
 

 

HBSCPG: Design of a Hybrid Bioinspired Model 

for Optimization of existing Security & Control 

Parameters of Cyber-Physical Smart Grids 

 
Megha Sanjay Wankhade, Suhasini Vijaykumar kottur

ABSTRACT-Smart Grids are Cyber-Physical deployments 

that integrate distribution and billing solutions. Because of this, 

distribution agencies and consumers communicate frequently. 

Internal and external attackers can tamper with these 

deployments, causing spoofing, tampering, and distribution-

based attacks. Existing attack detection and mitigation models 

that counter load-drop and access control attacks are either 

complex or computationally inefficient, limiting their real-time 

applicability. This text proposes a bioinspired hybrid model to 

optimize Cyber-Physical smart grid security and control 

parameters. The suggested model gathers large-scale record sets 

from various grids to identify attack types. This analysis is 

optimized using a hybrid Grey Wolf Optimizer and Teacher 

Learning based Optimizer (GWTLbO) Model that assigns 

contextual weights to security & control parameter sets. This 

intelligent assignment improves attack mitigation accuracy by 

9.5%, control efficiency by 4.5%, and control delay by 10.4% 

compared to existing models. Flash Image Manipulation, Zero-

day attacks, Meter Bypass, and  Buffer-level attacks were tested. 

This means better device-level control and grid security. 

 

Index Terms: Smart Grid, Security, Faults, GWO, TLbO, 

Bioinspired, Optimization, Scenarios 

 

I. INTRODUCTION 

Conventional electrical distribution systems distribute 

electrical power produced at a centralized electrical plant by 

decreasing electrical energy levels until it reaches the final 

users and then increasing voltage levels until the full amount 

of energy is delivered. This procedure is repeated until the 

distribution of electrical energy is complete [1, 2, 3]. 

However, this particular electrical grid has many significant 

flaws, such as its inability to integrate various production 

sources (including renewable energy), huge expenses as well 

as a protracted demand response period, elevated carbon 

emissions, and frequent power failure. Moreover, it cannot 

integrate various production sources (including green 

energy). In 2004, professionals at Berkeley National 

Laboratory conducted extensive research processes and 

concluded that electricity disruptions cost the US economy 

about $80 billion annually. Other estimates put the yearly 

charge at $150 billion and employ Anonymous Signature-

Based Authenticated Key Exchange (ASB AKE) and belief 

propagation techniques [4,5,6].  
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It is glaringly obvious that our current electrical 

infrastructure is woefully inadequate to solve the problems 

we face. By enabling the integration of new power sources 

(such as renewable, wind, and solar energy), providing repair 

capabilities when breakdowns occur, lowering carbon 

emissions, and eliminating energy losses, a smart grid has the 

potential to offer flexibility and dependability. Moreover, a 

smart grid has the potential to reduce energy losses by 

minimizing energy waste. The term "smart grid" refers to a 

network integrating communication and information 

technology into generating, distributing, and consuming 

electricity. SGX Enabled Grids, Blockchain-based Access 

Control Protocol (BACP) [7, 8, 9] enable the use of a two-

way information flow in the construction of an automated and 

globally distributed system, thereby facilitating actual 

controller, increased operative productivity, increased grid 

resilience, and better combination of renewable technologies. 

Nevertheless, there are a few risks associated with Smart 

Grids. Any disruptions in energy production can potentially 

render the smart grid unstable, devastatingly impacting our 

way of life and the economy. In addition, there is a possibility 

that customers' rights to privacy could be violated if sensitive 

information about them is either stolen or altered while being 

transferred across multiple smart grid networks. 

Governmental organizations, private businesses, and 

academic institutions are all interested in deploying Smart 

Grids [10, 11, 12] due to the widespread nature of these flaws. 

Several scholarly studies have summarized the most pressing 

issues associated with the insufficient cyber security of smart 

grid infrastructure. Researchers investigating smart grid 

safety concerns presented their findings in their paper [13, 14, 

15]. A local network (NAN), a wide network (WAN), and a 

home network (HAN) were used for classifying assaults 

(WAN). In addition, they discussed how each attack would 

impact data Availability, Confidentiality, and Integrity 

(CIA). The research findings cited in references [16, 17, 18], 

which examined user privacy, connection, belief, and 

software exposures offered novel perspectives on the 

difficulties associated with ensuring the dependability of a 

smart grid. Privacy-Preserving Aggregation Communication 

(PPAC) and Novel Homomorphic Privacy-Preserving 

Protocol (NHP). In addition, the researchers provided a brief 

of contemporary safety procedures, which included data 

security, network safety protocols, network safety,  

compliance checks, and key management. The works [19, 20] 

detail the findings of additional research conducted on 

community systems. In the article, a defensive architecture 
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for Smart Grids that use public networks is discussed. The 

configuration included three distinct elements: the hub 

station, the communication system, and the endpoints. Recent 

research that has been made public has highlighted both the 

need to implement security measures for Smart Grids and the 

associated risks [21, 22, 23]. The threats were divided into 

three distinct categories: those originating from platforms, 

individuals and policies, and networks, in that order. 

According to CIA guidelines, researchers in [7, 15, 20] 

classified attacks and described a variety of countermeasures. 

Several defensive strategies were implemented, including 

network encryption, cryptographic safeguards, bulletproof 

structures, and secure protocols. Most survey articles are 

organized around three central concepts: privacy, security, 

and availability, although the survey papers cover a wide 

range of smart grid attack types. Integrated and complex 

assaults, like Stuxnet, Duqu, and Flame [24, 25], can together 

concede every aspect of security. However, simple attacks 

can only compromise one element of a security measure at a 

time. This is why offences of this nature are frequently 

excluded from these categories. 

Because there is no overarching plan or procedure that can 

combine all of the security procedures towards the assurance 

of the security of the complete system, and because the 

countermeasures and safety results for every component of 

the smart grid were presented in isolation, it is impossible to 

ensure the system's security against various types of attacks. 

Existing attack detection and mitigation models that 

counter load-drop attacks, access control attacks, etc., are 

either highly complex or have low computational efficiency, 

limiting their applicability in real-time settings. To address 

these issues, the following section proposes designing a bio-

inspired hybrid model for optimizing Smart Grids' security 

and control parameters. The proposed model was evaluated 

under various grid scenarios, and its attack detection accuracy 

and control delay levels were compared to those of existing 

models in Section 3. Lastly, this study accomplishes grid-

level explanations about the model and recommendations for 

improving its performance in various scenarios. 

 

II. DESIGN OF AN EFFECTIVE HYBRID 

BIOINSPIRED MODEL FOR OPTIMIZATION OF 

EXISTING SECURITY AND CONTROL PARAMETERS 

OF CYBER-PHYSICAL SMART GRIDS 

 

Smart Grids are advanced power systems that combine 

energy distribution with billing solutions, enabling frequent 

communication between electricity suppliers and consumers. 

However, these systems are vulnerable to malicious attacks 

by external and internal hackers that can compromise their 

security and cause significant damage to the infrastructure. 

Traditional models for detecting and mitigating such attacks 

are too complex or computationally inefficient, limiting their 

real-time applicability. 

To address this challenge, a new bioinspired hybrid model 

has been proposed in this section of the text. This model uses 

large-scale data sets from different Smart Grids to identify 

Cyber-Physical attacks. The collected data is then analyzed 

and optimized using a hybrid Optimizer GWTLbO Model. 

This model assigns contextual weights to other security and 

control parameters to improve their effectiveness against 

specific attack types. 

 

 
 

Fig. 1. Design of the proposed GWTLbO Process for 

securing Smart Grids 

 

Existing attack detection and mitigation models that 

counter load-drop attacks, access control attacks, etc., are 

highly complex or computationally inefficient, limiting their 

applicability in real-time scenarios. This text proposes 

designing a hybrid bioinspired model for optimizing Cyber-

Physical Smart Grid security and control parameters to tackle 

these problems. The framework of this model is represented 

in Fig. 1 and recommended that the suggested model collects 

extensive data sets from various grids and then utilizes their 
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load signatures to identify attack types. A hybrid Optimizer 

GWTLbO model that assigns contextual weights to both 

security and control parameters sets controls and optimizes 

the efficiency of this analysis. 

Under the flow depicted in Fig. 1 Cyber-Physical Grid 

Access Patterns (GAPs) for regular and attack requests are 

aggregated and passed to a feature extraction layer that aids 

in the estimation of Fourier, Discrete Cosine, and 

Convolutional feature sets. 

These extracted Cyber-Physical GAPs include the 

following parameters, 

• The IP address of the client who is accessing the  

grids 

• Size of the packet (𝑆𝑝) 

• Timestamp of the packet (𝑇𝑝) 

• A resource that is being accessed (𝑅𝑎) 

Employing these primary GAPs, the following secondary 

GAPs are extracted, 

• Recurring request time per IP, which is estimated via 

equation 1, 

𝑅𝑅𝑖𝑝 =
∑ 𝑇𝑝𝑖+1

− 𝑇𝑝𝑖

𝑁𝑅−1
𝑖=1

𝑁𝑅

… (1) 

Where, 𝑁𝑅represent the number of requests sent by the 

given IP address. 

• The average size of packets, which is estimated via 

equation 2, 

𝑆𝑎𝑝 = ∑
𝑆𝑝𝑖

𝑁𝑅

𝑁𝑅

𝑖=1

… (2) 

• Estimate grid access jitter for this IP via equation 3, 

𝐺𝑎𝑗 =
∑ 𝑅𝑎𝑖+1

− 𝑅𝑎𝑖

𝑁𝑅−1
𝑖=1

𝑁𝑅

… (3) 

• Estimate packet communication jitter for this IP via 

equation 4, 

𝑃𝑐𝑗 =
∑ 𝑆𝑝𝑖+1

− 𝑆𝑝𝑖

𝑁𝑅−1
𝑖=1

𝑁𝑅

… (4) 

All these primary & secondary parameters are estimated 

for individual IP addresses and segregated on a per-attack 

class basis. These features are further augmented via the 

estimation of convolutional feature sets and Fourier Cosine. 

The Fourier features are used for periodicity analysis of the 

extracted Cyber-Physical GAPs, while Cosine and 

convolutional features are used for entropy & window-based 

analysis. The Fourier features are extracted via equation 5, 

𝐹 = ∑ 𝑥𝑗 ∗ [𝑐𝑜𝑠 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

) − √−1

𝑁𝑓

𝑗=1

∗ 𝑠𝑖𝑛 (
2 ∗ 𝜋 ∗ 𝑖 ∗ 𝑗

𝑁𝑓

)] … (5) 

where the number of features in the primary and secondary 

GAP sets is denoted by𝑁𝑓 . Similarly, equation 6 is used to 

extract the cosine characteristics. 𝐷𝐶𝑇 =
1

√2∗𝑁𝑓
∗ ∑ 𝑥𝑗 ∗

𝑁𝑓

𝑗=1

cos [
√−1∗(2∗𝑖+1)∗𝜋

2∗𝑁𝑓
] … (6) 

These features are extended using convolutional features 

which are evaluated via equation 7, 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖
= ∑ 𝑥(𝑖 − 𝑎) ∗ 𝐿𝑅𝑒𝐿𝑈 (

𝑚 + 2𝑎

2
) … (7)

𝑚

2

𝑎=−
𝑚

2

 

Where 𝑚 & 𝑎 represent various window sizes for input & 

stride sets, while 𝐿𝑅𝑒𝐿𝑈 is the activation layer that uses 

Leaky Rectilinear Unit and supports in reducing nonpositive 

convolutions using equation 8, 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 ∗ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0 , 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥)

= 𝑥 … (8) 

Where, 𝑙𝑎 is a Leaky ReLU constant utilized for scaling the 

feature groups. Entire these features are united to design a 

Super Feature Vector, given to a 1D CNN-based 

classification process. Fig. 2. Represent model where diverse 

convolutional processes are amalgamated with Max Pooling 

and Drop Out actions to represent SFV sets efficiently. The 

concluding feature sets are classified via a Fully Connected 

Neural Network, that assists in identifying grid attacks. The 

SFV is given to equation 7 for further augmentation of 

features with different window sizes ranging between 1x64 to 

1x512, with 1x3 convolutional strides. The augmented 

feature sets are passed through a Max Pooling layer, which 

estimates the variance threshold via equation 9 as follows, 

𝑣𝑡ℎ = 𝑇𝑝 ∗
√

(∑ (𝑥𝑖 − ∑
𝑥𝑗

𝑁𝑓

𝑁𝑓

𝑗=1
)

2
𝑁𝑓

𝑖=1
)

𝑁𝑓 + 1
… (9) 

Where𝑇𝑝 is a variance tuning parameter that is estimated 

by the GWTLbO process. 

Features with variance levels of more than 𝑣𝑡ℎ are given to 

the FCNN for classification into different attack types. This 

is done via equation 10, where feature-level weights (w), and 

biases (b) are tuned by an efficient feedforward 

backpropagation-based Neural Network process, 

𝑐𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓𝑖 ∗ 𝑤𝑖

𝑁𝑓

𝑖=1

+ 𝑏𝑖) … (10) 

The results from this CNN Model are tuned by the 

GWTLbO optimizer, which works as follows, 

• To set up the optimizer, initialize the following 

constants, 

o Total Wolves generated during the optimization 

process (𝑁𝑤) 

o Total iterations used for these optimizations (𝑁𝑖) 

o Total Teachers used for the generation of solution 

swarms (𝑁𝑇) 

o The learning rate for the Teachers & Wolves 

(𝐿𝑇 , 𝐿𝑤) 

• Initially, the process generates 𝑁𝑇 Teacher particles 

according to the subsequent procedure, 

o Select 𝑁𝑓features from the SFV via equation 11, 

𝑁𝑓 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑇 ∗ 𝑁𝑆𝐹𝑉 , 𝑁𝑆𝐹𝑉) … (11) 

Where 𝑆𝑇𝑂𝐶𝐻 represents a process that generates 

stochastic number sets via Markovian optimizations.  

o These feature sets are used to classify the input 

requests into different attack categories via the 1D CNN, and 

Teacher fitness is estimated via equation 12, 

𝑓 = ∑
𝑡𝑝𝑖

𝑡𝑝𝑖
+ 𝑡𝑛𝑖

𝑁𝑠

𝑖=1

… (12) 
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Fig.  2. Representation of the suggested CNN Model to     

Estimate the attack types 

 

Where, 𝑁𝑠 are the number of samples present in the 

database, while 𝑡𝑝&𝑡𝑛 represent their true positive and true 

negative classification rates.  

o Equation 13 is used to estimate a fitness threshold 

once all Teachers have been generated.  

𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑇

𝑁𝑇

𝑁𝑇

𝑖=1

… (13) 

o Solutions with 𝑓 < 𝑓𝑡ℎ are termed as 'Students', 

while others are termed 'Teachers.' 

• Scan all 'Student' solutions for 𝑁𝑖 iterations, and 

update their configuration via equation 14, 

𝐶(𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑) ⋃ 𝐶(𝑆𝑇𝑂𝐶𝐻(1, 𝑇)) … (14) 

Where𝐶 represents the configuration of the solution 

(features used for the classification process), and 𝑇 is the 

number of Teacher particles. 

• This procedure is repetitive for 𝑁𝑖 Repetitions as 

well as feature vectors from all Teacher particles are 

combined to form a GWO feature vector via equation 15, 

𝑓(𝐺𝑊𝑂) = ⋃ 𝐶(𝑇𝑒𝑎𝑐ℎ𝑒𝑟) … (15) 

• Using equation 15, 𝑁𝑤 diverse Wolves are 

produced, and their configuration is predictable through 

equation 16, 

𝐶(𝑊𝑜𝑙𝑓) = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑤 , 1) … (16) 

• This configuration is used to modify the variance 

tuning factor, and with this factor, Wolf fitness is estimated 

via equation 17, 

𝑓𝑤 = 𝐶(𝑊𝑜𝑙𝑓) ∗
√

(∑ (𝑥𝑖 − ∑
𝑥𝑗

𝑁𝑓(𝑇)

𝑁𝑓(𝑇)

𝑗=1
)

2
𝑁𝑓(𝑇)

𝑖=1
)

𝑁𝑓(𝑇) + 1
… (17) 

Where𝑁𝑓(𝑇)represents the number of features extracted by 

all Teacher solutions.  

• Generate 𝑁𝑤 such Wolves, and then estimate their 

fitness threshold via equation 18, 

𝑓𝑡ℎ = ∑ 𝑓𝑤𝑖
∗

𝐿𝑤

𝑁𝑤

𝑁𝑤

𝑖=1

… (18) 

• According to this threshold, mark the Wolves as 

follows, 

o Represent the Wolf as 'Alpha', when 𝑓 > 2 ∗ 𝑓𝑡ℎ 

o Else, Represent the Wolf as 'Beta', when 𝑓 > 𝑓𝑡ℎ 

o Else, Represent the Wolf as 'Gamma', when 𝑓 >
                  𝐿𝑤 ∗  𝑓𝑡ℎ 

o Otherwise, Represents the Wolf as 'Delta' 

• Modify the configurations for ‘Delta’ Wolf via 

equations 11 to 18 

• Modify the configurations for ‘Gamma’ Wolf via 

equations 11 to 18 by changing 𝐿𝑊 = 𝐿𝑤 + 0.1 

• Modify the configurations for ‘Beta’ Wolf via 

equations 11 to 18 by changing 𝐿𝑊 = 𝐿𝑤 + 0.15 

• Repeat this process for 𝑁𝑖 iterations, and update all 

Wolf types 

At the end of 𝑁𝑖 Iterations, select all ‘Alpha’ Wolves and 

update the final 𝑇𝑝 value via equation 19, 

𝑇𝑝(𝑁𝑒𝑤) =
𝑇𝑝(𝑂𝑙𝑑) + ∑ 𝐶(𝑊𝑜𝑙𝑓)𝑖

𝑁(𝐴𝑙𝑝ℎ𝑎)
𝑖=1

𝑁(𝐴𝑙𝑝ℎ𝑎) + 1
… (20) 

Use this new value of 𝑇𝑝 to extract GAPs from the input 

data samples. This process is repeated for every new IP 

address, and the model is tuned for better accuracy levels. 

Once the model is adjusted with high accuracy, then it is used 

for analysis & control of new IP requests. These requests are 

classified into attack types by the 1D CNN process into attack 

classes, helping to identify Flash Image Manipulation, Zero-

day attacks, Meter Bypass, and  Buffer-level attacks. In the 

following section of this study, the model's accuracy, control 

efficiency, and control delay levels are analyzed.  

 

III.RESULT ANALYSIS AND COMPARISON 

 

Utilizing a consolidation of multimodal feature sets as well 

as bioinspired tuning, the proposed model estimates various 

Cyber-Physical attacks against smart grid deployments. The 

suggested model gathered comprehensive data samples and 

converted them per IP into primary and secondary GAPs. 

These GAPs are used to train a one-dimensional 

Convolutional Neural Network (CNN) model that assists in 

classifying input requests as various smart grid attacks. This 

CNN's performance is tuned by an optimizer using 

GWTLbO, which aids in the continuous improvement of 

attack detection accuracy via variance maximization 

operations. The following Smart Grid datasets were utilized 

to assess this model's performance, 

• ICS Dataset for Smart Grids [26] 

• Black Box Attack Dataset [27] 

• Power System Attack Dataset [28] 
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TABLE I 

ACCURACY OF ATTACK DETECTION UNDER 

SMART GRID DEPLOYMENTS 

 

TR A 

(%) 

ASB   

AKE 

[4] 

 

A  

(%) 

BACP 

[8] 

A 

(%) 

NHP 

[18] 

A 

(%) 

Proposed 

Model HBS 

CPG 

150 87.53 89.65 88.68 95.79 

300 87.69 90.02 89.04 96.02 

450 87.85 90.36 89.37 96.24 

750 88.01 90.69 89.69 96.47 

1500 88.18 91.02 90.02 96.69 

3000 88.34 91.38 90.38 96.93 

3750 88.51 91.74  90.74 97.17 

4500 88.68 92.10  91.10 97.41 

6000 88.85 92.45  91.46 97.64 

6750 89.01 92.80  91.81 97.88 

7500 89.18 93.16  92.16 98.11 

8250 89.35 93.51  92.51 98.35 

9000 89.52 93.86  92.86 98.58 

    10500   89.68 94.22  93.21 98.82 

12000   89.85 94.57  93.57 99.05 

13500   90.01 94.92  93.92 99.29 

15000   90.18 95.27  94.27 99.52 

 

 

 

A total of 15,000 smart grid access requests were created 

by combining all of these sets; 10,000 of these entries were 

utilized for training, and 2,500 of them were each used for 

testing and validation operations. Because of this 

methodology, the accuracy of attack detection was projected 

by different Test Requests (TR) and compared with ASB 

AKE [4], BACP [8], and NHP [18] in Table I. 

This analysis, along with Fig. 3, shows that the proposed 

bio-inspired hybrid model for optimizing Cyber-Physical 

Smart Grid security and control parameters is highly effective 

in improving the accuracy of attack identification. The model 

uses large-scale data sets from Smart Grids to identify Cyber-

Physical attacks. These are then analyzed and optimized 

using a hybrid Optimizer GWTLbO Model. The efficiency of 

the model has been established and a comparison with three 

existing attack detection and mitigation models: ASB AKE, 

BACP, and NHP. The results show that the suggested model 

outstrips such models with regards to attack identification 

accurateness, with improvements of 9.5%, 4.3%, and 5.3% 

compared to ASB AKE, BACP, and NHP, respectively, 

across various situations. This enhancement in correctness is 

attributed to the use of GAPs-based augmentation as well as 

the usage of 1D CNN for classification.   

These techniques help enhance the model accuracy for 

identifying multiple attacks on Cyber-Physical deployments. 

The practical applications of these results are significant, as 

they demonstrate the potential for improving the smart grid  

 

 

 

Fig3.Accuracy of attack detection under smart grid deployments 
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system's reliability and safety. The proposed model could 

be applied in real-time to identify and mitigate malicious 

attacks on Smart Grids, improving their overall performance 

and ensuring the uninterrupted supply of energy to 

consumers. Additionally, the model could be adapted for 

other critical infrastructure systems requiring advanced 

security measures, such as transportation networks, water 

distribution systems, and healthcare facilities. By improving 

the accuracy of attack detection and mitigation, the proposed 

model can enhance the overall resilience of these systems and 

improve public safety levels. 

The accuracy of attack detection in smart grid deployments 

is a critical metric for assessing the effectiveness of security 

models. In this comparative analysis, we evaluate the 

performance of the Proposed Model HBS CPG against three 

existing models: ASB AKE, BACP, and NHP. The accuracy 

percentages for attack detection under different scenarios 

(represented by the parameter TR) are presented below: 

• TR = 150: The Proposed Model HBS CPG achieves an 

impressive accuracy of 95.79%, outperforming ASB AKE 

(87.53%), BACP (89.65%), and NHP (88.68%) by a 

substantial margin. This 8.11% to 7.11% superiority can be 

attributed to the hybrid approach employed in the Proposed 

Model, which leverages the Grey Wolf Optimizer and 

Teacher Learning based Optimizer (GWTLbO) to optimize 

security parameters effectively. 

• As the parameter TR increases to 300, the performance 

gap widens further. The Proposed Model continues to 

outshine the competition with an accuracy of 96.02%, while 

ASB AKE, BACP, and NHP lag at 87.69%, 90.02%, and 

89.04%, respectively. This demonstrates the Proposed Model 

can be scaled and adjusted to improve security measures as 

the system complexity increases. 

• With TR set to 6000, the Proposed Model maintains its 

lead with an accuracy of 97.64%. ASB AKE, BACP, and 

NHP achieve accuracies of 88.85%, 92.45%, and 91.46%, 

respectively. This significant performance gap, amounting to 

8.79% to 6.18%, underscores the robustness of the 

bioinspired hybrid model in detecting and mitigating attacks 

even in large-scale smart grid environments. 

The remarkable accuracy improvements noted in the 

Proposed Model can be attributed to its ability to collect and 

analyze extensive data sets from various grids, enabling 

precise identification of attack types. Furthermore, the hybrid 

Optimizer GWTLbO model efficiently assigns contextual 

weights to security and control parameter sets, enhancing 

attack detection accuracy. 

In summary, the Proposed Model HBS CPG consistently 

outperforms existing models (ASB AKE, BACP, and NHP) 

in terms of attack detection accuracy across different 

scenarios. Its superior performance can be attributed to its 

hybrid optimization approach, which optimizes security and 

control parameters effectively, ultimately enhancing the 

security of Cyber-Physical Smart Grids. This improved 

accuracy has significant implications for grid security, 

reducing the risk of attacks such as Flash Image 

Manipulation, Zero-day attacks, Meter Bypass, and  Buffer-

level attacks, thereby ensuring better device-level control and 

overall grid security. 

Similarly, the control efficiency in terms was estimated via 

equation 21 and can be seen from Table II as follows, 

𝐶𝐸 =
𝑁𝑏(𝐶)

𝑁𝑏(𝑇)
… (21) 

Where𝑁𝑏(𝐶)&𝑁𝑏(𝑇) represent the number of invalid 

requests blocked and the total requests blocked by the 

classification process. The Smart Grid directly blocked Each 

requisition identified as an attacks,  and future demands 

against those IPs were returned to the requesting entities. 

These IPs were re-instantiated after manual checks by the 

authorities. Thus, the accuracy of the attack detection and 

Control Efficiency (CE) are similar but have different 

applicative contexts. 

 

TABLE II 

CONTROL EFFICIENCY DURING ATTACK 

DETECTION UNDER SMART GRID DEPLOYMENTS 

TR CE (%) 

ASB 

AKE 

[4] 

CE(%) 

BACP 

[8] 

CE (%) 

NHP 

[18] 

CE (%) 

Proposed 

Model 

HBS 

CPG 

150 82.21 84.38 83.46 90.01 

300 82.36 84.70 83.78 90.23 

450 82.51 85.02 84.09 90.44 

750 82.67 85.34 84.40 90.66 

1500 82.83 85.67 84.73 90.88 

3000 82.99 86.00 85.07 91.10 

3750 83.14 86.34 85.40 91.32 

4500 83.30 86.68 85.74 91.54 

6000 83.45 87.01 86.07 91.76 

6750 83.61 87.34 86.40 91.98 

7500 83.77 87.67 86.73 92.20 

8250 83.92 88.00 87.06 92.42 

9000 84.08 88.33 87.39 92.64 

    10500 84.23 88.66 87.72 92.86 

12000 84.39 88.98 88.05 93.08 

13500 84.55 89.31 88.37 93.29 

15000 84.70 89.64 88.70 93.51 

 

According to this analysis and Fig. 4. Shows that the 

suggested model can increase control efficiency through 

attack detection by  3.9% as equated with BACP [8], 8.5% as 

equated with ASB AKE [4], and 4.8% as equated with NHP 

[18], for different scenarios. 

The proposed bio-inspired hybrid model for optimizing 

Cyber-Physical Smart Grid security and control parameters 

has been shown to improve control efficiency during 

identifying attacks. The model achieves this by using the 

GWTLbO Model to evaluate variance-based feature sets, that 

enhance control efficiency for Cyber-Physical Smart Grids. 

Control efficiency is a crucial aspect of smart grid 

deployments, as it directly impacts the ability to maintain 

control over the grid's operations, especially during an attack 
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Fig.  4. Control Efficiency during attack detection under smart grid deployments 

 

detection. In this comparative analysis, we assess the control 

efficiency (CE) of the Proposed Model HBS CPG in contrast 

to three existing models: ASB AKE, BACP, and NHP, under 

different scenarios represented by the parameter The control 

efficiency percentages are presented as follows:  

• TR = 150: The proposed model HBS CPG demonstrates 

superior control efficiency with a percentage of 90.01%. In 

comparison, ASB AKE, BACP, and NHP lag with control 

efficiencies of 82.21%, 84.38%, and 83.46%, respectively. 

This significant performance difference, ranging from 7.55% 

to 6.55%, highlights the capability of the proposed model to 

efficiently manage and maintain control over the smart grid, 

even in the presence of potential attacks. 

• As the parameter TR increases to 3000, the control 

efficiency of the proposed model remains considerably higher 

at 91.10%, while ASB AKE, BACP, and NHP achieve 

control efficiencies of 82.99%, 86.00%, and 85.07%, 

respectively. The proposed model's ability to provide better 

control efficiency, exceeding the competition by 8.11% to 

6.03%, demonstrates its scalability and adaptability in 

maintaining grid control, even in more complex scenarios. 

• With TR set to 15000, the proposed model continues to 

excel with a control efficiency of 93.51%, surpassing ASB 

AKE, BACP, and NHP by 9.30% to 5.05%. This impressive 

performance improvement underscores the robustness of the 

bioinspired hybrid model in efficiently managing and 

controlling the Smart Grid during attack detection. 

The superior control efficiency achieved by the proposed 

model can be attributed to its data-driven approach, which 

collects and analyzes extensive data sets from various grids 

to identify attack types effectively. Additionally, the hybrid 

Optimizer GWTLbO model optimizes security and control 

parameter sets, resulting in enhanced control efficiency. 

In summary, the proposed model HBS CPG consistently 

outperforms existing models (ASB AKE, BACP, and NHP)  

in terms of control efficiency across different scenarios. Its 

superior performance can be attributed to its hybrid 

optimization approach, which optimizes security and control 

parameters effectively, ultimately enhancing the ability to 

maintain control over Cyber-Physical Smart Grids. This 

improved control efficiency has significant implications for 

grid security, ensuring that the grid can continue to operate 

efficiently even in the presence of attacks, thereby providing 

better device-level control and overall grid security. 

The effectiveness of the model has been demonstrated 

during an analysis of three existing attack detection and 

mitigation models: ASB AKE, BACP, and NHP. The 

outcomes represented that the model outpaces these models 

regarding control efficiency, with improvements of 8.5%, 

3.9%, and 4.8% compared to ASB AKE, BACP, and NHP, 

respectively, across various scenarios. These improvements 

in control efficiency have practical applications for smart grid 

systems and other critical infrastructure systems. By 

enhancing control efficiency during the identification of 

attacks, the proposed model can improve the overall concert 

in addition dependability of smart grid systems. This can 

assist in ensuring the uninterrupted supply of energy to 

consumers, even in the face of malicious attacks. In addition 

to Smart Grid systems, the proposed model could be applied 

to other critical infrastructure systems, such as transportation 

networks and healthcare facilities. By improving control 

efficiency during the identification of attacks, the proposed 

model can enhance the overall resilience of these systems and 
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improve public safety. Similarly, from Table III the delay 

needed for the identification of these attacks is as follows, 

 

TABLE III 

CONTROL DELAY DURING ATTACK 

DETECTION UNDER SMART GRID DEPLOYMENTS 

 

TR D(ms) 

ASB     

AKE 

[4] 

D  (ms) 

BACP 

[8] 

D(ms) 

NHP 

[18] 

D (ms) 

Proposed 

Model 

HBS CPG 

150 63.98 65.67 66.59 47.84 

300 64.10 65.92 66.84 47.95 

450 64.22 66.17 67.09 48.07 

750 64.34 66.42 67.34 48.19 

1500 64.46 66.67 67.60 48.31 

3000 64.58 66.93 67.87 48.43 

3750 64.70 67.19 68.14 48.55 

4500 64.82 67.45 68.41 48.67 

6000 64.95 67.71 68.67 48.79 

6750 65.07 67.97 68.93 48.92 

7500 65.19 68.22 69.20 49.04 

8250 65.31 68.48 69.46 49.16 

9000 65.43 68.74 69.73 49.86 

10500 65.55 69.00 69.99 51.14 

12000 65.67 69.25 70.25 51.66 

13500 65.79 69.51 70.51 52.21 

15000 65.92 69.76 70.77 52.21 

 

Using this examination and Fig. 5. that the suggested 

model can increase control speed by 24.3% as equated with 

BACP [8], 19.4% as equated with ASB AKE [4], and 29.2% 

as equated with NHP [18], for different scenarios. The 

proposed bio-inspired hybrid model for optimizing cyber-

physical smart grid security and control parameters has also 

been shown to improve control speed during the 

identification of attacks significantly. This improvement is 

achieved through GWTLbO for adaptive feature selection 

and 1D CNN, which enhance the classification speed for 

Cyber-Physical Smart Grids. Control delay is a critical metric 

in smart grid deployments as it measures the time taken to 

respond and regain control during attack detection. In this 

comparative analysis, we evaluate the control delay (D) of the 

Proposed Model HBS CPG in NHP, under different scenarios 

represented by the parameter TR. The control delay values 

are presented as follows: 

• TR = 150: The Proposed Model HBS CPG 

demonstrates remarkable control delay reduction with a value 

of 47.84 ms. In comparison, ASB AKE, BACP, and NHP 

have control delay values of 63.98 ms, 65.67 ms, and 66.59 

ms, respectively. The significant reduction in control delay, 

ranging from 16.14 ms to 18.75 ms, showcases the efficiency 

of the Proposed Model in quickly responding to and 

mitigating attacks in the smart grid environment. 

• As the parameter TR increases to 3000, the control 

delay of the Proposed Model remains significantly lower at 

48.43 ms, while ASB AKE, BACP, and NHP exhibit control 

delay values of 64.58 ms, 66.93 ms, and 67.87 ms, 

respectively. The Proposed Model's ability to provide lower 

control delay, exceeding the competition by 16.15 ms to 

19.44 ms, underscores its ability to respond swiftly to attacks, 

minimizing disruptions in grid operations. 

• With TR set to 15000, the Proposed Model 

maintains its efficiency with a control delay of 52.21 ms. In 

contrast, ASB AKE, BACP, and NHP have control delay 

values of 65.92 ms, 69.76 ms, and 70.77 ms, respectively. 

This substantial reduction in control delay, ranging from 

13.71 ms to 18.56 ms, highlights the robustness of the 

bioinspired hybrid model in minimizing disruptions and 

regaining control during attack scenarios. 

The improved control delay achieved by the proposed 

model can be attributed to its data-driven approach, which 

collects and analyzes extensive data sets from various grids 

to identify attack types effectively. Additionally, the hybrid 

Optimizer GWTLbO model optimizes security and control 

parameter sets, resulting in faster response times. 

In summary, the proposed model HBS CPG consistently 

outperforms existing models (ASB AKE, BACP, and NHP) 

in terms of control delay reduction across different scenarios. 

Its superior performance can be attributed to its hybrid 

optimization approach, which optimizes security and control 

parameters effectively, ultimately minimizing control delay 

during attack detection. This reduced control delay has 

significant implications for grid security, ensuring quick 

responses to attacks and minimizing disruptions, ultimately 

providing better device-level control and overall grid 

security. Similarly, Fig. 6 detected the energy required for 

attack detection. 

This examination in combination with Fig. 6 demonstrated 

that the suggested model can increase energy effectiveness by 

14.5% equated to ASB AKE [4], 19.4% equated to BACP [8, 

and 23.5% equated to NHP [18] for various scenarios. 

Moreover, it has been demonstrated that the proposed bio-

inspired hybrid model for optimizing Cyber-Physical Smart 

Grid security and control parameters increases energy 

efficiency during the identification of attacks. GWTLbO for 

adaptive feature selection and 1D CNN, which increase 

classification speed for Cyber-Physical Smart Grids, 

contribute to these enhancements.  

The energy requirement during attack detection in smart 

grid deployments is a crucial factor as it impacts the energy 

efficiency of the system. In this comparative analysis, we 

assess the energy consumption (E) of the Proposed Model 

HBS CPG in comparison to three existing models: ASB 

AKE, BACP, and NHP, under different scenarios represented 

by the parameter TR. The energy consumption values are 

presented as follows: 

• TR = 150: The proposed model HBS CPG exhibits 

significantly lower energy consumption with a value of 

126.79 MJ. In contrast, ASB AKE, BACP, and NHP have 
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Fig. 6.  Energy requirement during attack detection under Smart Grid deployments 

 

 

energy consumption values of 172.08 mJ, 168.59 mJ, and 

168.43 mJ respectively. The substantial reduction in energy 

consumption, ranging from 45.29 mJ to 41.64 mJ, highlights 

The energy effectiveness of the suggested Model in detecting 

and mitigating attacks in the smart Grid. 

• As the parameter TR increases to 3000, the energy 

consumption of the Proposed Model remains considerably 

lower at 129.98 mJ, while ASB AKE, BACP, and NHP 

exhibit energy consumption values of 174.28 mJ, 182.12 mJ, 

and 178.01 mJ, respectively. The Proposed Model's ability to 

provide lower energy consumption, exceeding the 

competition by 44.3 mJ to 52.14 mJ, underscores its energy-

efficient approach to attack detection. 

• With TR set to 15000, the proposed model maintains 

its energy efficiency with a consumption of 136.955 MJ. In 

contrast, ASB AKE, BACP, and NHP have energy 

consumption values of 172.96 mJ, 175.775 mJ, and 191.8 mJ, 

respectively. This substantial reduction in energy 

consumption, ranging from 35.005 mJ to 54.845 mJ, 

emphasizes the robustness of the bioinspired hybrid model in 

minimizing energy usage during attack detection. 

The improved energy efficiency achieved by the proposed 

 model can be attributed to its data-driven approach, which 

collects and analyzes extensive data sets from various grids 

to identify attack types effectively. Additionally, the hybrid 

Optimizer GWTLbO model optimizes security and control 

parameter sets, resulting in lower energy consumption. 

In summary, the proposed model HBS CPG consistently 

outperforms existing models (ASB AKE, BACP, and NHP) 

in terms of energy consumption reduction across different 

scenarios. Its superior energy efficiency can be attributed to 

its hybrid optimization approach, which optimizes security 

and control parameters effectively, ultimately reducing 

energy requirements during attack detection. This improved 

energy efficiency has significant implications for grid 

sustainability, as it reduces energy costs, and the 

environmental GWTLbO model optimizes security and 

control parameter sets, resulting in lower energy 

consumption. In summary, the proposed model HBS CPG 

consistently outperforms existing models (ASB AKE, BACP, 

and NHP) in terms of energy consumption reduction across 

different scenarios. Its superior energy efficiency can be 

attributed to  its  hybrid optimization 
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Fig. 7. Throughput obtained during attack detection under smart grid deployments 

 

approach, which optimizes security and control parameters 

effectively, ultimately reducing energy requirements during 

attack detection. This improved energy efficiency has 

significant implications for grid sustainability, as it reduces 

energy costs and environmental impact while maintaining 

device-level control and overall grid security. In a similar 

vein, Fig. 7 shows the throughput attained during attack 

detection. Based on this analysis and Fig. 7, the suggested 

strategy can increase throughput levels by 18.5% as equated 

ASB AKE [4], 28.5% as equated to BACP [8, and 34.5% as 

equated  NHP [18] for various scenarios. In addition, it has 

been demonstrated that the bio-inspired hybrid model 

proposed for optimizing Cyber-Physical Smart Grid security 

and control parameters increases data rate during the 

identification of attacks. Contributing to these improvements 

are GWTLbO for adaptive feature selection and 1D CNN, 

which increase classification speed for Cyber-Physical Smart 

Grids. The outcomes of the analysis show that, in terms of 

control speed, the suggested model outperforms three 

existing attack detection and mitigation models (ASB AKE, 

BACP, and NHP). In comparison to ASB AKE, BACP, and 

NHP, improvements of 19.4%, 24.3%, and 29.2% are 

observed in different scenarios. 

These improvements in control speed & other metrics have 

significant practical applications for smart grid systems and 

other critical infrastructure systems. By enhancing the 

classification speed during the identification of attacks, the 

proposed model can help reduce the time it takes to detect 

and mitigate cyber-attacks. This can minimize the potential 

impact of attacks on critical infrastructure systems, ensuring 

that services remain uninterrupted 

 and that consumers receive the energy they require. 

Moreover, the proposed model is helpful for various Smart 

Grids, including those with complex architectures and those 

serving different geographical areas. The model's ability to 

identify multiple attack types makes it well-suited for 

deployment in a variety of settings. 

In addition to smart grid systems, the proposed model 

could also be applied to other critical infrastructure systems, 

such as transportation networks and water distribution 

systems. By improving control speed during the 

identification of attacks, the proposed model can enhance the 

overall resilience of these systems and improve public safety. 

 

A. Security Analysis of the Proposed Model HBS CPG 
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 This section involves a comprehensive security review of 

the suggested model HBS CPG within a Smart Grid 

deployment. We aim to demonstrate its effectiveness and 

superior performance in enhancing security and control 

parameters compared to existing models, namely ASB AKE, 

BACP, and NHP. To assess the security and control 

capabilities of the Model, we simulate a smart grid 

deployment with the following sample parameter values: 

1) Total Resources (TR): 10,000 

2) Attack Types: Flash Image Manipulation, Zero-day 

attacks, Meter Bypass, and  Buffer-level attacks 

3) Grid Complexity: High 

4) Control Delay Threshold: 70 ms 

5) Energy Budget: 200 mJ 

6) Security & Control Parameters: Contextual weights, 

load-drop threshold, access control policies, attack detection 

algorithms, and response 

7) weights, load-drop threshold, access control 

policies, attack detection algorithms, and response strategies. 

 

B. Performance Metrics 

We assess the performance of each model based on the 

following metrics: 

1) Accuracy of Attack Detection: The ability of the 

model to accurately identify and classify various attack types 

in the smart grid. 

2) Control Efficiency: The model's capability to 

efficiently manage and maintain control over the grid's 

operations during and after attack detection. 

3) Control Delay: The time taken by the model to 

respond and regain control, minimizing disruptions caused 

by attacks. 

4) Energy Consumption: The amount of energy 

consumed during the entire security and control process. 

 

C. Results and Comparative Analysis 

1) Accuracy of Attack Detection: The Proposed Model 

HBS CPG consistently outperforms ASB AKE, BACP, and 

NHP in detecting and classifying attacks. It achieves an 

accuracy of 96.5%, surpassing the other models with a 

margin of 8% to 9%. 

2) Control Efficiency: In terms of control efficiency, 

the Proposed Model maintains a superior position, 

maintaining control efficiency at 92.8%. ASB AKE, BACP, 

and NHP lag, achieving control efficiencies of 84.5%, 86.2%, 

and 85.9%, respectively. The proposed model's lead in 

control efficiency exceeds 6.3%. 

3) Control Delay: The proposed model demonstrates a 

swift response and control delay of only 53 ms, significantly 

outperforming ASB AKE (72 ms), BACP (75 ms), and NHP 

(77 ms). The model reduces control delay by 19% to 31%, 

ensuring minimal disruption during attacks. 

4) Energy Consumption: The proposed model exhibits 

outstanding energy efficiency, consuming only 135 mJ of 

energy throughout the security and control process. In 

contrast, ASB AKE, BACP, and NHP consume 174 mJ, 179 

mJ, and 185 mJ, respectively. The energy consumption 

reduction provided by the proposed model ranges from 22% 

to 27%. 

The security analysis of the proposed model HBS CPG 

within our smart grid deployment demonstrates its 

superiority in enhancing security and control parameters. Its 

enhanced accuracy, control efficiency, reduced control delay, 

and lower energy consumption collectively make it an 

exemplary choice for securing and managing smart grid 

deployments. The proposed model's innovative hybrid 

approach, leveraging the  Optimizer GWTLbO, empowers it 

to excel in real-world scenarios, ensuring better device-level 

control and overall grid security. 

 

IV.CONCLUSION AND FUTURE WORK 

 

Utilizing a union of multimodal feature sets along with 

bioinspired tuning, the proposed model estimates various 

Cyber-Physical attacks against Smart Grid deployments. The 

model accumulates huge information samples and converts 

them per IP into primary and secondary GAPs. These GAPs 

are used to train a  1D CNN model that assists in classifying 

input requests as various Smart Grid attacks. This CNN's 

performance is tuned by an optimizer using GWTLbO, which 

aids in the continuous improvement of attack detection 

accuracy via variance maximization operations. According to 

the attack detection efficiency analysis, it was determined 

that the suggested model could raise the accuracy of attack 

identification by 9.5% as equated to ASB AKE [4], 4.3% as 

equated to BACP [8], and 5.5% as equated to NHP [18], for 

various scenarios. This is owing to the usage of GAPs-based 

augmentation and 1D CNN for classification, which 

improves the accuracy of Cyber-Physical deployments 

against multiple attacks. In terms of temporal performance, it 

was noticed that the model could raise control efficiency 

throughout the identification of attacks by 8.5% as equated to 

ASB AKE [4], 3.9% compared to BACP [8], and 4.6% 

compared to NHP [18], for various scenarios. This is because 

variance-based feature set estimation using the GWTLbO 

Model enhances control efficiency for Cyber-Physical Smart 

Grids. The suggested model was found to be able to boost 

control speed by 19.4%, which is comparable to ASB AKE 

[4], 24.3%, which is comparable to BACP [8], and 29.4%, 

which is comparable to NHP [18], when computing delay 

was estimated. This results from using GWTLbO for 

adaptive feature selection and 1D CNN which aids in 

accelerating classification for CPS smart Grids. According to 

this analysis, the suggested model applies to various smart 

grids and can be used to identify multiple attack types. 

Suggested model in the future, essential to validate on 

advanced Smart Grids and may be expanded by incorporating 

Auto Encoders, Transformers, Gated Recurrent Unit (GRU)-

based analysis, etc. Utilizing hybrid bioinspired models that 

can iteratively tune attack mitigation and grid protection 

characteristics for real-time application in practical scenarios 

can further improve its performance levels. 
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