
 

 
Abstract—To enhance the capability of classifying and 

localizing defects on the surface of hot-rolled strips, this paper 
proposed an algorithm based on YOLOv7 to improve defect 
detection. The BI-SPPFCSPC structure was incorporated into 
the feature pyramid in this algorithm, enabling enhanced 
extraction of features from small objects and improved 
accuracy in network model positioning. Additionally, a small 
object detection layer was introduced to enhance shallow 
feature capture. Then the CARAFE sampling operator was 
used for up-sampling to reduce the feature loss problem of 
small objects. Finally, the WIoU served as the loss function for 
network model training to expedite convergence. The 
NEU-DET dataset was utilized for ablation and comparison 
tests. The findings indicated that the enhanced YOLOv7 
model's mAP value had increased to 80.7%. The detection 
impact was much enhanced in comparison to other traditional 
models, and the frequency of false and missing detections was 
also decreased. 
 

Index Terms—Hot-rolled strip, YOLOv7, Defect detection, 
CARAFE, WIoU 
 

I. INTRODUCTION 
S a type of steel product, hot-rolled strip steel serves as 
an indispensable raw material for numerous industrial 

applications. Within the manufacturing sector, it finds 
extensive usage in fields such as automotive, construction, 
pipeline, and shipbuilding. Simultaneously, the production 
process of hot-rolled strip steel involves heating, rolling, 
cooling, and other stages that render it susceptible to 
temperature variations and collisions. Consequently, these 
elements may result in surface flaws such dents, cracks, and 
scratches that could endanger public safety in addition to 
impairing the functionality and longevity of hot-rolled steel 
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strip. Therefore, the detection of surface defects in hot-rolled 
strip steel holds significant practical significance. 

Deep learning has advanced significantly in recent years, 
and as a result, its industrial intelligent detection application 
technology has matured. This integration plays a critical role 
in cost reduction and efficiency enhancement for 
organizations by improving detection speed and accuracy 
while also optimizing resource allocation. A common 
method for deep learning object detection is the YOLO series 
technique. YOLOv1 [1], initially proposed by Joseph in 2015, 
stands as the pioneering first-stage deep learning detection 
algorithm, ensuring a certain level of precision while 
enhancing object detection speed. Subsequently, a series of 
YOLO algorithms [2-4] have been proposed, leading to 
significant advancements in the field of defect detection. In 
2021, Cheng et al. [5] proposed an enhancement to YOLOv3 
by integrating shallow and deep features within the network 
architecture, resulting in novel feature layers capable of 
effectively capturing subtle object characteristics. 
Additionally, the inclusion of DIoU border regression loss 
was introduced to expedite model convergence. Kou et al. [6] 
proposed an end-to-end defect detection model leveraging 
YOLOv3, lowering computation time by implementing an 
anchorless feature selection method. Meanwhile, they 
introduced a dense convolutional block to extract 
comprehensive feature information, improving the capacity 
to characterize networks, reuse features, and propagate 
features. Liu et al. [7] proposed a real-time metal surface 
defect detection system utilizing an upgraded version of 
YOLOv4, in which MobileNetv3, a lightweight deep neural 
network, takes the place of the feature extraction network. To 
address the issue of imbalanced positive and negative data, 
they also developed a novel multi-scale adaptive loss 
function, which greatly raises this model's detection accuracy. 
An enhanced YOLOX method was suggested by Ge et al. [8]. 
To increase the algorithm's detection accuracy, a decoupled 
header and tag assignment approach (SimOTA) is employed. 
In 2022, Li et al. [9] proposed adding quadruple 
downsampling into the feature pyramid based on the 
YOLOv5 detection algorithm. while also integrating the 
CBAM attention mechanism into the neural network. These 
changes enhance the neural network's ability to extract 
information and detect small objects more accurately, as well 
as the model's capacity to generalize. Guo et al. [10] designed 
a MSTF-YOLO detection model, by combining the 
multi-scale feature fusion structure to achieve varied size 
feature fusion, improved the dynamic adjustment of the 
detector to different scale objects, and achieved real-time 
monitoring while improving the detection accuracy. Zhang et 
al. [11] proposed a lightweight YOLOv3-M3 network, which 
used K-means++ clustering algorithm to enhance the 
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prediction accuracy. The bounding box regression loss 
function was further enhanced by adopting the CIoU loss 
function, thereby optimizing the training efficiency. During 
the same year, Wang et al. [12] proposed the YOLOv7 series 
algorithm and proposed the efficient aggregation network 
(ELAN) and model reparameterization [13] algorithms, 
which significantly increased the algorithm's detection 
efficiency and enabled it to perform faster and more 
accurately than the previous YOLO series. However, despite 
the high detection efficiency of YOLOv7, small defects on 
the surface of hot-rolled steel strips can easily be overlooked 
during model feature learning, resulting in false detections 
and missed objects. Therefore, there is still considerable 
scope for enhancing the capture of feature information 
pertaining to small objects and improving the accuracy of 
their detection using YOLOv7. 

This paper presents an enhanced YOLOv7 algorithm for 
detecting surface defects in hot-rolled strip steel, with the aim 
of improving the classification and localization capabilities 
of small object defects. The main work includes the 
following four points: (1) In the backbone network, the 
CCBS module is constructed by introducing coordinate 
convolution CoordConv, the SPPF structure and the 
Biformer attention mechanism are used to reconstruct 
SPPCSPC. This facilitates the model to allocate greater 
attention towards regions containing small object samples 
and extract a higher number of features pertaining to small 
objects. (2) The incorporation of a small object detection 
layer facilitates the fusion of the high-resolution feature map 

with the original three scale feature maps, thereby enhancing 
the extraction of features pertaining to smaller objects. 
Additionally, a corresponding detection head is incorporated 
to augment the detection rate and precision of small objects. 
(3) A new up-sampling operation CARAFE is adopted to 
augment the receptive field. It can reduce the loss of small 
object features. (4) The loss function is substituted by the 
bezel-fitting CIoU incorporating the dynamic non-monotonic 
focusing WIoU, thereby enhancing the convergence speed of 
the network model. 

II. RELATED WORK  
The YOLOv7 algorithm, being an iterative version of the 

YOLO series, outperforms the majority of existing object 
detection algorithms in terms of both speed and accuracy. 
Therefore, the YOLOv7 series model is chosen as the 
fundamental basis for subsequent research endeavors. The 
YOLOv7 series comprises three versions: YOLOv7, 
YOLOv7-Tiny, and YOLOv7-W6. Specifically designed for 
conventional GPUs, YOLOv7 is optimized to achieve 
superior performance. On the other hand, YOLOv7-tiny is 
tailored for embedded edge GPUs while YOLOv7-W6 caters 
to cloud-based GPUs. The network architecture of the 
comprehensive YOLOv7 model consists of four key 
components: Input, Backbone, Neck, and Head. The network 
architecture of YOLOv7 is illustrated in Fig. 1. 

A. Input 
The input side that was utilized augmentation of the 

 
Fig. 1 YOLOv7 network model structure 
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mosaic data and several more preprocessing steps for the 
images, thereby optimizing the training effect while reducing 
graphics card memory consumption. This approach enriched 
both positive and negative samples for network learning, 
effectively meeting the requirements of feature extraction.  

B. Backbone 
The backbone network primarily consists of the CBS 

convolutional module, ELAN structure of efficient 
aggregation network and MPConv module. ELAN structure 
introduces the idea of residual structure, using multiple 
convolution, normalization and activation function stacking 
to improve accuracy by increasing depth. At the same time, 
the residual blocks are internally connected through jump 
connections, simultaneously addressing the issue of gradient 
vanishing during deep neural network training. The MPConv 
module effectively expands the receptive field of the feature 
graph by leveraging the maximum pooling operation. By 
integrating this with the characteristic information obtained 
from conventional convolution processing, it enhances the 
model's generalization capability.  

C. Neck 
In the neck, YOLOv7 uses the SPPCSPC structure. 

Mitigate the distortion induced by image processing and the 
issue of repeated extraction of image features. Subsequently, 
the FPN architecture is employed to integrate the three 
feature layers generated by the backbone, facilitating 
effective amalgamation of feature information across diverse 
scales in the model. Simultaneously leveraging the PANET 
structure facilitates upsampling-based fusion of features at 
various levels, facilitating information transfer and 
interaction between low-level and high-level representations, 
thereby enhancing model detection accuracy. 

D. Head 
In the head, three detection heads with different object 

sizes are used, and RepConv modules with different 
structures are used in the training and reasoning process, 
which can improve the training accuracy and reasoning speed, 
and finally output three different scale prediction results. 

III. ALGORITHM DESIGN  

A. BI-SPPFCSPC Feature Pyramid Structure 
In order to improve enhance small object feature extraction 

capabilities, the detection accuracy of small objects is further 
enhanced. In this paper, the SPPCSPC structure was 
redesigned, and the reconstruction method was to build 
CCBS module by using coordinate convolution to increase 
the representation capability of the network, then adopt SPPF 
structure to speed up the detection speed, and finally 

incorporate the BiFormer attention mechanism to enhance 
the detection efficiency of small object defects. After 
reconstruction, the structure of BI-SPPFCSPC was shown in 
Fig. 2. The reconstruction process is as follows. 
1) CCBS Module 

Conventional convolution operations exhibit translation 
invariance, allowing images to share unified convolution 
kernel parameters across different locations, thereby 
facilitating the learning of essential features for tasks like 
classification. However, when conventional convolution 
performs local operations in the convolution kernel, the 
model is limited to perceiving only local information and 
lacks the ability to perceive the positional information of the 
current feature within the image. The focus of the proposed 
method is solely on the pixel value of the input image, while 
ignoring the information related to the position and 
coordinate. CoordConv [14] differs from conventional 
convolution by incorporating two additional channels after 
the input feature map, representing the i and j coordinates of 
each original input pixel. These coordinate channels are then 
connected with the original input feature channels using 
conventional convolution, enhancing its performance. This 
approach enables better understanding of spatial relationships 
and positional information between pixels as depicted in Fig. 
3. The CCBS module is constructed by replacing 1×1 
conventional convolutions in the original structure with 
CoordConv layers. During training, perceiving coordinate 
information improves detection accuracy and enhances 
precise position perception. 
2) SPPF Structure 

The SPPF structure initially partitions the features 
processed by the convolution layer into two segments, one 
utilizing conventional operations and the other employing 
maximum pooling processing, as illustrated in Fig. 4. The 
convolution kernel size within the maximum pooling layer is 
set to 5×5, followed by sequential feature map input and 
fusion. Ultimately, the maximum pooling segment is 
integrated with the conventional processing segment. By 
virtue of two consecutive 5×5 maximum pooling layers 
yielding an equivalent feature extraction effect as a single 
9×9 maximum pooling layer, three successive 5×5 maximum 
pooling layers achieve a comparable feature extraction effect 
to that of a single 13×13 maximum pooling layer. 
Consequently, while attaining identical operational efficacy 
as the SPP[15] structure, the SPPF architecture enhances 
computational efficiency by half and augments network 
model speed without compromising accuracy. 
3) BiFormer Attention Mechanism 

BiFormer [16] is a dynamic sparse attention mechanism 
based on a variant of the Transformer architecture. The 
approach employs query adaptation to concentrate on a 
limited set of pertinent tags while disregarding extraneous 

 
Fig. 2 Structure of the BI-SPPFCSPC 
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ones. Its structure is shown in Fig. 5. During the initial stage, 
BiFormer employs overlapping blocks to embed, and in the 
second to fourth stage, the Merge module is utilized to 
decrease the spatial resolution of input data and 
simultaneously increase channel capacity. Subsequently, 
consecutive BiFormer blocks are employed for feature 
transformation. This approach enables more flexible 
computation allocation and content perception, addressing 
issues related to high computational complexity and memory 
consumption. Additionally, it enables the network to 
prioritize regions that contain small objects, facilitating 
extraction of precise features and enhancing small object 
detection performance. 

B. Small Object Detection Layer  
The original YOLOv7 model incorporates three detection 

layers with varying scales. When an image of size 640×640 is 
input, the detection layer outputs scales of 80×80, 40×40, and 
20×20 respectively. This network employs receptive field 
size to differentiate objects, utilizing large-size feature maps 

for detecting small objects and small-size feature maps for 
detecting large objects. However, the subsampling factor of 
YOLOv7 is relatively large, leading to the loss of defect 
feature information during continuous subsampling. 
Additionally, deeper feature maps struggle to capture shallow 
small object features, resulting in suboptimal detection 
performance for smaller objects. Therefore, a structure of 
small object detection layer is proposed, and the shallow 
feature map and deep feature map are fused together, this 
enables the model to enhance its ability in extracting detailed 
information from small objects during training, thereby 
improving the accuracy of object detection. 

The network is enhanced by adding a small object 
detection layer with an input resolution of 160×160 in this 
study, and the PAFPN structure is used for horizontal 
connection with the detection layer with 8, 16 and 32 times 
downsampling. The detection layer of small objects contains 
more intricate details and features, enough defect feature 
information can be provided to the deep feature map during 
the feature fusion procedure to improve the feature capture. 

 
Fig. 3 Structure of CoordConv 

 
Fig. 4 Structure of SPPF 

 
Fig. 5 Structure of BiFormer 
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At the same time, the detection head corresponding to the 
small object detection layer is simultaneously incorporated 
on this basis, thereby enhancing the capability of detecting 
small objects, which can further reduce the situation of 
missing and false detection, and enhance the network's 
capacity for generalization. 

C. CARAFE Upsampling Operator 
The YOLOv7 model utilizes the nearest neighbor 

interpolation technique for up-sampling, which provides the 
benefit of fast processing speed and is suitable for minor 
image scaling operations. However, due to its simplistic 
approach of copying values from neighboring pixels, it fails 
to generate new pixel values and lacks smoothness, resulting 
in jagged edges in the enlarged images. Additionally, the 
upsampled kernel of the nearest interpolation is solely 
determined by the spatial position of the pixel, resulting in a 
limited perceptual domain that fails to fully capture the 
content information embedded within the feature map. 

This paper proposes a substitution for the nearest neighbor 
interpolation method by introducing CARAFE[17], a 
lightweight up-sampling operator. The CARAFE operator 
incorporates content perception and feature recombination as 
its fundamental concepts. Fig. 6. illustrates the structure of 
the CARAFE operator. When an input feature graph with an 
up-sample rate   and size H×W×C is provided, the kernel 
prediction module initially employs a channel compressor 
using 1×1 convolution to compress the number of channels in 
the input feature graph to H×W×Cm. This compression helps 
reduce computational complexity for subsequent steps. 
Subsequently, a convolution layer with parameter 

encoder encoderk k  is utilized to predict an upsampled kernel of 
size up upk k , where the number of input channels is Cm and 

the number of output channels is 2 2
upk . The channel 

dimensions are expanded within the spatial domain to acquire 
an upsampled kernel with a size 2

upH W k   . Finally, the 
weight sum of the convolutional kernel is ensured to be equal 
to 1 through normalization using the Softmax function. Every 
position in the output feature map is mapped by the feature 
recombination module back to its matching location on the 

input feature map, resulting in the acquisition of a refined 
feature map ( , )l upN k . Then, a region up upk k  centered at 
each location is extracted for dot product operation with 
predicted upper sampling kernel 'lW  at that point. This 
enables different channels at identical locations to share 
identical upper sampling kernels and ultimately yields an 
output feature map with size H W C   . 

After applying the CARAFE operator, the feature fusion 
network is able to extract more comprehensive contextual 
information from the input low-resolution feature map, 
thereby facilitating a better understanding of the global 
structure of the input image and ultimately enhancing defect 
detection performance. 

D. DIoU Loss Function 
For object detection, choosing a loss function is essential 

since it affects how well objects are localized. In YOLOv7, 
the CIoU loss function [18] is employed for bounding box 
regression. This particular loss function incorporates the 
aspect ratio between predicted and actual frames to 
effectively address situations where there is no overlap 
between them, thereby providing accurate motion direction 
for bounding frames. However, despite its advantages, the 
CIoU loss function treats all loss variables collectively and 
fails to consider potential mismatches between actual objects 
and predicted boxes, resulting in slow convergence and 
instability. 

WIoU (Wise-IoU) [19] is a new bounding box regression 
loss function with dynamic non-monomonotic focusing 
mechanism. The evaluation of anchor frame quality in this 
approach employs "outliers" instead of IoU, while ensuring 
the high-quality effect through gradient gain and mitigating 
the influence of detrimental gradients, thereby enhancing the 
overall algorithm performance. WIoU constructs a two-layer 
attention mechanism to prevent slow convergence, improve 
convergence accuracy and enhance model generalization 
ability. The formula for WIoUv1 is in equation (1). 

1

2 2

2 2 *

( ) ( )exp( )
( )v

g g

gt gt
WIoU IoU

x x y yL L
W H

  



 

In order to avoid large harmful gradients for lower quality 

(1) 
 

 
Fig. 6 Structure of CARAFE operator 
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samples, this paper utilizes   and WIoUv1 to construct 
WIoUv3. The formula for WIoUv3 is in equation (2). 

3 1v vWIoU WIoUL L 


   

The variables  and  are represent hyperparameters, 
while   denotes the outlier factor of the anchor box, exp is 
an exponential function, the coordinates x and y  represent 
the central point of the predictor box, gtx and gty  are the 
location of the center point of the real box, gW and gH  are 
the width and height of the smallest enclosing box of the 
predictor box and the real box, * represents the computational 
separation, IoUL  represents the ratio of the crossing regions 
between the predictor box and the real box. 

E. Improved YOLOv7 Network Model Structure 
The enhanced model architecture is illustrated in Fig. 7. 

BI-SPPFCSPC represents a reconstructed feature pyramid 
structure, which aims to extract more precise features of 
small objects. Additionally, the inclusion of a small object 

detection layer enhances the capture of these features, and 
then the CARAFE upsampling operator is employed as a 
replacement for the nearest neighbor interpolation method to 
augment the fusion capability of the feature fusion network. 
Finally, the network model's frame loss function is swapped 
out for CIoU with WIoU in order to strengthen the model's 
capacity for generalization and quicken its convergence. 

IV. EXPERIMENTS 

A. Experimental Dataset 
The NEU-DET (Northeastern University-Detect) dataset is 

a collection of neutron data on steel surface defects, 
published by Northeastern University. It encompasses six 
distinct categories of common defects observed on the 
surfaces of hot-rolled strip, including Rolled-in-Scale, 
Patches, Crazing, Pitted-Surface, Inclusion and Scratches. 
The collection offers annotations specifying the kind and 
position of flaws in each image for the purpose of defect 
detection. 

(2) 
 

Fig. 7 Improved YOLOv7 network architecture 
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B. Experimental Environment 
The experimental setup employed the Windows 10 

operating system, an Intel(R) Core(TM) i7-10700F CPU @ 
2.90GHz, and an NVIDIA GeForce RTX 3070 graphics card 
with 8GB of video memory. The deep learning framework 
utilized was PyTorch version 1.12.1, implemented in Python 
3.9 programming language. The accelerated computing 
architecture employed CUDA version 11.6 for efficient 
computations. The algorithm processed input images of size 
640×640 and a training batch size of 8 was used for a total of 
300 epochs during training process. 

C. Evaluation Indicators 
This study chooses three widely-used evaluation criteria 

for object detection tasks in order to thoroughly and 
impartially assess the trained model's performance: mAP, 
Params, and GFLOPs to measure the upgraded algorithm's 
efficacy. The introduction of these metrics is as follows. 
1) mAP 

The mean average precision (mAP) represents the overall 
accuracy of object detection across all categories. In this 
paper, the IoU threshold for judging positive and negative 
samples is set as 0.5. When the Intersection over IoU value 
between the detected bounding box and the ground truth box 
exceeds a predefined threshold, the sample is classified as a 
positive instance and denoted as TP (true positive). When the 
IoU value is lower than 0.5, the classification of a sample as 
negative is indicated by FP (false positive). The ratio of the 
number of positive samples to the total number of detected 
objects of this type is denoted as the accuracy P. The formula 
for P is in equation (3). 

TPP
TP FP




                            (3) 

FN (false negative) represents the sample that 
misidentifies the positive sample as the negative sample, and 
the recall rate is denoted as R. The formula for R is in 
equation (4). 

                              TPR
TP FN




                            (4) 

The two-dimensional P-R curve is plotted with precision 
(P) on the vertical axis and recall rate (R) on the horizontal 
axis. The area under the P-R curve, known as average 
accuracy value AP, represents a measure of performance. 
The formula for AP is in equation (5). 
                                  

1

0
( )AP P R dR                            (5) 

Compute the average precision (AP) values for each 
category individually, aggregate all AP values, and then 
divide by the number of categories to obtain the mean 
average precision (mAP). The formula for mAP is in 
equation (6). 

 

1

1 c

i
i

mAP AP
c 

   

2) Params 
Params is the number of parameters in the network model, 

denoted as M. 
3) FLOPs 

FLOPs is the amount of computation that reflects the 
complexity of the model, denoted as G. 

D. Experimental Results and Analysis 
The comparison of experimental results between the 

proposed improved YOLOv7 model and the original 
YOLOv7 model is presented in Fig. 8, providing compelling 
evidence to validate the efficacy of our algorithm. The top 
section displays the detection performance of YOLOv7, 
while the bottom section shows that of our improved model. 
In the diagram, each box represents a detected defect region, 
with the defect category and confidence level annotated 
above each respective region. The experimental results 
demonstrate that the enhanced model exhibits superior 
detection accuracy compared to the original YOLOv7 model 
across six types of defects. Simultaneously, the improved 
model exhibits an additional recognition box in detecting 
cracking and scratch defects compared to the original model, 
thereby indicating a certain enhancement in addressing the 
issue of missed detections. 

The improved model's detection performance on different 
types of defects on the surface of hot-rolled steel strips can be 
analyzed through the utilization of a confusion matrix. Fig.9 
presents the confusion matrix generated after training, which 
consists of six categories. By examining the diagonal 
elements in the matrix, it becomes evident that a significant 
majority of defects are accurately predicted and assigned to 
their respective categories. Furthermore, by analyzing the 
accuracy distribution within the confusion matrix, it is 
observed that Patches, Scratches, and Inclusion are predicted 
with higher precision compared to other categories. This can 
be attributed to the distinct characteristics exhibited by 
patch-type defects during training, indicating that their

(6) 

Fig. 8 Comparison of experimental results of hot-rolled steel strips 
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features were more effectively captured and utilized for 
prediction purposes. Consequently, these features 
demonstrate superior expressiveness. 

The efficacy of the enhanced strategy employed in the 
proposed algorithm has been validated through a series of 
ablation experiments. YOLOv7 was used as the baseline 
model in the experiment, and the corresponding experimental 
findings were presented in Table I. The effectiveness of each 
improvement point was verified through a series of eight 
ablation experiments, denoted as N1-N8. “” represents that 
the improvement point was adopted, and “-” represents that 
the improvement point was not adopted. 

In the table, group N1 directly uses the YOLOv7 model to 
conduct experiments. The experimental results demonstrate 
that the mAP value of the baseline model YOLOv7 is 75.5%, 
the number of model parameters is 37.2M, and the 
calculation amount is 108.8G. Although it has a great 
advantage in accuracy, its effect is still not ideal. In the N2 
group experiment, the original SPPCSPC was reconstructed 
into Bi-SPPFCSPC in the backbone network of YOLOv7, 
and the mAP reached 78.2%. In contrast to the original  
YOLOv7 model, there was a 2.7% rise in the mAP value, 
which proved the effectiveness of the reconstructed 
BI-SPPFCSPC structure. In group N3, the YOLOv7 model  
incorporates a dedicated layer for small object detection, 

resulting in an improved mAP value of 78.3%, this 
improvement of 2.8% compared to the original model 
effectively enhances the detection performance for small 
object defects. In the N4 group of experiments, the improved 
points of N2 and N3 are combined, and the mAP value is 
increased to 79.5%, thereby substantiating the concurrent 
enhancement of detection efficacy brought about by the 
integration of these two structures. In the N5 group of 
experiments, the upsampling method was replaced in the 
original YOLOv7 model, and the CARAFE operator was 
used. The original model achieved a 1.3% increase in mAP 
value, reaching 76.8%, while exhibiting only minimal 
augmentation in parameter count and computational 
complexity. In the N6 group of experiments, the border loss 
function CIoU was replaced with WIoU, resulting in 
accelerated convergence of the network model and a 0.6% 
increase in mAP value. The N7 group of experiments 
combines the improved points of N5 and N6, and the mAP 
reaches 77.2%, thereby demonstrating their concurrent 
enhancement on detection accuracy. The N8 group of 
experiments is the combination of four improvement points, 
and the mAP value is increased to 80.7%, the parameter 
amount is 41.2M, and the calculation amount is 120.7G. 
Although compared with the original model, the parameter 
amount and calculation amount are increased, the mAP value 

 
Fig. 9 Confusion matrix for hot-rolled strip experiments 
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is increased by 5.2%, indicating that the algorithm 
constructed in this paper can greatly increase the precision 
with which small object flaws are detected. 

The proposed algorithm is compared with object detection 
algorithms including YOLOv5, YOLOX, YOLOv7, and 
ST-YOLO[20], and the corresponding results are organized 
in Table Ⅱ. The table reveals that the mAP value of the 
enhanced YOLOv7 model in this study exhibits a 7.5% 
increase compared to that of the YOLOv5 model, 6.9% 
higher than that of the YOLOX model, 5.2% higher than that 
of the YOLOv7 model, and 0.4% higher than that of the 
ST-YOLO model. Meanwhile, the mAP curve of the 
improved algorithm in this paper and the original YOLOv7 
model in the training process are presented in the form of 
comparison, as shown in Fig. 10. The proposed algorithm 

demonstrates a significant enhancement in detection 
accuracy compared to other mainstream object detection 
networks, while only a marginal increase in computational 
complexity and parameters. Moreover, it exhibits superior 
identification capabilities for detecting small objects.  

V. CONCLUSION 
This paper proposes an improved YOLOv7-based model 

to address the issue of false positives and false negatives in 
detecting small object defects on hot-rolled strip surfaces. In 
this model, the BI-SPPFCSPC feature pyramid structure is 
designed, which uses coordinate convolution to replace the 
conventional convolution to construct the CCBS module, 
structure and introduces the BiFormer attention mechanism. 

 
TABLE I 

RESULT OF ABLATION EXPERIMENTS 

Number BI-SPPFCSPC Detection 
Layer CARAFE WIoU mAP Params FLOPs 

N1 - - - - 75.5 37.2 108.8 
N2  - - - 78.2 38.5 115.5 
N3 -  - - 78.3 39.8 112.6 
N4   - - 79.5 40.9 118.7 
N5 - -  - 76.8 37.4 109.1 
N6 - - -  76.1 37.2 108.8 
N7 - -   77.2 37.5 109.1 
N8     80.7 41.2 120.7 

 

TABLE Ⅱ 
PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS 

Method mAP Params FLOPs 
YOLOv5 73.2 46.1 109.2 
YOLOX 73.8 54.5 118.6 
YOLOv7 75.5 37.2 108.8 
ST-YOLO 80.3 55.8 115.5 

Ours 80.7 41.2 120.7 
  

 
Fig. 10 Comparison chart of experimental results mAP 
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The structure enhances the model's ability to detect small 
object defects and facilitates the extraction of more intricate 
features associated with small objects. Then, a small object 
detection layer is incorporated to effectively address the issue 
of excessive feature loss pertaining to smaller objects and 
enhance feature extraction capabilities. The CARAFE 
up-sampling operator is subsequently employed to enhance 
the feature fusion capability. The WIoU loss function is 
ultimately incorporated into the network model to enhance 
both convergence speed and accuracy. Utilizing the 
NEU-DET dataset, the ablation and comparison tests show 
that the optimized method attains a mAP value of 80.7%, 
5.2% greater than the original YOLOv7 algorithm. These 
results unequivocally demonstrate that revised method 
improves the detection efficiency of small object defects on 
hot-rolled steel strip surfaces, while also exhibiting superior 
detection accuracy in comparison to previous methods. The 
dataset can be further enriched in future research by 
collecting a wider range of defect images, thereby improving 
the model's generalization performance. Additionally, the 
implementation of pruning techniques can effectively 
mitigate model complexity and transmission costs, thereby 
facilitating its lightweight nature. 
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