assigned as forced. First assume that a further clause c′

of F ′ containing x is solved hereby. Any fixed perfect
matching M := M(x, V (c′)) of IH ensures that for every
remaining clause c, hence V (c) ∈ B, there is a unique
variable x 6= v ∈ V with {v, V (c)} ∈ M for solving c
independently. So F ′ ∈ SAT.

If no further clause containing x is solved by the initial
assignment, every occurrence of x is removed from those
clauses as all these literals are assigned 0. Let F̂ be the
resulting formula, where F̂1 collects all reduced clauses
having size k − 1 ≥ 2, and in which each variable of F̂
occurs exactly once. Further, let F̂2 collect all those clauses
of F ′ which remained unaltered so far. Thus H(F̂2) ∈ Hxlin.

Case (1): There is y ∈ V (F̂ ) occurring as the same literal
in exactly one clause, say c1 ∈ F̂1, and in at least one, say

c2 ∈ F̂2. Assigning y accordingly solves both of them. One
has H2 := H(F̂2 \ {c2}) ∈ Hxlin and according to Thm. 13
in [19], IH2 admits a perfect matching.

Assume that there even is a perfect matching M2 of IH2

not using the variables in V (c2). Since x, y ∈ V (c1) no
further variable of c2 occurs in c1, hence we have the ad-
missible enlargement M := M2 ∪ {{x, V (c1)}, {y, V (c2)}}
as a partial perfect matching of IH. Because of the unique-
pair-rule, for every c1 6= c ∈ F̂1, there is y 6= vc ∈
V (c2) ∩ V (c) unique providing the corresponding matching
edge {vc, V (c)} for accordingly enlarging the current M
yielding a perfect matching of IH. So F̂ ∈ SAT where y
is the only variable solving two clauses, so also F ′ ∈ SAT.

The existence of M2 as required above remains to be
verified. Let x 6= yj , j ∈ [k − 1], be the remaining variables
in V (c1) and w.l.o.g. we may assume that yk−1 := y, further
for convenience set c(k − 1) := c2. In H \ {V (c1)} thus in
H(F̂2) every yj occurs in exactly k− 1 further positions, let
the corresponding set of hyperedges be refered to as B(yj),
j ∈ [k − 1]. Then V (c2) = V (c(k − 1)) ∈ B(yk−1). Fix an
arbitrary V (c(1)) ∈ B(y1), the leading edge, and match it
to y1. Let u 6= y1 be the unique variable in V (c2)∩V (c(1)).

For every j ∈ [k − 2], there is exactly one leading edge
V (c(j)) ∈ B(yj) uniquely determined via u ∈ V (c(j))
that is matched to yj . The edge c2 = c(k − 1) matched
to yk−1 := y clearly is special because its variables are not
used. Evidently V (c(j)) ∩ V (c(j′)) = {u}, for all distinct
j, j′ ∈ [k − 1]. Therefore either of the k − 2 ≥ 1 variables
in V (c(j)) \ {u, yj} is not used so far and occurs in exactly
one of B(yj+1) \ V (c(j + 1)) to which it is matched, for
every j ∈ [k− 2]. Thus an appropriate perfect matching M2

of IH2 as required is provided.
Case (2): Every variable of F̂ occurs as the same literal in

exactly k− 1 positions of F̂2, and in exactly one position of
F̂1 as the complemented literal, say in c̃y . Assign y s.t. all
k−1 clauses in F̂2 containing y are solved. Fix a single one
of them, say c′y ∈ F̂2. The literal over y in c̃y is assigned
0, hence c̃y ∈ F̂1 currently fails to have an occurrence of y.
One has Hy := H(F̂2 \ {c′y}) ∈ Hxlin and as shown above
IHy

admits a perfect matching My not using the variables
in V (c′y).

Further, every c ∈ F̂1 \ {c̃y} can be matched to the
unique variable determined via V (c′y) ∩ V (c) enlarging My

accordingly. Since k − 2 ≥ 1 (recall that only x, y are
removed) at least there is u ∈ V (c̃y), so {u, V (c̃y)} can be
set as the final matching edge providing a perfect matching
of IH. So F̂ ∈ SAT, where y is the only variable solving
k − 1 clauses simultaneouly, implying F ′ ∈ SAT.

Now let s ≥ 2, Hj = (Vj , Bj), j ∈ [s], be the components
of the x-connected H = (V,B) which is loopless and so La.
6 can be used.

(i): Let H′ := H ∪ {x}, F ′ ∈ F(H′) be arbitrary and
F ′

j := F ′|Bj ∈ F(Hj), j ∈ [s]. Assign x as forced by
the unit clause, and w.l.o.g. let Hj , j ∈ [p′] with s′ ≤ s
appropriate, be those components of H s.t. F ′

j has a clause
cj with x ∈ V (cj) that is solved by the assignment of x.
For every j ∈ [s′], one therefore has a perfect matching
Mj(x, V (cj)) of IHj

solving F ′
j . So, F ′ ∈ SAT if s′ = s.

Otherwise over the components Hj , all literals over x in
the clauses of F ′

j are assigned 0; thus F ′
j ∈ SAT according

to the proof of the corresponding case for r = 1, for all
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j ∈ [s] \ [s′]. Since V (F ′
j) \ {x}, j ∈ [s] \ [s′], are mutually

disjoint one obtains F ′ ∈ SAT.
(ii): Let H′ := H ∪ {u}, for x 6= u ∈ V , and let F ′ ∈

F(H′) be arbitrary. Then there is ju ∈ [s] unique with u ∈
Vju

, let s′ := s − 1. As in the proof for s = 1 there is a
partial assignment wju

solving F ′
ju

:= F ′|Bju
∈ F(Hju

).
Here x is the unique variable fixed by wju

also occurring in
F ′ \F ′

ju
which therefore is satisfiable either according to the

case (i) if s′ ≥ 2, or to the proof for s′ = 1. 2

Formally Hmaxnd decomposes into the following sub-
classes.

Definition 4: Let i ∈ N, H = (V,B) with δ(H) = 0, and
H′ = (V,B′) with B′ ⊃ B, δ(H′) ≥ i.

(1) H is called maximal i-non-diagonal (wrt. H′) if for
every b ∈ B′ \B one has δ(H∪{b}) ∈ [i]. Let H

(i)
maxnd

denote the class of all maximal i-non-diagonal BHGs.
(2) H is called strict maximal i-non-diagonal (wrt. H′)

if for all b ∈ B′ \ B one has δ(H ∪ {b}) = i. Set
Ĥ

(i)
maxnd ⊆ H

(i)
maxnd for all such instances.

Remark 2: So far it is unknown whether the classes Ĥi

are non-trivial, for every i ∈ N. As shown in [18] there
are infinitely many i s.t. Ĥi 6= ∅. Similarly, the non-trivial
existence of the classes Ĥ

(i)
maxnd as defined above needs to

be established. First results in this direction can be found
in Thm. 6, resp. Cor. 4, below. According to Prop. 4 in
[18] a strict maximal i-non-diagonal BHG H = (V,B) wrt.
H′ = (V,B′) ∈ Hi′ , for i′ ≥ i appropriately, must have the
property that for each b ∈ B′ \B there are exactly i distinct
orbits in F(H)/GV s.t. for each orbit there is a member F
and a clause cF ∈Wb with w(b) = cF , for all w ∈M(F ).
Then δ(H ∪ {b}) = i is ensured, hence H ∈ Ĥ

(i)
maxnd.

Let Hj ∈ Hmdiag, j ∈ [2], with V (H1) ∩ V (H2) = ∅ then
obviously H1 ∪ H2 6∈ Hmdiag. On that basis using e.g. La.
4 one obtains large, loopless maximal non-diagonal BHGs
failing to be subhypergraphs of minimal diagonal instances.

Proposition 4: Let s ∈ N, Hj = (Vj , Bj) ∈ Hmdiag,
j ∈ [s], be (loopless) mutually vertex-disjoint, and H′ =
(V,B′) :=

⋃
j∈[s]Hj . Set B := B′ \ {bj : j ∈ [s]}, for a

fixed selection bj ∈ Bj , j ∈ [s], and H := (V,B) then:
(1) H ∈ Hmaxnd (is loopless).
(2) Let i ∈ N and Hj ∈ Ĥi, s.t. ω(Hj) = ω ∈ N, for all

j ∈ [s], then δ(H′) ≥ ` and H ∈ Ĥ
(`)
maxnd (is loopless)

where ` = iωs−1.
PROOF. Hj ∈ Hmdiag implies δ(Hj \ {bj}) = 0, j ∈ [s],
so δ(H) = 0. (1) is obvious. Regarding (2) by assumption
δ(Hj) = i, ω(Hj) = ω, for all j ∈ [s]. Since the Hj are
mutually vertex-disjoint, we can apply La. 1 (ii) in [16] hence
δ(H′) =

∏
j∈[s] ω(Hj) −

∏
j∈[s](ω(Hj) − δ(Hj)) = ωs −

(ω−i)s. Obviously i < ω, hence δ(H′) = ωs[1−(1−i/ω)s]
≥ ωs[1− (1− i/ω)] = `. Adding to B exactly one arbitrary
of the edges bj ∈ Bj , j ∈ [s], say bj′ , yields H ∪ {bj′} =
Hj′ ∪

⋃
j∈[s]\{j′}(Hj \ {bj}). Again using the cited lemma,

one obtains δ(H ∪ {bj′}) = ωs − ωs−1(ω − i) = `. 2

Recall that due to La. 4 (ii) it is ensured that there are i > 1
s.t. Ĥi∩Hmdiag 6= ∅ even containing loopless instances. The
next result also provides connected members:

Theorem 3: For fixed s ∈ N, and mutually vertex-disjoint
Hj = (Vj , Bj) ∈ Hmdiag, j ∈ [s], let H0 = (V0, B0) :=⋃

j∈[s]Hj , choose b0 ⊂ V0 s.t. |b0 ∩ Vj | = 1, for all j ∈ [s],
and let y 6∈ V0. Then H′ = (V,B′) := H0 ∪ {b} ∈ Hcon is

diagonal, where b := b0 ∪ {y}. Further, for a fixed selection
bj ∈ Bj , j ∈ [s], and B := {b} ∪

⋃
j∈[s](Bj \ {bj}) one

has H := (V,B) ∈ Hmaxnd. Moreover if bj ∩ b0 = ∅, for all
j ∈ [s], then H ∈ Hcon.
PROOF. Since δ(Hj) > 0, j ∈ [s], also δ(H0) > 0, and
b0 6∈ Bj , j ∈ [s]. Moreover each Hj is minimal diagonal,
thus also connected. Adding the new edge b = b0 ∪ {y} to
H0 provides the connected BHG H′ = H0 ∪ {b0 ∪ {y}}.
Evidently H0 ( H′ and because of the monotony of the
mapping δ, as stated in Prop. 6 (1) in [18], one has δ(H′) >
δ(H0) > 0. Since |Bj | > 1, bj can be selected s.t. bj∩b0 = ∅,
for all j ∈ [s], maintaining the connectedness of H. Since the
new variable y ensures that a clause over b can be satisfied
independently and because of the fact that the instances Hj ,
j ∈ [s], are minimal diagonal, the rest of the theorem follows
directly from Prop. 4 (1). 2

Remark 3: Note that the new variable y added to b0
above, in general, cannot be omitted. Consider e.g. Hj :=
(Vj , Bj) with Vj := {uj , vj}, Bj := {uj , vj , ujvj}, then
Hj is a minimal diagonal BHG, j ∈ [2]. Set b0 := v1u2,
and choose the selection b1 := u1 ∈ B1, b2 := v2 ∈ B2.
Then H := (V, B̂) even is diagonal for B̂ := {b0} ∪⋃

j∈[2]Bj\{bj} instead of B := {b}∪
⋃

j∈[2]Bj\{bj} where
b := b0 ∪ {y} as required in Thm. 3. Indeed, B̂ contains the
edges v1u2, u2, and v1 yielding a simple, hence diagonal
subhypergraph.

Theorem 4: There are loopless, Sperner, and even linear,
maximal non-diagonal BHGs. There also exist exact linear
and maximal non-diagonal BHGs.
PROOF. The first claim directly is implied by La. 4 (i) and
La. 5. Regarding the second statement, let V = {u, x, y} and
B = {x, xy, yu, ux}. We claim that H = (V,B) ∈ Hcon

simp

where the connectedness is obvious. Observe that H\{x} is
a FPP(1)-BHG, so it is exact linear and non-diagonal [19].
Moreover it is easy to verify that all its transversals, for
which x is a BB, belong to the same GV -orbit. A diagonal
transversal of H can occur only if x already is a BB of
its restriction to H \ {x}, e.g., {x, x̄y, ȳu, ūx̄} ∈ Fdiag(H)
which easily can be verified to belong to I. An unsatisfiable
formula in a distinct orbit can occur only if x is maintained
as a BB, so there can be no bifurcation implying H ∈ Hcon

simp.
Therefore by Lemma 5 H \ {x} ∈ Hmaxnd. 2

V. MAXIMAL NON-DIAGONALITY: THE GENERAL CASE

In this section further maximal non-diagonal BHGs are
constructed which do not necessarily rely on minimal di-
agonal ones. It will become clear also that maximal non-
diagonality and retraction non-diagonality are distinct struc-
tures. First a stronger version of maximal non-diagonality
is considered, namely the dense maximal non-diagonality.
To that end we begin with collecting several facts regarding
the complete BHG over a fixed vertex set V , which is
KV := (V, 2V \ {∅}). Observe that KV ∈ Hdiag \Hmdiag, if
|V | > 2. We write Kn instead of KV in case |V | = n.

Proposition 5: For n ∈ N one has

ω(Kn) = 2n(2n−1−1), δ(Kn) = ω(Kn)−
∏

k∈[n]

(2k − 1)(
n
k)

PROOF. Let αn := α(Kn), α ∈ {β, ω, δ} Recalling that for
H = (V,B) it is β(H) =

∑
b∈B |b|−|V | and ω(H) = 2β(H)
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the first assertion follows from

βn = −n+
∑

k∈[n]

(
n

k

)
k = −n+n

∑
k∈[n]

(
n− 1
k − 1

)
= n(2n−1−1)

The last assertion is true in case n = 1 directly yielding
ω(K1) = 1, δ(K1) = 0. Next fix a vertex set V of n ≥ 2
vertices and let H1 consist of the corresponding n loops only,
then ω(H1) = 1, δ(H1) = 0. Let 1 < j ≤ n be fixed, and
let Hk be obtained from Hk−1 by adding all edges of size
k over V to it. Claim:

δ(Hk) = ω(Hk)− (2k − 1)(
n
k)(ω(Hk−1)− δ(Hk−1))

meaning ω(Hk) − δ(Hk) = (2k − 1)(
n
k)(ω(Hk−1) −

δ(Hk−1)). Iterative insertion for k = n to k = 2 yields
δk = δ(Hk) with ωn = ω(Hn) because Hn = Kn and
ω(H1) − δ(H1) = 1. For proving the claim it suffices to
set ωk(j), resp. δk(j), for the number of all orbits, resp. all
diagonal orbits, after exactly j edges of size k have been
added to Hk−1, and to verify

δk(j) = ωk(j)− (2k − 1)j(ω(Hk−1)− δ(Hk−1))

by induction on j ∈ N. Finally insert j(k) :=
(
n
k

)
, for

which one has δk(j(k)) = δ(Hk). First recall Thm. 4 in [18]
stating that adding a new edge b to a given H = (V,B) that
already contains a loop for every x ∈ b yields δ(H∪{b}) =
2|b|δ(H) + ρ(H) + 1. Since ρ(H) + 1 = ω(H) − δ(H) one
has δ(H ∪ {b}) = (2|b| − 1)δ(H) + ω(H). Thus adding a
zero in form of 2|b|ω(H) − 2|b|ω(H) yields the induction
base for j = 1 with the identifications: H = Hk−1, |b| = k,
and ω(H ∪ {b}) = ωk(1) = 2kω(Hk−1) = 2|b|ω(H). By
the same theorem we obtain via the induction hypothesis for
fixed j

δk(j + 1) = (2k − 1)δk(j) + ωk(j)

= (2k−1)ωk(j)−(2k−1)j+1(ω(Hk−1)−δ(Hk−1))+ωk(j)

yielding the claim for j + 1, as ωk(j + 1) = 2kωk(j). 2

The stronger notion of dense maximal non-diagonality is
formulated in precise terms as follows.

Definition 5: H = (V,B) ∈ Hmaxnd is called dense
maximal non-diagonal (wrt. KV ) if H ∪ {b} ∈ Hdiag, for
every b ∈ B(KV ) \ B. If even for every such b one has
δ(H ∪ {b}) = i, for fixed i ∈ N, we call H dense maximal
i-non-diagonal (wrt. KV ).
Obviously every dense maximal (i-)non-diagonal BHG also
is (strict) maximal (i-)non-diagonal. The converse, in general,
is false, cf. e.g. Rem. 4, below. More precisely:

Proposition 6: Let H = (V,B) be dense maximal non-
diagonal wrt. KV where |V | ≥ 2. Then H is maximal non-
diagonal wrt. every H′ ∈ Hdiag, with H ( H′ ⊆ KV and
V (H′) = V . 2

The next result provides criteria for dense maximal non-
diagonality.

Theorem 5: Let H = (V,B) ∈ H0 with |V | ≥ 2.
(1) H is dense maximal non-diagonal iff for all b ⊆ V, b 6∈

B there is F ∈ F(H) and c ∈Wb s.t. w(b) = cγ ∈Wb

for all w ∈M(F ).
(2) H is dense maximal non-diagonal if there exists F ∈

F(H) with |M(F )| = 1.
PROOF. Evidently KV ∈ Hdiag because it contains an
instance of K2 ∈ Hcon

simp. H ∈ H0 implies B ( B(KV ).

Let b ∈ B(KV ) \ B be chosen arbitrarily and regarding (1)
let H be dense maximal non-diagonal. Hence H ∈ Hmaxnd

and H∪{b} ∈ Hdiag. So there is F ′ ∈ Fdiag(H∪{b}) with
c := F ′

b unique and F := F ′ \ {c} ∈ SAT.
Suppose there is w ∈ M(F ) with w(b) 6= cγ , then

w(b) ∩ c 6= ∅ meaning that w also satisfies F ′ providing
a contradiction. Reversely assume there is F ∈ F(H) and
c ∈ Wb s.t. w(b) = cγ ∈ Wb, for all w ∈ M(F ). Then
F ∪ {c} ∈ Fdiag(H ∪ {b}) thus H is dense maximal non-
diagonal providing (1).

If there is F having the single model w only then for a
further b set c := w(b)γ so (2) is implied by (1). 2

The following example is closely related to a minimal
diagonal BHG based on the FPP(1); it also provides a
loopless dense maximal non-diagonal instance.

Example 2: Due to La. 4 (i), the x-connected union H of
two FPP(1)-components Hj = (Vj , Bj), j ∈ [2], is minimal
diagonal. For the notation refering to the proof of that lemma,
recall F = {xy1, xy2, x̄y3, x̄y4, ȳ1ȳ2, ȳ3ȳ4} ∈ I ∩Fdiag(H).
Considering the decomposition F = F1 ∪ F2 with Fj ∈
F(Hj) ∩ SAT, let wj ∈ M(Fj) be arbitrary, j ∈ [2], then
w1(x) = 1, and w2(x) = 0. Setting H′ = (V,B′) = H \
{b′ := xy2} one obtains F ′ := F \ Fb′ ∈ F(H′) ∩ SAT.
Since F2 is a subformula of F ′ we have w′(x) = 0 directly
implying w′(y1) = 1 ⇒ w′(y2) = 0, for all w′ ∈ M(F ′).
Finally defining Ĥ := H′ ∪ {y2y3} admits the transversal
F̂ = F ′ ∪ {y2y3} ∈ F(H̃) ∩ SAT. Every model of F̂ must
be a model w′ of F ′, thus one is forced to assign w′(y3) = 1
implying w′(y4) = 0. It follows that |M(F̂ )| = 1 thus Ĥ is
dense maximal non-diagonal according to Thm. 5 (2).

Remark 4: (1) The previous example also proves the
existence of a maximal non-diagonal BHG that is not
dense: H′ = (V,B′) = H\ {xy2} which is in Hmaxnd

due to La. 5. But b = y2y3 ⊆ V , b 6∈ B′ yields
H′ ∪ {b} 6∈ Hdiag.

(2) The existence of dense maximal i-non-diagonality can
be ensured at least for i = 1, and every n ∈ N: Let
V = {xj : j ∈ [n]}, B = {{xj} : j ∈ [n]}, so for
H = (V,B) consisting of loops only one has F(H) =
Fcomp(H) which therefore is non-diagonal. It even is
dense maximal non-diagonal wrt. Kn relying on Thm.
5 (2). Adding an arbitrary edge b ∈ B(Kn) \B yields
H′ := H∪{b}. Since H contains all loops, again using
Thm. 4 in [18] one has δ(H′) = 2|b|δ(H)+ρ(H)+1 =
1. So H is dense maximal 1-non-diagonal.

(3) Thus maximal non-diagonality can be derived from
two extreme classes: Minimal diagonal instances on
the one hand and complete instances on the other one.
Moreover these classes overlap in the class of complete
BHGs with exactly two vertices.

Regarding the second remark above and refering to Def. 4
(2) one has:

Theorem 6: There are integers i > 1 s.t. the class of dense
maximal i-non-diagonal BHGs is non-empty. Moreover for
those i one has Ĥ

(i)
maxnd 6= ∅, and also H

(i)
retnd 6= ∅.

PROOF. Consider H = (V,B) ∈ Hcon
simp ⊆ Hmdiag with

V = {u, x, y} as defined in the proof of Thm. 4. Therefore
the connected H′ := H ∪ {uxy} ∈ Hdiag \ Hmdiag fulfills
δ(H′) =: i > 1. Moreover every transversal of H\{x} which
is a FPP(1)-BHG has at most one BB. Thus Ĥ := H′\{x} =
(H\ {x})∪ {uxy} ∈ H0. Finally, adding either of the loops
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over u, x, y to Ĥ yields a result isomorphic to H′ implying
that Ĥ is dense maximal i-non-diagonal wrt. K3 (over V ).
The second assertion is clear by definition. Finally the last
assertion immediately follows from Prop. 3. 2

In fact δ(H′) = i = 8 as considered in the previous proof:
By the proof of Thm. 4 δ(H) = 1, further ω(H) = 16,
hence ρ(H) = 14. Enlarging H about b := {uxy} to H′

means 23 inequivalent extensions of a fixed representative
of the diagonal orbit yielding at least 8 orbits in Fdiag(H′).
Further, the three edges of size 2 in H can contribute exactly
1 BB by a cycle-pattern in a satisfiable transversal of H. The
loop also provides at most one further BB. Hence at most
two of the three variables in b can be fixed in either such
transversal. Thus it remains satisfiable by enlarging it over
b, therefore δ(H′) = 8.

The next result, similar to Prop. 4, can be verified analo-
gously.

Proposition 7: Let s ∈ N, Hj = (Vj , Bj) ∈ Hmaxnd, j ∈
[s], be mutually vertex-disjoint, H :=

⋃
j∈[s]Hj , and Ĥ :=⋃

j∈[s]KVj
.

(1) If Hj = (Vj , Bj) is dense maximal non-diagonal for all
j ∈ [s], then H is maximal non-diagonal wrt. Ĥ.

(2) If Hj = (Vj , Bj) is dense maximal i-non-diagonal, and
ω(Hj) = ω ∈ N, for all j ∈ [s], then H is strict
maximal `-non-diagonal wrt. Ĥ, with ` = iωs−1. 2

Towards generalizing the previous discussion the following
concept is crucial.

Definition 6: Let H = (V,B) ∈ Hdiag. A subhypergraph
H̃ ⊆ H with H̃ ∈ Hmdiag is called a diagonal germ. Let
G(H) be the collection of all diagonal germs of H. Any
T ⊂ B is called a transversal of diagonal germs (TDG) of
H if T ∩ B(H̃) 6= ∅ for every H̃ ∈ G(H). A TDG T of H
is minimal if it does not contain a proper TDG of H.

Example 3: Consider the BHG H = (V,B) ∈ Hdiag with
V = {u, v, x, y}, B = {u, v, x, y, uv, ux, xy} that is not
minimal diagonal. Then one has G(H) = {Hl = (Vl, Bl) :
l ∈ [6]}, where

B1 := {x, y, xy}, B2 := {u, v, uv},
B3 := {x, u, xu}, B4 := {x, xu, uv, v},
B5 := {y, xy, xu, u}, B6 := {y, xy, xu, uv, v}

which all belong to Hmdiag as can be verified easily. The
collection of all minimal TDGs of H is {Tj : j ∈ [20]}:

T1 = {u, x, y}, T2 = {v, x, y},
T3 = {u, v, x}, T4 = {u, v, y},
T5 = {v, x, xy}, T6 = {u, x, xu},
T7 = {x, y, uv}, T8 = {u, x, xy},
T9 = {u, v, xy}, T10 = {u, x, uv},
T11 = {u, y, uv}, T12 = {u, y, xu},
T13 = {v, x, xu}, T14 = {v, y, xu},
T15 = {x, uv, xu}, T16 = {u, uv, xy},
T17 = {x, xy, uv}, T18 = {y, uv, xu},
T19 = {u, xy, xu}, T20 = {v, xy, xu}

Observe that T6 = B3 of H3 ∈ G(H), so a minimal TDG
itself can be (the edge set of) a diagonal germ. In general,
there also are disjoint TDGs, here e.g., T7 ∩ T9 = ∅.

The following facts provide the connections to (minimal)
diagonality.

Proposition 8: Let H,H′ ∈ H then:
(1) H ∈ Hdiag iff G(H) 6= ∅,
(2) H ∈ Hmdiag iff G(H) = {H},
(3) H ⊆ H′ implies G(H) ⊆ G(H′).

PROOF. Let H ∈ Hdiag then it contains a minimal diagonal
subhypergraph hence G(H) 6= ∅. Reversely, let H̃ ∈ G(H)
then H̃ ⊆ H is diagonal so H is diagonal, so (1) is true. If
H ∈ Hmdiag, by definition {H} ⊆ G(H). Let H̃ ∈ G(H)
then H̃ ⊆ H and H̃ ∈ Hmdiag hence H̃ = H ∈ Hmdiag. The
converse direction is clear, so (2) is true; (3) is evident. 2

Proposition 9: For H ∈ Hdiag, one has δ(H) ≥ 2 if
|G(H)| ≥ 2.
PROOF. LetHj ∈ G(H), j ∈ [2]. If both are in one connected
component H′ of H then there is b ∈ B(H′) \ B(H1) with
b∩V (H1) 6= ∅. Therefore δ(H) ≥ δ(H′) ≥ δ({b}∪H1) ≥ 2
because at a common vertex of b and V (H1) a bifurcation
occurs. If both are in distinct components H′

j , j ∈ [2], then
ω(H \ H′

1) ≥ 2. So by La. 1 (ii) in [16] δ(H) = δ(H \
H′

1)ω(H′
1) + δ(H′

1)ω(H \H′
1)− δ(H′

1)δ(H \H′
1) = δ(H \

H′
1)(ω(H′

1)− δ(H′
1))+ δ(H′

1)ω(H\H′
1). Here the factor in

the brackets equals 1 + ρ(H′
1) ≥ 1, further δ(H′

1) ≥ 1, and
also δ(H \H′

1) ≥ δ(H′
2) ≥ 1. So δ(H) ≥ 3. 2

If H = (V,B) is diagonal, and T is one of its minimal
TDGs, we set H \ T := (V,B \ T ) in accordance with the
next fact.

Lemma 7: Let H = (V,B) ∈ Hdiag. If a minimal TDG of
H is removed from B then the resulting BHG has the same
vertex set V .
PROOF. First observe that since T is minimal, for every b ∈
T , there is H̃ ∈ G(H) s.t. T ∩ B(H̃) = {b}. Let H′ =
(V ′, B′) = H\T and suppose there is x ∈ V \V ′. Then there
is b̃ ∈ T containing x, and H̃ = (Ṽ , B̃) ∈ G(H) with B̃ ∩
T = {b̃}. Hence H̃ \ {b̃} ⊆ H′ fails to be diagonal and x /∈
V (H̃\{b̃}). So, extending a transversal in F(H̃ \ {b̃}) over b̃
by an arbitrary clause c̃ yields a transversal in F(H̃) wherein
c̃ can be solved independently via x. Therefore Fdiag(H̃) = ∅
implying a contradiction. 2

Towards a characterization of maximal non-diagonality the
next result relying on the previous one turns out to be useful.

Lemma 8: Let H′ = (V,B′) ∈ Hdiag and H = (V,B) ∈
Hmaxnd wrt. H′ where B ⊆ B′ then B′ \ B is a minimal
TDG of H′.
PROOF. Let T := B′ \ B then by La. 7 H = H′ \ T . First
suppose that T fails to be a TDG of H′. Then there is a
minimal diagonal H̃ = (Ṽ , B̃) ⊆ H′ s.t. B̃∩T = ∅ implying
H̃ ∈ G(H′ \ T ) 6= ∅. According to Prop. 8 (1) H ∈ Hdiag,
yielding a contradiction, hence T is a TDG of H′.

Next let T and T̃ ( T be TDGs of H′. Then there is
b ∈ T \ T̃ and it is claimed that H ∪ {b} remains non-
diagonal yielding a contradiction to H ∈ Hmaxnd implying
the minimality of T . To verify the claim, using Prop. 8 (1),
(3) suppose that Hb = (Vb, Bb) ∈ G(H ∪ {b}) ⊆ G(H′).
Since H∪{b} = H′ \ (T \ {b}) ⊆ H′ \ T̃ on behalf of Prop.
8 (3) it is Hb ∈ G(H′ \ T̃ ). So a contradiction is provided
because by definition T̃ ∩Bb 6= ∅. 2

Now we are able to formulate a general criterion for
maximal non-diagonality.

Theorem 7: Let H′ = (V,B′) ∈ Hdiag. Then H =
(V,B) ⊆ H′ is maximal non-diagonal iff B′\B is a minimal
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TDG of H′.
PROOF. The necessity directly is implied by Lemma 8. For
the sufficiency let T := B′ \B be a minimal TDG of H′ and
H := H′ \ T . According to La. 7 V (H) = V . First suppose
that H ∈ Hdiag, and let H̃ ∈ G(H). Since H ⊆ H′ by Prop. 8
(3) H̃ ∈ G(H′) yielding a contradiction because T∩B(H̃) 6=
∅, so H is non-diagonal. Next, suppose that there is b ∈ T
s.t. H ∪ {b} remains non-diagonal, i.e., G(H ∪ {b}) = ∅.
Let H̃ ∈ G(H′) be arbitrary. Then B(H̃) ∩ (T \ {b}) 6= ∅,
otherwise H̃ ⊆ H ∪ {b}, so H̃ ∈ G(H ∪ {b}) which is
impossible. Thus T \ {b} is a TDG of H′ contradicting the
minimality of T and settling H ∈ Hmaxnd. 2

As a direct consequence one obtains.
Corollary 2: For every diagonal BHG there is a non-

diagonal sub-BHG which is maximal non-diagonal wrt. it:
Let H′ = (V,B′) ∈ Hdiag then for every minimal TDG T of
H′ one has H′ \ T ∈ Hmaxnd. 2

Also further dense maximal non-diagonal BHGs directly
arise in general terms:

Corollary 3: For every n ∈ N, n ≥ 2, there is a dense
maximal non-diagonal BHG wrt. Kn, namely Kn \ T , for
every minimal TDG T of Kn. 2

In view of Thm. 2 so one abstractly also obtains further
non-diagonal BHGs that fail to be maximal non-diagonal:
For V with |V | ≥ 3, let T, T ′ be disjoint TDGs of KV then
evidently H := KV \ (T ∪ T ′) ∈ H0 \ Hmaxnd. A more
concrete and also constructive result is stated next regarding
(dense) maximal non-diagonal instances, of arbitrary size.

Theorem 8: For fixed n ∈ N one has:

(1) There are connected 2-regular BHGs of size n, density
1, which are dense maximal non-diagonal wrt. Kn,
where n ≥ 2.

(2) There are BHGs of size 3n, density 1, which are
maximal non-diagonal wrt. the disjoint union of n K3-
instances.

(3) There are connected, except for one vertex 2-regular,
BHGs of size 3n+1, density 1, which are dense maximal
non-diagonal wrt. K3n+1.

PROOF. Let n ∈ N, n ≥ 2, be fixed. Set Hn = (Vn, Bn) with
Vn = {xj : j ∈ [n]} and Bn = {x1}∪{xjxj+1 : j ∈ [n−1]}.
Then Hn is 2-regular, has n vertices and size n, hence is of
density 1. Moreover Hn is non-diagonal because either of
its transversals can be solved by the independent assignment
of x1 for the clause over the unique loop, and by xj+1 for
the clause over xjxj+1, for all j ∈ [n − 1]. Considering
F0 := {x1}∪ {x̄jxj+1 : j ∈ [n− 1]} ∈ F(H) obviously has
x1 = 1 ⇒ x2 = 1 ⇒ · · · ⇒ xn = 1 as its unique model.
Thus by Thm. 5 (2), Hn is dense maximal non-diagonal wrt.
Kn, so (1) is true.

Set Hj = (Vj , Bj) with Vj = {xj , uj , yj} and Bj =
{yj , ujxj , xjyj}. Then Hj ∈ Hcon

0 because every transversal
of it has exactly three clauses, each of which can be solved
independently by one of the three variables. Moreover for
Fj := {yj , uj x̄j , xj ȳj} ∈ F(Hj) one has M(Fj) = {wj}
where wj = ujxjyj , as can be verified easily. So, by Thm. 5
(2), Hj is dense maximal non-diagonal wrt. KVj

. Moreover
it is assumed that the Vj are vertex-disjoint, for all j ∈ [n].
According to Prop. 7 (1) then it follows that the disjoint union
H′

(n) :=
⋃

j∈[n]Hj having size 3n and therefore density 1,
is maximal non-diagonal wrt.

⋃
j∈[n]KVj

, so (2) is true.

Let H′
(n), Hj , Fj and wj , j ∈ [n], as defined previously.

Set H(n) = (V(n), B(n)) := H′
(n) ∪ {b(n)} where b(n) :=

u1 . . . unu, and u /∈ Vj , j ∈ [n]. Obviously |V(n)| = |B(n)| =
3n+1, so H(n) has density 1, and it is claimed that H(n) ∈
Hcon

0 where the connectedness is ensured because of b(n).
For F ′ ∈ F(H(n)) arbitrary there are unique F ′

j ∈ F(Hj),
j ∈ [n], and c ∈ Wb(n) s.t. F ′ = {c} ∪

⋃
j∈[n] F

′
j . Let

w′
j ∈ M(F ′

j) then w′ :=
⋃

j∈[n] w
′
j as disjoint union solves⋃

j∈[n] F
′
j ; c can be solved via u independently, so H(n) ∈

H0. Finally, consider F := {ū1 . . . ūnu} ∪
⋃

j∈[n] Fj . Then
obviously M(F ) = {{u} ∪

⋃
j∈[n] wj} implying the dense

maximal non-diagonality of H(n) wrt. K3n+1 by Thm. 5 (2).
Finally, every vertex of H(n), except for u, occurs in exactly
two edges. 2

For strict maximal i-non-diagonal instances, cf. Def. 4 (2)
and Remark 2, relying on loops one obtains:

Corollary 4: Let n ∈ N. There are strict maximal i-non-
diagonal BHGs
(1) Hn wrt. Hn∪{x}, where i = 2n−2, and {x} /∈ B(Hn),

n ≥ 2,
(2) H(n) wrt. H(n) ∪ {{xj} : j ∈ [n]}, where i = 23n−1,

and {xj} /∈ B(H(n)), j ∈ [n].
PROOF. For verifying (1), assume n ≥ 2 and refer to Hn

as defined in the proof of Thm. 8 (1), setting x := x2.
By its dense maximal non-diagonality Hn ∪ {x2} ∈ Hdiag

containing only one diagonal, even simple germ isomorphic
to the K2 with the edge set {x1, x2, x1x2}. Either of the
further edges xkxk+1, k ∈ [n − 1] \ {1}, provides two
independent bifurcations for a fixed representative of the
diagonal orbit of the germ implying δ(Hn ∪ {x2}) = 2n−2.

Regarding (2) fix n ∈ N arbitrarily, and refer to Hj ,
j ∈ [n], H′

(n), H(n), and b(n) as defined in the proof
of Thm. 8 (2), (3). For fixed j′ ∈ [n], first observe that
Ĥj′ := Hj′∪{xj′} with the edge set {xj′ , yj′ , uj′xj′ , xj′yj′}
has only one diagonal germ H̃j′ belonging to Hcon

simp where
B(H̃j′) := {xj′ , yj′ , xj′yj′}. It is claimed that δ(Ĥj′) = 2.
Indeed, there are exactly two possible bifurcations for a fixed
representative of the single diagonal orbit of H̃j′ , namely
only one for each of the two literals over xj′ in the clause
over the additional edge {uj′xj′}, because uj′ /∈ V (H̃j′).
Since a clause over this edge thus is satisfiable by uj′

independently, there is no satisfiable orbit-representative of
H̃j′ that can become diagonal when enlarged over {uj′xj′},
so the claim is true.

Further, H′
(n) ∪ {xj′} = Ĥj′ ∪

⋃
j∈[n]\{j′}Hj , where the

components Hj ∈ H0, j ∈ [n] \ {j′}, and Ĥj′ ∈ Hdiag are
mutually vertex-disjoint; also ω(Hj) = 4, j ∈ [n]. Again
applying La. 1 (ii) in [16] straightforwardly yields δ(H′

(n) ∪
{xj′}) = δ(Ĥj′)

∏
j∈[n]\{j′} ω(Hj) = 22n−1, for all j′ ∈

[n]. By definition H(n) = H′
(n) ∪ {u1 . . . unu}, so

δ(H(n) ∪ {xj′}) = δ(H′
(n) ∪ {xj′})2n = 23n−1

for all j′ ∈ [n]. Here it is used that no satisfiable transversal
over H′

(n) ∪ {xj′} can become unsatisfiable by its extension
over b(n) having the unique vertex u. Further, for a fixed
representative of a diagonal orbit over H′

(n) ∪ {xj′} there
are exactly 2n bifurcations for the literals over uj ∈ b(n),
j ∈ [n]. 2

Definition 7: For H = (V,B) and x /∈ V let H↑x =
(V ↑x, B↑x) where V ↑x := V ∪ {x} and B↑x is obtained
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from B by adding the loop {x} and enlarging every b ∈ B
about x. Let H↑x be refered to as the x-lift of H. Similarly,
given F ∈ F(H) let every F ′ ∈ F(H↑x) s.t. F ′[V ] = F be
called an x-lift of F .

Observe that the x-lift of H contains a single loop,
exactly one more edge and exactly one more vertex than
H. Obviously H↑x ∈ Hcon, H↑x[V ] = H.

Lemma 9: For H = (V,B), x /∈ V , one has:
(i) H ∈ H0 iff H↑x ∈ H0.

(ii) H ∈ Hmdiag iff H↑x ∈ Hmdiag.
(iii) δ(H↑x) ≥ δ(H).
(iv) Let H ∈ Hdiag. Then δ(H↑x) = δ(H) iff H ∈ Hmdiag.

PROOF. If H ∈ H0 meaning H↑x[V ] ∈ H0, so H↑x ∈ H0

because the unit clause of every F ′ ∈ F(H↑x) can be solved
independently. Reversely, let H↑x ∈ H0, and suppose there
is F ∈ Fdiag(H). Then there is an x-lift F ′ ∈ Fdiag(H↑x)
by enlarging each clause of F about x̄, and adding the unit
clause {x}. So a contradiction occurs.

Addressing (ii) let H ∈ Hmdiag then H↑x ∈ Hdiag, because
of (i). For arbitrary F ′ ∈ Fdiag(H↑x) one has F ′[V ] ∈ I
because H↑x[V ] = H ∈ Hmdiag. For fixed b′ ∈ B↑x set
F := F ′ \ F ′

b′ . Consider two cases. (1) b′ = {x}: Then
F [V ] = F ′[V ] ∈ F(H) ∩ I, so choosing an arbitrary c ∈
F [V ], the partial assignment w(V (c)) = cγ can be extended
to a model w ∈ WV of F [V ] \ {c} due to La. 1 (v). Thus
F \ {c′} ∈ SAT, where c′[V ] = c. Finally, c′ ∈ F can be
satisfied via x.

(2) b′ 6= {x}: Let b := b′ \ {x}, then F [V ] ∈ F(H \ {b})
is satisfiable by the minimal diagonality, hence every model
w ∈WV of F [V ] also satisfies F (V ). Finally, the remaining
unit clause can be satisfied via x, so F ∈ SAT, implying
H↑x ∈ Hmdiag.

Reversely assume H↑x ∈ Hmdiag then H = H↑x[V ] ∈
Hdiag by (i). Next let b ∈ B, b′ := b ∪ {x}, F ∈ Fdiag(H)
and suppose F̂ := F \Fb ∈ UNSAT. Then there is a diagonal
x-lift F̂ ′ ∈ Fdiag(H↑x \ {b′}) of F̂ yielding a contradiction,
and verifying (ii).

In view of (i) assume Fdiag(H) 6= ∅ then Fdiag(H↑x) 6=
∅. Let Fj ∈ Fdiag(H), and F ′

j be a diagonal x-lift of Fj ,
j ∈ [2]. Suppose F1, F2 live in distinct GV -orbits, but there
is X ′ ∈ GV ↑x s.t. F ′X′

1 = F ′
2. Since x /∈ V one has that

GV ↑x is the direct sum of (the abelian groups) GV and G{x},
so there are unique X ∈ GV , Y ∈ G{x} with X ′ = X ⊕
Y . Therefore one obtains FX

1 = F ′
1[V ]X = F ′

2[V ] = F2,
yielding a contradiction and implying δ(H↑x) ≥ δ(H).

Regarding (iv) assume H ∈ Hmdiag then also H↑x ∈
Hmdiag by (ii). Let F ′

j ∈ Fdiag(H↑x), j ∈ [2], live in
distinct GV ↑x -orbits, but suppose there is X ∈ GV s.t.
F ′

1[V ]X = F ′
2[V ]. If there is a non-unit c ∈ F ′

1 containing
the same x-literal as its unit clause then both clauses can
be solved via x. So setting all remaining literals in c to 0
yields a partial assignment that can be extended to a model
of F ′

1 ∈ I due to La. 1 (v) yielding a contradiction.
Hence all non-unit clauses of F ′

1 have the same literal
over x which is the complement of that in its unit clause;
the same holds for F ′

2. In consequence there is a unique Y ∈
G{x} s.t. Z := X ⊕ Y ∈ GV ↑x with F ′

1
Z = F ′

2 providing
a contradiction. Thus δ(H↑x) ≤ δ(H) meaning δ(H↑x) =
δ(H) relying on (iii).

Finally assume H /∈ Hmdiag then with (ii) H↑x /∈ Hmdiag.
Let F ∈ Fdiag(H) be arbitrary, and F ′ be a diagonal x-lift of

F . So there is H̃ ∈ G(H↑x) and according to Prop. 8 (2) also
b′ ∈ B↑x\B(H̃). W.l.o.g. one can assume that the restriction
of F ′ to H̃ is unsatisfiable. Let F ′′ be obtained from F ′

via substituting l(x) ∈ F ′
b′ by l(x). Then obviously F ′, F ′′

live in two distinct GV ↑x -orbits and also F ′′ ∈ UNSAT
because it has the same restriction to H̃ as F ′. Therefore
δ(H↑x) > δ(H) finishing the proof by contraposition. 2

Consider the 2-uniform H ∈ Hmdiag defined by x-
connecting two FPP(1)-BHGs which is minimal diagonal
due to La. 4 (i). Further, H has size 6 and 5 vertices.
Removing a single edge provides a maximal non-diagonal
BHG of size 5 and density 1. Iterating the lifting process
starting with H and using in each step a new vertex xj by La.
9 (ii), the minimal diagonality of every intermediate instance
is maintained, for all j ∈ [m− 5].

Thus finally one obtains a minimal diagonal BHG of size
m + 1 that has exactly m vertices. Removing exactly one
edge provides a maximal non-diagonal instance of size m
and density 1 which in particular is loopless if the loop was
removed.

Moreover since δ(H) = 1, by La. 9 (ii), (iv) also the xj-
lift in each iteration remains simple, for j ∈ [m − 5]. In
summary we constructively proved:

Proposition 10: For every m ∈ N, m ≥ 5, there is a
(loopless) BHG of size m and density 1, that is maximal
non-diagonal wrt. a member of the class Hcon

simp. 2

Adapting the previous proof using the 2-uniform instance of
size 6 provided in the proof of La. 4 (ii) as the initial BHG,
one concludes on basis of La. 9 (iv):

Corollary 5: There is a (loopless) BHG of size m, m ≥ 5,
which is maximal non-diagonal wrt. a member of Ĥ3.
Maximal non-diagonality becomes diagonality by increasing
the BHG about exactly one edge. A retraction non-diagonal
instance becomes diagonal by a retraction involving exactly
one edge that fails to be equal to the vertex set. The inclusion-
relation between those classes is stated in the next result.

Proposition 11: Maximal non-diagonality and retraction
non-diagonality provide distinct, yet overlapping subclasses
of H0, more precisely:

(1) There are maximal non-diagonal BHGs that are not
retraction non-diagonal.

(2) There are loopless, maximal non-diagonal BHGs that
are retraction non-diagonal. Moreover, diagonality re-
sulting from a retraction in general does not mean
minimal diagonality.

(3) There are loopless, retraction non-diagonal BHGs that
fail to be maximal non-diagonal.

PROOF. For (1) consider KV ∈ Hmdiag with V = {x, y}
and b := {x} then in view of La. 4, H := KV \ {b} ∈
Hmaxnd. H[V \ {y}] consists of the loop {x} only hence is
non-diagonal. Moreover, since V \ {x, y} = ∅, H /∈ Hretnd.

Regarding (2) consider H = (V,B) ∈ Hdiag, and
H′ = H \ {xy2} = (V,B′) ∈ Hmaxnd as defined in
Example 2. Then for b′ = xy1 ∈ B′ the retraction H′′ :=
H′[V \ b′] ∈ Hdiag because {y3, y4, y3y4} ( B(H′′). Thus
also H′ ∈ Hretnd. The second assertion of (2) is true because
H′′ obviously is no minimal diagonal BHG.

For (3) let H ∈ Hxlin be isomorphic to FPP(2), hence
H ∈ H0. According to La. 4 (ii) one has H ∈ Hretnd, and
due to Thm. 2, H /∈ Hmaxnd. 2
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VI. A CONNECTION TO MAXIMAL SATISFIABLE
FORMULAS

Recall that for C ′ ∈ UNSAT a subformula C ∈ SAT is
C ′-maximal satisfiable if C ∪ {c} ∈ UNSAT, for every c ∈
C ′ \C, as defined in [14]. As a non-trivial example consider
the total clause set KH ∈ UNSAT over an arbitrary (not
necessarily diagonal) H = (V,B). For every w ∈ WV with
KH \ w(B), a KH-maximal satisfiable formula is provided
[14]. Note that the BHG of KH \w(B) equals H, and more
generally, there can arise maximal non-diagonal BHGs from
a C ′-maximal satisfiable formula C only in case H(C ′) 6=
H(C).

As another example, let I ∈ I. For every c ∈ I , I \ {c} is
an I-maximal satisfiable formula [14]. So for H ∈ Hmdiag,
every F ∈ Fdiag(H) provides an F -maximal satisfiable
formula F \ {c}, for each c ∈ F .

Whether there are deeper connections between these
concepts shall be addressed next. A useful concept here
for the instances in UNSAT is the parameter µ(C) :=
min{|w(B(C)) ∩ C| : w ∈ WV (C)} > 0, together with
W

µ(C)
V (C) := {w ∈ WV (C) : |w(B(C)) ∩ C| = µ(C)} [14].

In case µ(C) = 0 there is a compatible transversal in the
complement formula which by Thm. 1 implies C ∈ SAT.
The next result regards transversals only:

Theorem 9: Let C ∈ UNSAT s.t. |Cb| = 1, for all b ∈
B(C). If there is w ∈ W

µ(C)
V (C) s.t. H0 := H(C \ w(B(C)))

is non-diagonal then H0 ( H(C) is maximal non-diagonal.
PROOF. The fibre-condition on C ensures that it is a transver-
sal of its BHG, hence H := H(C) =: (V,B) ∈ Hdiag. Let
w ∈ W

µ(C)
V s.t. H0 := H(C0), where C0 := C \ w(B),

is non-diagonal, hence H0 is a proper sub-BHG. According
to the proof of Thm. 7 in [14] C0 then is a C-maximal
satisfiable formula.

Suppose there is x ∈ V \ V0 then there also is c ∈ C \C0

containing a literal over x which can be satisfied indepen-
dently of C0. Thus C0∪{c} ∈ SAT providing a contradiction
hence V = V0. By assumption H0 is non-diagonal. Let
b ∈ B \ B(H0) be arbitrary then there is c ∈ Cb ∩ Wb

which is not in C0. Because of the C-maximal satisfiability,
C0 ∪ {c} ∈ UNSAT which according to the condition on C
also is a transversal of H0 ∪{b}. Thus δ(H0 ∪{b}) > 0, for
every b ∈ B\B0, implying that H0 is maximal non-diagonal
w.r.t. H. 2

Restricting µ to diagonal transversals induces the follow-
ing parameters on diagonal BHGs.

Definition 8: Let H = (V,B) be diagonal. Let λ(H) :=
min{|w(B) ∩ F | : w ∈ WV , F ∈ Fdiag(H)} be the lower
intersection index of H. Similarly the upper intersection
index of H is defined by ν(H) := max{|w(B) ∩ F | : w ∈
WV , F ∈ Fdiag(H)}. Moreover let Wτ(H) := {(w,F ) ∈
WV ×Fdiag(H) : |w(B) ∩ F | = τ(H)}, for τ ∈ {λ, ν}.
Regarding λ, ν as integer-valued mappings on Hdiag one has.

Lemma 10: There is no upper bound for the values of ν
on Hcon

diag, and the lower bound of λ on Hdiag is 1. Moreover,
restricted to Hmdiag, λ equals the constant 1.
PROOF. Regarding the first claim consider the minimal
diagonal and even simple KV0 with V0 := {u, v}, so B0 :=
{u, v, uv}. For the diagonal transversal F0 := {u, v, ūv̄}
and w0 := {u, v} ∈ WV0 hence w0(B0) = B0, one has
|w0(B0) ∩ F0| = 2 = d|B0|/2e = |B0| − 1 which also

coincides with ν(KV0) as can be verified easily.
Let s ∈ N and Hj = (Vj , Bj) ∈ H, j ∈ [s], be arbitrary,

mutually vertex-disjoint BHGs s.t. also Vj ∩ V0 = ∅, for all
j ∈ [s]. Set V :=

⋃
j∈[s] Vj , B :=

⋃
j∈[s]Bj and let w ∈

WV , hence w(B) yields a compatible transversal over B.
Then w′(B′) := w0(B0) ∪ w(B) provides w′ ∈WV ′ where
V ′ := V0 ∪V , B′ := B0 ∪B. Moreover F ′ := F0 ∪w(B) ∈
Fdiag(H′) where H′ := (V ′, B′), and |w′(B′)∩F ′| = |B′|−
1. Introduce a new variable u and select a single variable
uj ∈ Vj , for all j ∈ [s]. Defining a new edge b̂ := uu1 · · ·us

and setting B̂ := B′∪{b̂} yields a connected diagonal BHG
Ĥ = (V̂ , B̂). Finally, setting ŵ(B̂) := w′(B′) ∪ {b̂} and
F̂ := F ′ ∪ {b̂} implies ν(Ĥ) ≥ |ŵ(B̂) ∩ F̂ | = |B̂| − 1 > s,
which is arbitrarily fixed.

The lower bound statement for λ directly follows from
the last assertion. For its verification observe that λ(H) =
min{µ(F ) : F ∈ Fdiag(H)}. La. 1 (ii) directly implies
µ(C) = 1 for every C ∈ I. Since Fdiag(H) ⊆ I, for every
minimal diagonal BHG, one obtains λ|Hmdiag = 1. 2

Proposition 12: For arbitrary H′ ∈ Hdiag and every
(w,F ) ∈ Wν(H′) one has H(F \ w(B(H))) ∈ H0.
PROOF. Let H′ = (V,B) and H0 = (V0, B0) := H(F \
w(B)) and suppose there is F0 ∈ Fdiag(H0). Then by the
definition of its diagonality there is b ∈ B0 ( B s.t. F0b =
w(b) because w(B0) can be identified with a compatible
transversal over B0. Obviously w(b) 6= Fb. Hence extending
F0 to F̂0 over B by setting F̂0b′ := Fb′ , for all b′ ∈ B \B0,
yields a transversal in Fdiag(H′) with |w(B)∩F̂0| ≥ |w(B)∩
F | + 1 > ν(H′). Thus it appears a contradiction providing
the claim. 2

Theorem 10: For every H ∈ Hdiag one has:
(1) λ(H) = 1,
(2) ν(H) > λ(H), if H 6∈ Hmdiag.
(3) ν(H) = λ(H) implies H ∈ Hmdiag s.t. there is no pair

b, b′ ∈ B(H) with b ∩ b′ = ∅.
PROOF. Let H = (V,B) and H̃ = (Ṽ , B̃) ∈ G(H) be fixed
due to Prop. 8 (1). If H = H̃ we are done because of La. 10.
Otherwise set H0 := H \ H̃ = (V0, B0) where B0 = B \ B̃
and V0 = V (B0) then B̃∩B0 = ∅ but, in general, Ṽ ∩V0 6= ∅.

Choose an arbitrary (w̃1, F̃1) ∈ Wλ(H̃). Evidently GṼ

operates transitive on WṼ , so there is U ⊂ Ṽ s.t. w̃ :=
w̃U

1 ∈ WṼ contains only negative literals. Moreover F̃ :=
F̃U

2 ∈ Fdiag(H̃) because both lie in the same GṼ -orbit; also
one has (w̃, F̃ ) ∈ Wλ(H̃). Since B0 ∈ Fcomp(H0) contains
positive literals only, setting w(B) := w̃(B̃) ∪ Bγ

0 yields
a well-defined w ∈ WV . Further, one has F ∈ Fdiag(H),
for F := F̃ ∪ B0, because F̃ ∈ UNSAT. It is claimed that
|w(B) ∩ F | = 1 proving λ(H) = 1. To verify the claim,
note that |w̃(B̃)∩ F̃ | = 1 by La. 10. Further, by construction
Bγ

0 ∩B0 = ∅, w̃(B̃)∩B0 = ∅ and Bγ
0 ∩ F̃ = ∅ finishing the

verification of (1).
Assume H 6∈ Hmdiag then there are H̃ = (Ṽ , B̃) ∈ G(H)

and H0 := H \ H̃ 6= ∅. Fix F0 ∈ Fcomp(H0), (w̃, F̃ ) ∈
Wλ(H̃) s.t. analogous to the previous construction w ∈ WV

is well-defined via w(B) := w̃(B̃) ∪ F0, and F ∈ Fdiag(H)
via F := F̃ ∪ F0. Since |F0| ≥ 1 one has |w(B) ∩ F | =
|w̃(B̃) ∩ F̃ | + |F0| ≥ 2 according to La. 10, hence ν(H) >
1 = λ(H).

Regarding (3) let H ∈ Hmdiag then |B| > 1. Assume there
are b0, b′0 ∈ B with b0 ∩ b′0 = ∅ and let F ∈ Fdiag(H) be
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arbitrary. Define w ∈WV via w(b0) = Fb0 , w(b′0) = Fb′0
and

for all b ∈ B\{b0, b′0} by setting w(b) s.t. V (w(b0)∩w(b)) =
b0 ∩ b and V (w(b′0)∩w(b)) = b′0 ∩ b. Hence |F ∩w| ≥ 2. 2

From the proof of (2) above one especially extracts:
Corollary 6: For H ∈ Hdiag one has:

λ(H) = min{|B(H) ∩ F | : F ∈ Fdiag(H)},
ν(H) = max{|B(H) ∩ F | : F ∈ Fdiag(H)}. 2

VII. A NON-COMMUTATIVE JOIN-OPERATION

The simple instances provided in the proof of Prop. 10
contain loops. Thus its maximal non-diagonal derivatives are
loopless only in very rare cases. In this section we are able to
construct simple BHGs of arbitrary size and density (almost)
1 that are k-uniform hence especially loopless, for every fixed
k ≥ 2. To that end the following definition turns out to be
useful. It provides the junction of two formulas resp. two
BHGs below the level of set union, namely on the clause,
respectively edge level:

Definition 9: For m ∈ N, let CNF(m) := {C ∈ CNF :
|C| = m}, and H(m) := {H ∈ H : |H| = m}.

(a) For C,D ∈ CNF(m) s.t. V (C) ∩ V (D) = ∅, and
σ ∈ Bij(C,D), the σ-join of C and D is defined by

C⊗σD :=
⋃
c∈C

[{c∪{l} : l ∈ σ(c)}∪{σ(c)γ}] ∈ CNF

(b) For vertex-disjoint Hj = (Vj , Bj) ∈ H(m), j ∈ [2],
and σ ∈ Bij(B1, B2) let H = (V1 ∪ V2, B1⊗σ B2) =:
H1 ⊗σ H2 ∈ H be the σ-join of Hj , j ∈ [2].

Part (b) of the definition directly relies on (a) by observing
that the hyperedge set of a BHG can be identified with a
formula (containing positive literals only). The operation ⊗σ

neither is commutative nor it is associative on CNF(m),
respectively on H(m) as can be verified easily.

Assuming that C,D ∈ CNF(m) are transversals and
that its clauses are uniquely labeled via the index set [m],
then the same labeling transfers to the members of B1 :=
B(C), B2 := B(D), respectively. Hence σ ∈ Bij(C,D)
can be identified with a unique member of the symmetric
group Sm, which directly yields the corresponding bijection
in Bij(B1, B2), and vice versa. Thus from Def. 9 directly
one concludes:

Lemma 11: If C,D ∈ CNF(m) with V (C) ∩ V (D) =
∅ are labeled transversals over the corresponding equally
labeled B(C), B(D) then H(C ⊗σ D) = H(C) ⊗σ H(D),
for every fixed σ ∈ Sm. 2

Lemma 12: Let m ∈ N, Hj = (Vj , Bj) ∈ H(m), Fj ∈
F(Hj), j ∈ [2], σ ∈ Bij(B1, B2), V := V1∪V2, V1∪V2 = ∅
and F := F1 ⊗σ F2. Then for X ∈ GV1 , Y ∈ GV2 , Z ∈ GV

one has FZ = FX
1 ⊗σ F

Y
2 iff Z = X ⊕ Y .

PROOF. Since Vj ⊂ V one has GVj
≤ GV as a subgroup,

j ∈ [2]. Since GV1∩GV2 = {∅}, which is the neutral element
GV is the direct sum of GVj

, j ∈ [2], in the sense of (abelean)
group theory. Thus for Z ∈ GV there are unique (disjoint)
X ∈ GV1 , Y ∈ GV2 s.t. Z = X ⊕ Y and vice versa. The
claim therefore follows directly from the definition of the
σ-join and recalling that U ∈ GV acts on a clause c via
cU := cU∩V (c) meaning the complementation of exactly its
literals over the variables in U , if existing. 2

Recalling that a linear formula by definition is a transversal
hence is required to be free of complementary unit clauses,
several properties of the σ-join are collected next.

Proposition 13: For m∈N, C,D∈CNF(m) with V (C)∩
V (D)=∅, σ∈Bij(C,D), J :=C ⊗σ D one has:

(1) H(J) ∈ Hcon if H(C) ∈ Hcon or H(D) ∈ Hcon.
(2) |V (J)| = |V (C)| + |V (D)|, |J | = ‖D‖ + m, ‖J‖ =

2‖D‖+
∑

c∈C |c| · |σ(c)|.
(3) J ∈ UNSAT iff C ∈ UNSAT or D ∈ UNSAT.
(4) J ∈ I iff C ∈ I, and D ∈ SAT s.t. for every d ∈ D,

either of the partial assignments dγ , (d \ {l})γ ∪{l} ∈
WV (d), for every l ∈ d, can be extended to a model of
D \ {d}.

(5) J is a transversal iff D is a transversal and for every
b ∈ B(C) with |Cb| > 1 one has V (σ(c))∩V (σ(c′)) =
∅, for all distinct c, c′ ∈ Cb.

(6) J is linear iff D is linear, s.t. for every non-unit clause
c ∈ C one has |σ(c)| = 1, moreover H(C) ∈ Hlin,
and C is linear up to possible pairs of complementary
unit clauses, and for each such pair c, c′ ∈ C one has
V (σ(c)) ∩ V (σ(c′)) = ∅.

(7) J is exact linear iff m = 1 and the clause in C is unit
or the clause in D is unit.

(8) H(J) is k-uniform iff H(C) is (k − 1)-uniform and
H(D) is k-uniform, for fixed k ∈ N, k ≥ 2.

(9) Let C, D be transversals. Then H(J) is k-uniform
and r-regular iff r, k ∈ N \ {1}, r ≡ 0 mod 2,
k|r, moreover H(C) is (k − 1)-uniform, r

k -regular,
and H(D) is k-uniform, r

2 -regular. Furthermore then
|V (C)| = k−1

2 |V (D)|, k ∼= 1 mod 2, k > 1.
PROOF. For c ∈ C with d := σ(c) ∈ D, the subformula
Jc := {c ∪ {l} : l ∈ d} ∪ {dγ} of J is determined via
copying c exactly |d| times and enlarging each copy by
exactly one distinct literal of d, finally adding the clause
dγ . Thus H(Jc) ∈ Hcon, and H(D) ⊆ H(J)from which
(1) can be concluded easily. The first assertion of (2) is
clear. Evidently |Jc| = 1 + |σ(c)|, for c ∈ C. Since σ is
a bijection Jc1 ∩ Jc2 = ∅ whenever c1, c2 ∈ C are distinct.
So J =

⋃
c∈C J

c is a disjoint union providing the second
assertion of (2). Finally, ‖Jc‖ = |d| · |c| + 2|d| yielding the
last statement.

Regarding (3) because of Dγ ⊆ J one has J ∈ UNSAT
if D ∈ UNSAT. Now let C ∈ UNSAT and suppose there
is a model w ∈ WV (J) of J . Then there is c ∈ C with
σ(c) =: d ∈ D s.t. w(V (c)) = cγ otherwise C ∈ SAT.
Therefore either of c ∪ {l} ∈ Jc can be satisfied only via
setting l to 1, for every l ∈ d, meaning w(V (d)) = d. Hence
dγ ∈ Jc is unsatisfied yielding a contradiction. Reversely
assume that C,D ∈ SAT with (disjoint) partial assignments
wC ∈ WV (C), wD ∈ WV (D) satisfying C, respectively
Dγ ⊆ J . Obviously the retraction J ′[V (C)] of the remaining
subformula J ′ := J \ Dγ also is satisfied by wC which
therefore satisfies J ′, too. Thus wC ∪ wD ∈ WV (J) is a
model of J .

For the if-direction of (4), let C ∈ I and D ∈ SAT then
J ∈ UNSAT according to (3). For arbitrary t ∈ J there
are unique c ∈ C, d := σ(c) ∈ D s.t. t ∈ Jc; let J̃ :=
J \ Jc, Ĵ := J \ {t}. Evidently C \ {c} ∈ SAT, so let
wC ∈WV (C) be a corresponding (partial) model, hence also
satisfying the retraction J̃ [V (C)] ∈ SAT, and therefore J̃ \
Dγ , too. According to La. 1 (v) one has wC(V (c)) = cγ

and either there is l ∈ d with t = c∪{l} or t = dγ ∈ Dγ . In
the latter case each clause in Jc \ {t} must be solved by its
unique literal over V (d), i.e., forcing the partial assignment
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d = tγ . By assumption it can be extended to a (partial) model
wD ∈WV (D) satisfying also the remaining formula Dγ \{t}
yielding wC∪wD ∈M(Ĵ). Finally, if t = c∪{l}, all clauses
in Jc \ {t}, especially dγ have to be satisfied via (d \ {l})∪
{l̄} ∈ WV (d). By assumption this partial assignment can be
extended to a (partial) model wD ∈ WV (D) for Dγ \ {dγ}.
Hence wC ∪ wD ∈M(Ĵ) implying J ∈ I.

Reversely assume C /∈ I then either (i): C ∈ SAT which
in case of D ∈ SAT means J ∈ SAT due to (3). If D ∈
UNSAT then Dγ ∈ UNSAT, so removing a clause from
J \Dγ remains the resulting formula unsatisfiable, therefore
J /∈ I. Or (ii): C ∈ UNSAT and there is c ∈ C with
C \{c} ∈ UNSAT then J ∈ UNSAT via (3). Suppose there
is w ∈ M(J̃) where J̃ := J \ {c ∪ {l}}, for fixed l ∈ σ(c).
Then there is ĉ ∈ C \ {c} s.t. w(V (ĉ)) = ĉγ otherwise
C \{c} ∈ SAT. Therefore ĉ∪{l̂} ∈ J̃ ĉ can be satisfied only
via setting l̂ to 1, for every l̂ ∈ σ(ĉ) meaning w(V (σ(ĉ))) =
σ(ĉ). Hence σ(ĉ)γ ∈ J̃ ĉ is unsatisfied establishing J /∈ I by
contradiction and yielding (4).

Since Dγ ⊆ J , J can be a transversal only if D is a
transversal. Therefore and because of V (C) ∩ V (D) = ∅,
J is a transversal iff (∗): ∀t, t̂ ∈ J \ Dγ , t 6= t̂: V (t) 6=
V (t̂). So, for every fixed c ∈ C and distinct t, t̂ ∈ Jc \Dγ ,
obviously (∗) is guaranteed because |V (σ(c))| = |σ(c)|. For
distinct c, ĉ ∈ C s.t. V (c) 6= V (ĉ) also (∗) is true for the
corresponding t = c ∪ {l} ∈ Jc, t̂ = ĉ ∪ {l̂} ∈ J ĉ, where
l ∈ σ(c), l̂ ∈ σ(ĉ). Finally, for distinct c, ĉ ∈ C with V (c) =
V (ĉ), (∗) is true iff V (σ(c)) ∩ V (σ(ĉ)) = ∅ proving (5).

Evidently J is linear iff D and J \Dγ are linear. The latter
condition is equivalent with (i): |Cb| = 1, say Cb = {c},
and then also |σ(c)| = 1, for all b ∈ B(C) with |b| > 1,
meaning H(C) ∈ Hlin and also that C is linear, except for
possible pairs of complementary unit clauses. Since D is
linear all those unit clauses corresponding to |σ(c)| = 1 are
pairwise variable disjoint. And (ii): For every b ∈ B(C)
with |b| = 1 and |Cb| = 2, hence Cb = {c, cγ}, it must be
V (σ(c)) ∩ V (σ(cγ)) = ∅.

Regarding (7), J is exact linear iff J is linear and V (t)∩
V (t̂) 6= ∅, for all t, t̂ ∈ J . According to the linearity of
J , |c| > 1 ⇒ |σ(c)| = 1 equivalent with |σ(c)| > 1 ⇒
|c| = 1, for every c ∈ C. So a subformula Jc can be of the
following forms only. (i): {c ∪ {l}} ∪ {l̄}, with σ(c) = {l}.
(ii): {c ∪ {lj} : j ∈ [|σ(c)|]} ∪ {σ(c)γ} with |c| = 1, and
σ(c) = {lj : j ∈ [|σ(c)|]} including the case |σ(c)| = 1.
Suppose there are Jc, J ĉ ⊆ J , for distinct c, ĉ ∈ C. If both
are of type (i) then D is forced to have complementary unit
clauses contradicting its linearity. If both are of type (ii) then
one must have c = ĉγ implying V (σ(c))∩V (σ(ĉ)) = ∅ due
to (6) contradicting the exact linearity. Finally, if Jc is of type
(i), and J ĉ of type (ii) then σ(ĉ) cannot be a unit clause as
above. But then l must occur in every clause of J ĉ \{σ(ĉ)γ}
of which there are at least 2 meaning that σ(ĉ) contains l, l̄,
so in summary one must have m = 1.

For (8), observe that since H(D) ⊂ H(J) the k-uniformity
of H(D) is necessary for that of H(J). Moreover, by
definition every edge in B(J) \ B(D) contains exactly one
vertex of V (D), thus H(C) must be (k − 1)-uniform and
k ≥ 2. The reverse direction also is immediately implied by
the definition of the σ-join.

Addressing (9) the uniformity conditions follow from (8).
Since C, D are transversals, due to (5) J is a transver-

sal, too. According to La. 3 in the regular case one has
oJ(x) = |J(x)| = deg(H(J)), for every x ∈ V (J).
Then either x ∈ V (D) or x ∈ V (C). Since Dγ ⊆ J
and each clause of D occurs as σ(c) in J , for every
x ∈ V (D) one has oJ(x) = 2oD(x) = 2 deg(H(D)) =
deg(H(J)) due to the same lemma. That is equivalent with
deg(H(D)) = r/2 if H(J) is r-regular, so r must be even.
For x ∈ V (C) one has in the regular and uniform cases
deg(H(J)) =

∑
c∈C(x) |σ(c)| = oC(x)k = k deg(H(C))

using La. 3. This is equivalent with deg(H(C)) = r
k ,

meaning that k must divide r. Moreover ‖C‖ =
∑

c∈C |c| =
(k − 1)m =

∑
x∈V (C) oC(x) = r

k |V (C)|, and analogously
km = r

2 |V (D)|. Hence |V (C)| = k−1
2 |V (D)|, so k ∼= 1

mod 2 finishing the proof. 2

The next statement provides BHGs ensuring the condi-
tions of Prop. 13 (4) at least for transversals, and also the
conditions of (5).

Corollary 7: Let C,D, J as in Prop. 13.
(1) If C,D are transversals or H(D) is trivial, then J is

a transversal.
(2) J ∈ Fdiag(H(J)) ∩ I if C ∈ Fdiag(H(C)) ∩ I, D ∈

F(H(D)) and H(D) is an all-unique-vertex BHG.
PROOF. The assertion (1) directly follows from Prop. 13 (5).
Every D ∈ F(H(D)) is satisfiable because H(D) is an all-
unique-vertex BHG. For the same reason the requirements
of Prop. 13 (4) are fulfilled obviously, especially in the case
that H(D) contains loops only, so (2) follows with Prop. 13
(4), and assertion (1). 2

Corollary 8: For m ∈ N, let Hj = (Vj , Bj) ∈ H(m),
j ∈ [2], be vertex-disjoint, σ ∈ Bij(B1, B2) then for H =
H1 ⊗σ H2 one has:

(1) H ∈ Hlin iff Hj ∈ Hlin, j ∈ [2], s.t. for every non-loop
b ∈ B1 its image σ(b) ∈ B2 is a loop.

(2) For every integer k ≥ 2, H is k-uniform iff H1 is
(k − 1)-uniform and H2 is k-uniform.

PROOF. In Prop. 13 (6), respectively (8), set C := B1, D :=
B2 evidently being (labeled) transversals implying H(J) =
H according to La. 11. So Prop. 13 (6), (8) implies (1), (2),
respectively. 2

As shown above if both C,D ∈ SAT then also their σ-join
is satisfiable. In general, that does not transfer to arbitrary
transversals of σ-joined BHGs:

Remark 5: Let H = H1 ⊗σ H2, for vertex-disjoint Hj =
(Vj , Bj) ∈ H0(m), j ∈ [2], where m and σ ∈ Bij(B1, B2)
are fixed. Then, in general, Fdiag(H) fails to be empty
which is already the case for m = 2, and H1, H2 are
unique-vertex BHGs (cf. Def. 1): Let H1 with V1 = {u, v}
consist of loops only, hence it is 1-uniform and even an all-
unique-vertex, hence trivial BHG. Let B2 = {xy, yz} and
σ(u) = xy, σ(v) = yz. Since H2 is 2-uniform, also H is
2-uniform with B(H) = {ux, uy, xy, vy, vz, yz}. Evidently
H is isomorphic to two FPP(1)-components that are y-
connected implying H ∈ Hcon

simp ⊂ Hmdiag by La. 4 (i).
Theorem 11: For m ∈ N, let Hj = (Vj , Bj) ∈ H(m),

j ∈ [2], be vertex-disjoint and σ ∈ Bij(B1, B2) be arbitrary.
Moreover letH1 ∈ Hdiag,H2 be trivial, andH := H1⊗σH2.
Then H ∈ Hmdiag iff H1 ∈ Hmdiag. Moreover in this case
δ(H) = δ(H1).
PROOF. W.l.o.g. let Bj , and Fj ∈ F(Hj) be equally labeled
over [m], j ∈ [2]. Hence σ ∈ Sm and H = H(F1⊗σ F2) =:
(V,B) via La. 11.
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First let H1 ∈ Hmdiag and F1 ∈ Fdiag(H1) ⊂ I then
F1 ⊗σ F2 ∈ Fdiag(H) ∩ I by Cor. 7 (2). Hence H ∈ Hdiag

and also H ∈ Hcon due to Prop. 13 (1) because H1 ∈ Hcon.
It is claimed that for F ∈ F(H) one has F ∈ Fdiag(H)

iff there are Fj , j ∈ [2], as above s.t. F = F1 ⊗σ F2. From
this claim one derives Fdiag(H) ⊂ I thus H ∈ Hmdiag.

Since the if-direction of the claim is clear by the previous
argument, let F ∈ Fdiag(H) be arbitrary. For every b ∈
B2 ⊂ B considering its subformula F (b), one has F =⋃

b∈B2
F (b) as disjoint union, because H2 is an all-unique-

vertex BHG. Further, let F̂ = F \ F (V1) =
⋃

b∈B2
Fb ∈

F(H2). Suppose there is b̃ ∈ B2 with b′ = σ−1(b̃) ∈ B1

s.t. |(F (b̃))[b′]| > 1, and let T̃ ∈ UNSAT be a transversal
of the retraction F [V1] =

⋃
b∈B2

(F (b))[σ−1(b)] then T̃ ∈
Fdiag(H1) because F [V1] is H1-based. Hence T̃ ∈ I because
H1 is minimal diagonal.

Substituting the clause T̃b′ by another one in (F (b̃))[b′]
yields another transversal T of F [V1] which however is
satisfiable, by La. 6 in [16]. Let w ∈ WV1 be a model of
T . Since T =

⋃
b∈B2

Tσ−1(b), for every b ∈ B2 there is a
clause cb of F (b) containing Tσ−1(b) which is satisfied by
w. Thus the unique literal over V2 in cb can be assigned
to solve Fb of F̂ , for all b ∈ B2, so satisfying F̂ . Finally
the remaining literals over b ∈ B2 exactly one in each
of the clauses in F (b) \ {cb, Fb} can be assigned s.t. all
these clauses are satisfied, so for all b ∈ B2, because H2

is trivial. Hence F ∈ SAT providing a contradiction and
implying |(F (b))[σ−1(b)]| = 1, for all b ∈ B2, therefore
F [V1] ∈ F(H1). Also F [V1] ∈ UNSAT otherwise F ∈ SAT
because F̂ ∈ SAT.

Next let F̃ := F (V1) and suppose there is b̂ ∈ B2 s.t.
the clause Fb̂ and a clause of F̃ (b̂), say cb̂, have a common
literal l satisfying cb̂, Fb̂. The remaining literals of Fb̂ then
can be assigned for solving all further clauses of F (b̂). Let
w ∈Wσ−1(b̂) be a partial assignment setting all literals over
V1 in cb̂ \{l} to 0. Since F [V1] ∈ I, w can be extended to a
model of F [V1]\F̃ (b̂)[σ−1(b̂)] due to La. 1 (v). Hence F \F̂
and Fb are satisfied but all literals in F̂ \Fb are unassigned.
These can solve the remaining clauses of F because H2

is trivial meaning F ∈ SAT. So by contradiction F̃ [b] and
Fb fail to have a literal in common, for all b ∈ B2. Thus
F = F [V1] ⊗σ F̂ , where F [V1] ∈ Fdiag(H1), F̂ ∈ F(H2),
and the claim is verified.

Conversely assume H ∈ Hmdiag then Fdiag(H) ⊆ I but
suppose H1 ∈ Hdiag \Hmdiag, especially meaning that m >
1. So there is F1 ∈ Fdiag(H1) \ I and let F2 ∈ F(H2) be
arbitrary then F := F1 ⊗σ F2 ∈ Fdiag(H) by Prop. 13 (3).
There is c ∈ F1 s.t. F ′

1 := F1 \ {c} ∈ UNSAT ∩ F(H1 \
{V (c)}). Let σ(c) =: d ∈ F2, F ′

2 := F2 \ {d} ∈ F(H2 \
{V (d)}) and F c := {dγ} ∪ {c ∪ {l} : l ∈ d} ⊂ F .

Then one has H1\{V (c)} ∈ Hdiag, H2\{V (d)} is trivial,
and both are members of H(m−1) with m−1 > 0. Therefore
F ′

1 ⊗σ′ F
′
2 = F \ F c ∈ UNSAT again due to Prop. 13

(3). Here σ′ ∈ Bij(B1 \ {V (c)}, B2 \ {V (d)}) denotes the
restriction of σ to B1 \ {V (c)}. So, F /∈ I providing a
contradiction and completing the proof of the first assertion.

Finally assume there are F, F ′ ∈ Fdiag(H) living in
distinct GV -orbits then as proven before there are F1, F

′
1 ∈

Fdiag(H1), F2, F
′
2 ∈ F(H2) s.t. F = F1 ⊗σ F2, F ′ =

F ′
1 ⊗σ F

′
2. Suppose there is X ∈ GV1 unique s.t. F ′

1 = FX
1 .

Prop. 1 (4) implies ω(H2) = 1, so there is Y ∈ GV2 with
F ′

2 = FY
2 which by La. 12 yields Z := X ⊕ Y ∈ GV with

F ′ = FZ , providing a contradiction. Hence δ(H) ≤ δ(H1).
Conversely let F1, F

′
1 ∈ Fdiag(H1) be members of distinct

GV1-orbits, and assume there are F2, F
′
2 ∈ F(H2) s.t. there

is Z ∈ GV with F ′ = FZ where F = F1 ⊗σ F2,
F ′ = F ′

1 ⊗σ F ′
2. By La. 12 then there are X ∈ GV1

and Y ∈ GV2 with Z = X ⊕ Y implying F ′
1 = FX

1 so
δ(H) = δ(H1). 2

Corollary 9: For every k ∈ N, k ≥ 2, there is a k-uniform
Hk ∈ Hcon

simp of size (k + 1)!, with (k + 1)! − 1 vertices,
so of density 1 asymptotically; further there is a k-uniform
Ĥk ∈ Hmdiag of size (k + 1)!, s.t. δ(Ĥk) = 3.
PROOF. Proceeding by induction on k, the base is already
provided e.g., by H2 of size 6 and 5 variables as defined in
La. 4 (i). Next, let Hk = (Vk, Bk) ∈ Hcon

simp be k-uniform
with k ≥ 2, mk := |Hk| = (k + 1)! edges and nk :=
|Vk| = mk−1 vertices. Further, let H′ = (V ′, B′) ∈ H0(mk)
s.t. Vk ∩ V ′ = ∅ be a (k + 1)-uniform, trivial BHG. Fixing
σ ∈ Bij(Bk, B

′), according to Cor. 8 (2), yields the (k+ 1)-
uniform Hk+1 := Hk ⊗σ H′. Due to Thm. 11 one directly
concludes Hk+1 ∈ Hcon

simp. Moreover by Prop. 13 (2) and
the induction hypothesis one has mk+1 = ‖H′‖ + mk =
(k + 2)mk = (k + 2)!, and also nk+1 = nk + (k + 1)mk =
(k + 2)!− 1.

The second assertion is achieved analogously using as
induction base the minimal diagonal, non-simple BHG with
δ = 3 as provided by La. 4 (ii). That BHG is 2-uniform, and
of size 6 as above. Due to Thm. 11 the value δ = 3 and also
the minimal diagonality are inductive invariants. 2

The previous result in combination with La. 5 yields:
Corollary 10: For every k ≥ 2, there are k-uniform BHGs

of size (k + 1)!− 1 in Hmaxnd and also in Ĥ
(3)
maxnd. 2

VIII. CONCLUSIONS AND OPEN PROBLEMS

The class of maximal non-diagonal BHGs has been inves-
tigated, containing all dense maximal non-diagonal instances
as a proper subclass. Several structural properties could be
revealed, although numerous questions remain open so far.
So, observe that the BHG in the proof of the second statement
of Thm. 4 contains a loop which one should substitute by a
loopless instance, if possible.

Refering to La 4 (ii) the existence of a strict retraction
3-non-diagonal BHG is explicitly established. And in view
of Prop. 3 for infinitely many i there are strict retraction i-
non-diagonal BHGs relying on the results in [18], cf. e.g.
Cor. 6,7, resp. Thm. 10. However clarifying the general case
is still open. Regarding the dense maximal non-diagonality
refering to Remark 4 we provided the existence of dense
maximal non-diagonal BHGs wrt. Kn, for all n > 1, relying
on loops however. Due to Prop. 10 there are loopless dense
maximal (i-)non-diagonal BHGs wrt. Kn, for every n > 1,
too. Refering to Def. 4 establishing Ĥ

(i)
maxnd 6= ∅ is open, for

arbitrary i ∈ N, whereas via Cor. 4 it is provided, for every
i = 2n−1, n ∈ N, relying on instances containing loops.

Next, there arise several computational problems along
with their complexities: First of all, given a BHG, determine
the complexity to decide whether it is diagonal. This problem
is closely related to the problem: Given H and F ∈ F(H),
decide whether F is diagonal. Observe that testing whether
F is compatible can be performed in linear time in the size of
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the formula relying on appropriate data structures. Suppose
it could be efficiently decided whether a non-compatible F
is satisfiable. Then also the decision whether a linear formula
is satisfiable was easy. However, the latter problem is well
known to be NP-complete [19]. Thus the decision whether
a transversal is diagonal, in general is at least NP-complete,
too. We conclude that a test for the diagonality of a BHG
should not rely on SAT-testing of its transversals. And it
arises the question whether there is another approach.

Also the complexity for deciding the minimal diagonality
of an instance H is unknown. Here it might be helpful to
clarify whether the criterion Fdiag(H) ⊂ I for minimal
diagonality of H could be relaxed to Fdiag(H) ∩ I 6= ∅.

Next suppose it could be tested fast whether a transversal
of a linear BHG is minimal unsatisfiable. Then the same was
true for an arbitrary linear formula, implying that also SAT
for linear formulas was decidable easily. So the question how
minimal diagonality or at least simplicity could be decided
efficiently remains open, especially in view of the fact that
there even are arbitrary large simple BHGs by Cor. 9.

Due to Cor. 2 every diagonal BHG admits a maximal non-
diagonal subhypergraph. Thus, given a diagonal H′ and H ⊂
H′, the decision whether H is maximal non-diagonal could
be performed by testing whether B(H′)\B(H) is a minimal
TDG of H′. Hence the complexity for deciding whether a
given set of hyperedges forms a minimal TDG has to be
investigated.

In view of Cor. 3 an investigation of the structure of the
space of all minimal TDGs of Kn, n ∈ N, could be of
interest. Refering to Prop. 11 (1), constructing a loopless
example instead, would be of higher value.

Further, it is unclear whether ν(H) restricted to minimal
diagonal BHGs has an upper bound depending on the size of
the corresponding B(H). Here we conjecture that this bound
is given by d|B(H)|/2e. Note that ν(K2) exactly equals this
bound, cf. the proof of La. 10. In this context also Prop.
12 needs to be sharpened providing a condition for maximal
non-diagonality. Given H = (V,B) ∈ Hdiag refering to Def.
8, one also might ask whether there is a deeper structural
relationship between instances Hj := H \ wj(B), for
different pairs (wj , Fj) ∈ Wν(H), j ∈ [2].

The assumption C ∈ UNSAT, in general, fails to imply
H(C) ∈ Hdiag. Moreover, µ does not equal 1 on all of
UNSAT: As e.g., the total clause set KH even of a non-
diagonal BHG H = (V,B) fulfills µ(KH) = |B|.

Additionally defining a function ψ : UNSAT → N
via ψ(C) := max{|w ∩ C| : w ∈ WV (C)} yields the
relationship ν(H) = max{ψ(F ) : F ∈ Fdiag(H)} to the
upper intersection index of a diagonal BHG. Observe that
also ψ(KH) = |B|, so the question whether there is an
instance, for which both mappings, µ, ψ become equal, must
be answered positive.

However it remains open whether there is a minimal
diagonal H s.t. ν(H) = λ(H) = 1. Recall that the lifted
version H↑x of a minimal diagonal H remains minimal
diagonal; it also fulfills the condition stated in Thm. 10 (3).
But one easily verifies that ν(H↑x) ≥ ν(H). E.g. concretely
one has ν(K↑x

2 ) = 2 = ν(K2).
Refering to La. 11 on the one hand it could be interesting

to investigate the structural aspects of the classes {H1⊗σH2 :
σ ∈ Sm}, for fixed m ∈ N, Hj ∈ H(m), j ∈ [2]. On the

other hand, one can provide examples of non-transversals
C,D ∈ CNF(m) such that C⊗σD and therefore H(C⊗σD)
are well-defined, for every σ ∈ Bij(C,D), but H(C) ⊗σ

H(D) fails to exist for all σ ∈ Bij(B(C), B(D)).
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