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Abstract—Radiographic testing is the most common method
of non-destructive testing to detect discontinuities in industrial
piping welds. Human interpretation of radiographic films is
time-consuming and requires high degrees of expertise. Despite
the significant advancements of deep learning techniques in
related fields, such as medical radiography, prior research
endeavors focused on weld discontinuities were constrained by
the limitations stemming from a lack of training data and their
inadequate representation of real-world conditions in the field.

This paper introduces a comprehensive system that automat-
ically detects welding zones, assesses film quality, and classifies
weld discontinuities for the piping process. The proposed frame-
work demonstrates superior generalization capabilities that
bypass a single industry or piping size. The key advantages of
our technique lie in its enhanced accuracy, rapid processing, and
automatic interpretation of welding films across a wide range of
image qualities. Consequently, it achieves remarkable detection
and classification accuracy, offering substantial benefits for
welding inspection and quality assessment.

Index Terms—Deep Learning, image processing, Quality
Control, Welding, Process Piping, Conventional Radiography,
Weld defects, Non-destructive Testing, Digital Radiography

I. INTRODUCTION

rocess pipes are the main components of most industrial

facilities. The global production of those products was
86 million tons in 2018 and could exceed 109 million
tons in 2023 [1]. According to a recent report, the market
size of process piping reaches 277 million USD, owing
to the growing demand from end-use industries [1]]. Non-
destructive testing (NDT) of process piping ensures safe and
productive operations in critical applications. Specifically,
companies commonly use radiography for quality control
in oil, gas, chemical, and other piping systems. Typically,
certified NDT inspectors interpret gamma-ray radiographs
following international standards. This task is time-
consuming, especially before plant commissioning, which
involves thousands of radiographs. Weld discontinuities are
subtle and small. Hence, the process involves multiple levels
of verification to ensure quality assurance.

Machine learning  techniques offer  compelling
opportunities for the automatic detection of flaw indications.
Artificial intelligence methods give successful results for
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interpreting medical imagery with accuracy akin to human
experts [2]], [3]. New advancements in artificial intelligence
in image processing drive industrial application markets. In
fact, according to market studies, the expected market size
of image recognition will grow from 26 million USD in
2020 to exceed 50 million in 2025 [4].

Previous research handled welding discontinuity detection
challenges with image processing techniques and neural
networks [S]. However, image processing lacks the ability
for generalization. The downside of this method is that
it requires determining which aspects of each image are
essential. Moreover, the feature extraction process becomes
more difficult as the number of classes to categorize grows

[6].

Using neural networks for weld radiographs seems
promising. Hence, different attempts were conducted to
develop an automatic way to detect welding discontinuities
[7], (8], [9]. Previous studies tackled welding discontinuity
classification with limitations caused by many issues, like
the size and the misrepresentation of data, as well as the
lack of diversity in discontinuity type. Most recent studies
focus on digital radiography because images are more
abundant and have higher image quality and resolution.
Indeed, conventional radiography remains the most used
non-destructive testing method in the process industries,
including the main application of pipe welding control.
Even if many authors have conducted many studies,
the problem is still insufficiently explored. [8] proposed
an approach for resolving the digital weld radiograph
classification using convolutional neural networks. The
system achieved significant accuracy for large diameters
from a single industrial plant and was constrained to high
image resolution achievable solely with digital radiography.

We have organized the rest of this paper as follows:
Section 2 introduces process piping fabrication and quality
control using radiography testing. Section 3 extends the
overview of the past studies related to our subject. Section
4 presents the model architecture, the learning procedures,
and the dataset. Section 5 will highlight the simulation and
results. Section 7 summarizes the main findings and provides
concluding remarks, including possible directions for further
research.

II. PROCESS PIPING

One of the crucial systems in the processing and
exploration industries is process piping. “Process piping”
generally refers to a system that transports process fluids
like air, water, steam, and gaseous and liquid hydrocarbons
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around an industrial installation under pressure or vacuum.

As defined by ASME B31.3 [10], process piping is
the piping that conveys fluids under pressure or vacuum
within the limits of a petroleum refinery, chemical plant,
gas processing plant, pharmaceutical, textile, paper,
semiconductor, cryogenic, and related processing plants
and terminals. The American Society of Mechanical
Engineers (ASME) B31.3 Codes are considered the ultimate
international standard for piping in processing plants and
industrial installations. Canada also assigns this code, as it
is a requirement in the U.S. according to the Occupational
Safety and Health Administration (OSHA) for all process
piping, and many industrial insurance carriers further
mandate industrial facilities [[11]].

Process piping systems provide various industrial and
manufacturing functions, such as liquid mixing, separating,
stopping, starting fluid flow, pressurization, depressurization,
and filtering.

A. Process piping fabrication

Generally, various materials make up process piping,
including steel, alloy steel, stainless steel, glass-reinforced
plastic, or specific materials in particular use cases. The
described complex systems are typically composed of a
prefabricated single-pipe spool. Pipe spool fabrication is
an influential stage of process piping. It is a production
system characterized by mixed components like pipes,
flanges, and fittings assembled generally by welding. In the
outlet extremity of pipe spools, often control instruments
are built by threading. Finally, valves, bolts, nuts, and
gaskets connect those pipe spools. We can include other
components to facilitate mixing, separating, pressurizing,
or other functions. The exact makeup of a process piping
system will depend entirely on the application the system
serves.

Process piping is the safest tool to transport fluids
and gases across platforms or manufacturing facilities.
However, piping failure may cause damage to human
workers and industrial facilities. Often, investigating such
failures involves input from various engineering disciplines,
particularly welding, non-destructive testing, and fracture
mechanics. Given the potential consequences of weld
piping failures, mitigating failure risk is critical. Experts
provide in-depth technical knowledge that helps to detect
welding defects efficiently by recommending the proper
control procedure that frequently incorporates gamma-ray
radiography.

B. Quality control of process piping systems

Pipe spool fabrication is one of the most complex
industrial processes. The primary purpose of process piping
is to manufacture pipe spools, which refer to a section of
a piping system prefabricated as smaller segments with
flanges and fittings. The typical operations of pipe spool
manufacturing include cutting, fitting, welding, post-weld

heat treatment, and coating.

Industrially, all piping activities are performed in compli-
ance with the international and industrial codes and stan-
dards, as well as the laws and regulations of the respective
local authorities. There are three stages of quality control
(QC) for prefabricated pipe spools:

o Before welding, we cut the raw pipes to the required
size. Then, they are fitted for welding. QC in this stage
consists of 100% visual control to detect imperfections
on edges to be welded and ensure compliance and
quality of assembly preparation.

e During welding, the objective of quality control is
to ensure the conformity of welding between passes,
verify the nature and size of filler metal, control the
voltage and amperage of the welding machine, and
verify welding speed.

e Quality control of prefabricated pipe spools after
welding is generally an application of non-destructive
testing (NDT) in welded joints and mechanical testing
by the hydraulic test of pressure about 1.5 of the rating
flange.

NDT is used to verify the conformity of welds. There is
a difference between discontinuity, defect, and indication.
As defined by the ASME V code, a discontinuity is a lack
of continuity or cohesion, an intentional or unintentional
interruption in the physical structure or configuration of
a material or component. An indication is a response or
evidence from a non-destructive examination that requires
interpretation to determine relevance. Moreover, a defect is
one or more flaws whose aggregate size, shape, orientation,
location, or properties do not meet specified acceptance
criteria and are rejectable [12].

The non-destructive inspection aims to determine if the
inspected entity is to be accepted or rejected. The inspector
looks for discontinuities in the object and identifies their
nature and size. Then, those discontinuities are evaluated
according to acceptance criteria and determined as defects
or not. For an easy evaluation, we regroup the indications
into two categories [12]:

e A linear indication represents any indication with a
length greater than three times the width. Linear in-
dications are mainly cracks, lack of penetration, lack of
fusion, and elongated slag inclusions.

e A rounded indication signifies any indication with a
length equal to or less than three times the width, like
porosity and tungsten inclusion.

Various NDT methods are used to evaluate the quality
of welds. Radiographic testing is the most common non-
destructive testing method used to detect discontinuities. The
process can perform well in the internal structure of weld
joints in prefabricated pipe spools.

C. Radiography testing
As a tool used in various applications, including

medicine and industrial plants, radiographic testing is one
of the primary non-destructive testing (NDT) methods to
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Fig. 1: Complex industrial piping system of a hydrocyclone skid in an offshore petroleum platform (source: IIS with

permission)

Fig. 2: Example of a welded pipe spool containing three
flanges, a Tee fitting, and two elbows (source: IIS with
permission)

detect discontinuities. Radiography testing is one of the
NDT methods that uses either gamma rays produced by
radioactive isotopes or electrically generated x-rays to detect
the presence of internal material discontinuities [12].

As shown in figure [0} gamma rays pass through the
tested weld into a photographic film, resulting in an
image of the internal material. The tested joint is placed
between the radiation source and the detector. The studied
material density and thickness differences attenuate the
penetrating radiation through interaction processes that
include scattering, absorption, or both. We use the image
darkness variation to determine the thickness or composition
of the material. It would also reveal the presence of any
flaws or discontinuities inside the material.

The radiation source can either be an X-ray machine or a
radioactive source (Ir-192, Co-60, or, in rare cases, Cs-137).
The joints of assembled parts will stop some radiation,
whereas thicker and denser areas will stop more radiation.

Fig. 3: Symbol and real photo of crack

The radiation that passes through the welded joint will
expose the film, forming a shadow of the weld. The film’s
darkness or density will vary with the amount of radiation
reaching the film through the test object, where darker
areas indicate more exposure (higher radiation intensity)
and lighter areas indicate less exposure (lower radiation
intensity).

Radiography testing is suitable for inspecting hidden flaws
using short-wavelength electromagnetic radiation (high-
energy photons) to penetrate various materials. The radiation
intensity that penetrates and passes through the material is
either captured by a radiation-sensitive film (conventional
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TABLE I: Different assembly joint types

Pipe to Elbow butt weld

Assembly joint type 3D View 2D View Isometrical symbol Assembly el t
Flange butt welding neck to pipe @ F Flange + Pipe
Flange socket weld to pipe & F— Flange + Pipe
Weldolet in pipe ) ! ' A A Weldolet + Pipe

Pipe + Elbow

Tee butt weld to pipe

Tee + Pipe

Flange slip on to pipe

Flange + Pipe

4
)
4
—

TABLE II: Discontinuity type description

discontinuity type

Symbol in labeling

Description

Crack

FU

Imperfection produced by a fracture that can arise from the stresses generated most of the time during
cooling. It is known as hydrogen introduction in surface or subsurface welding areas. It is the most
serious defect found in a weld and should be removed.

Lack of fusion or | MF A weld discontinuity in which fusion does not occur between weld metal and fusion faces or adjoining

incomplete fusion weld beads. It is the failure of the filler metal to fuse with the adjacent base metal because the surface
of the base metal did not reach melting temperature during welding.

Porosity S Small cavities or bores, which mostly have a spherical shape. Porosity occurs when some constituents
of the molten metal vaporize, causing small gas pockets that get entrapped in the metal as it solidifies.
These small bores could have a variety of shapes, but mostly they have a spherical shape.

Cluster porosity NS Regular porosity in the radiograph, but as a closed cluster group. In general, the cause of the cluster
of porosity is when flux-coated electrodes are contaminated with moisture. The moisture becomes a gas
when heated and trapped in the weld during the welding process.

Slag inclusions IL Mostly happens in shielded metal arc welding (SMAW), and it occurs when the slag cannot float to the
surface of the molten metal and gets entrapped in the weld metal during solidification.

Tungsten IT This type of inclusion can be found in weld metal deposited by gas tungsten arc welding (GTAW) as a

inclusions result of allowing the tungsten electrode to come into contact with the molten metal.

radiography) or a planar array of radiation-sensitive sensors
(digital radiography). Conventional radiography is the oldest
approach, yet it is still the most widely used in NDT,
especially for pipe welds, given the limitations of digital
radiography testing in terms of diameter and thickness.

The Image Quality Indicator (IQI) or “Penetrameter” is
used as a test piece in radiography testing to establish and
control the film image quality. It is placed on the test object
and radiographed to evaluate the radiograph’s sensitivity.
The IQI consists of wires of varying thicknesses and holes.

Numerous radiographic techniques are utilized in non-
destructive testing processes, with the most common ones
being the Single Wall Single Image (SWSI), the Double Wall
Double Image (DWDI), and the Double Wall Single Image
(DWSI)..

The Single Wall Single Image is employed when the
interior of a pipe is readily accessible. In this technique,
the radiation source is positioned on one side, with the film
placed in close proximity on the opposite side.

The Double Wall Double Image technique involves the
passage of radiation through two walls, capturing the material
or weld on the same radiograph. In the case of welds, the
radiation beam may be strategically offset from the weld
plane at an adequate angle to separate the source-side images
and film-side segments, preventing overlap in interpreted
areas. In the Double Wall Single Image methodology, the
radiation traverses through two walls. However, only the
material or weld in close proximity to the film side is visible
to achieve an optimal exposure number and guarantee the
requisite coverage.
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Fig. 4: Symbol and real photo of lack of fusion or incomplete Fig. 6: Symbol and real photo of cluster porosity
fusion

Fig. 5: Symbol and real photo of porosity Fig. 7: Symbol and real photo of slag inclusions
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Fig. 11: Double Wall Double Image (DWDI)

Fig. 8: Symbol and real photo of tungsten inclusions

Lead
container Gammaray
Film Gamma
holder s

k#_#r__#—murwﬁ_____..
o

Film Screens

Fig. 9: Principles of gamma-ray shooting apparatus
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Fig. 12: Double Wall Single Image (DWSI)

Source

Fig. 10: Single Wall Single Image (SWSI)
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III. IMAGE PROCESSING FOR WELD DISCONTINUITIES

Weld discontinuities are a geometrical feature extraction
problem, so the first effort is to use image processing and
a geometric extraction algorithm. Radiographic images
often show low contrast, noise presence, and an uneven
distribution of grays. However, the quality of images
influences the detection of weld defects to a large extent,
especially for those small defects that drown in the noise.
So image processing has the purpose of reducing noise and
enhancing contrast. Image preprocessing in our context is
a critical operation that demands careful consideration. It
is essential to highlight that a solution must execute the
process with the utmost care to avoid any loss of vital
information from the image.

Many papers use methods to remove noise and keep as
much vital information related to weld defects as they can.
[L3] designed a one-dimensional FFT filter for detecting the
crack flaw. The filter can distinguish between undercuts and
cracks. [14] employs a wavelet filter to minimize the noise
with a simple threshold. Many works applied standard filters
like the median or adaptive Wiener filter to remove the
noise from images [[L15], [L6]. [[17] mix an adaptive Wiener
filter and a Gaussian low-pass filter to remove noise. The
adaptive filter preserves edges and other high-frequency
information. At the same time, the Gaussian low-pass filter
smooths an image in the frequency domain by alternating a
specific range of high-frequency components.

Filtering methods suffer from the tuning configuration,
such as the size of the filter and threshold values. In contrast,
other methods use machine learning approaches to tackle
noise problems. [18]] used blind image separation (BIS)
instead of filtering. The technique applies transformation
and classification machine learning algorithms to separate
noise from the information.

Contrast enhancement aims to highlight the geometric
features of the image. With the weld defect image’s low
contrast nature due to the limitation of the intensity range
accommodated by the capture device and the presence of
noise, such an operation is much needed.

[[18]] uses contrast stretching and normalization algorithms
to enhance images. The idea first normalizes the image with
low and high thresholds, finds the values closest to the mini-
mum and maximum values, and performs contrast stretching
according to the specific range of contrast values. [19] applies
histogram stretching and equalization to get the best image
before the segmentation. The histogram stretching algorithm
increases the contrast of an image. The goal of histogram
equalization is to obtain an image with uniformly distributed
brightness levels across the entire range. The sin function
enhancement method in [20] improved the contrast of the
weld and background regions. After that, the background
area’s gray and weld areas are concentrated into high and
low gray levels, and the curve is double-peaked.

IV. THE PROPOSED APPROACH

As discussed before, the main difficulties of welding
discontinuity detection reside in two things. The first is

keeping useful image information with quality enhancement.
The second is related to the tiny and various geometrical
discontinuities. Convolutional neural networks have proven
themselves in object detection because of their many
advantages, such as geometrical feature extraction and
local connectivity. Object detection networks are mainly
divided into two categories: single-stage and two-stage.
Based on a one-step strategy, the model directly regresses
the classification and location of objects, which can achieve
fast detection speeds and is efficient and hardware-friendly.
YOLO [21], SSD [22], RetinaNet [23]], VFNet [24], and
RepPoints [25] are examples of one-stage convolutional
neural networks. Compared to one-stage networks and
two-stage methods such as Faster RCNN [26], Cascade
R-CNN [27], R-FCN [28], and Dynamic RCNN [29], have
low inference speeds because they generate region proposals
that distinguish between foreground and background first.
However, the refined design improves the recognition
performance and is more suitable for the high-precision
scene.

To implement the welding discontinuity detection ap-
proach from a hardware-friendly perspective In addition,
for the welding testing, we use just images. Our approach
will target mainly efficient computation goals, in addition to
attempting good precision in detection.

A. The proposed model

The proposed model splits the welding discontinuity de-
tection into four stages:

o The validation of the proposed film: In this stage, we
look for the presence of all elements imposed by one
of the international welding standards. In our example,
we seek to visualize the welding zone, the norm zone,
and at least three characterizing wires.

« Images cleaning: To increase the quality of the original
welding image, we apply the histogram equalizer image
preprocessing to preserve its information. For exam-
ple, we choose “Contrast Limited Adaptive Histogram
Equalization”[30] (CLAHE).

o Preparation of the welding zones: including a method
for cropping the welding zone into near-square-shaped
fragments. This step is necessary for enlarging the dis-
continuity zone ratio within the fragment’s surface. We
should mention that getting a comprehensive coordinate
of the discontinuity zone within the original first image
imposes the attribution of a transition vector for each
near square fragment, expressed as (zs,yy), where zy,
yy are respectively the coordinates of the top left corner
of each fragment within the original first image top left
corner.

o The detection of discontinuities: In each near-square
welding fragment image, we precede the detection of
any discontinuities and use the transition vector to get
the final coordinates.

B. Dataset preparation

1) Welding discontinuities type choice : According to the
gamma-ray shooting method, the proposed dataset regroups
two types of radiograph welds: elliptical shooting for weld
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Examples of
discontinuities

Morm indication
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Fig. 13: A radiograph of a tested weld showing the norm, IQI wires, the welding zone, and discontinuities
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Fig. 14: Model architecture

pipe diameters inferior to 2 inches and shooting contact for
weld pipe diameters strictly superior to 2 inches.

The dataset comprises piping weld radiographs ranging in
thickness from 3.91 mm (diameter of 0.75 inches) to 17.14
mm (diameter of 12 inches).

The proposed model aims to detect the number of wires
as a function of the thickness of the radiographed weld.
The model did not take this option as the naked eye quickly
detects IQI holes.

2) Procedure of digitalization: To physically identify
X-ray films, we employ a negatoscope with a professional

camera in a darkroom setting. The X-ray films were
positioned on the negatoscope and photographed from a
distance of 200 mm, separating the camera projector and
the negatoscope.

Upon capturing images of all X-ray films, we download
the digital files and systematically number them following
the physical X-ray films’ identification.

3) Labeling: The labeling phase is carried out by qual-
ified individuals possessing the following credentials: NDT
certification from the American Society for Non-Destructive
Testing (ASNT) at level II in radiography testing and the
designation of International Welding Technologist.
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V. SIMULATION AND RESULTS
A. Training procedure

As we can figure out in Figure [I4] we have two YOLO
models for detecting the welding zone and the detection and
recognition of the discontinuities in the welding zone.

Table [[TI] highlights the information related to the film

training process. The images contain many welding types
and positions and different quality image levels.

TABLE III: Training film procedure information

Training | Validation
. . Number of images 1016 180
Welding detection
Image size 640x640 | 640x640
A ) L Number of images 790 80
Welding discontinuities
Image size 640x640 | 640x640

Models used in our approach are mixed between different
YOLO-v5 [31] and yolo6 [32] (table , with training
hyperparameters as follows:

o Image size: 640x640

o Optimizer: Stochastic gradient descent

« Batch size: 16

TABLE IV: Models used in welding detection and welding
discontinuities

Name ‘Weights

YOLOv5s 7.2 Millions

. YOLOv5m 21.2 Milions
Detection

YOLOv6s 18.5 Milions

YOLOv6m 34.9 Milions

YOLOvS51 46.5 Milions

. o YOLOv5x 86.7 Milions

Discontinuities
YOLOv6l 59.6 Milions
YOLOv6I6 140.4 Milions

B. Results and evaluations

The proposed training processes mentioned above exhibit
consistent welding and discontinuity detection convergence
across various models. This convergence highlights the
effectiveness and reliability of these methods in tackling
the specific challenges of weld analysis and defect detection.

However, there are significant differences in terms of
convergence speed and accuracy among each model. These
differences exist not only within the same architecture but
also between closed-size models.

1) Welding zone detection model: Comparing the YOLO
5 outcomes, the results depicted in Figures [T5a] and [I5b]
reveal comparable performance in class loss minimization
between the small (YOLOvS5s) and medium (YOLOv5m)
weight models. However, a nuanced disparity emerges,
highlighting a favorable edge for the medium model in
box loss minimization. For YOLOv6 outcomes concerning
the detection of welding zones, it is evident from Figures

—— YOLO 55
—— YOLO 5m
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T T T T
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0.0025 A
YOLO 58

0.0020

R

0.0015

YOLO 5m

0.0010 4

T T T T T
180 120 200 210 220
epoch

(a) Loss of classes

[} 50 100 150 |_| 200
epoch

(b) Loss of box

Fig. 15: Losses of YOLOvS5s and YOLOvSm in the training
stage for welding detection

and that the medium model exhibits a slight
advantage in class and box loss compared to its smaller
one. Nevertheless, Figure and Figure manifest the
prevalence of the YOLOv5 model over YOLOvV6 concerning
loss values during the training process for welding zone
detection.

For the precision context, there is, as shown in Figures
18al[18b]l19a] and a good performance of the medium
models of YOLOvS and YOLOv6 compared to the small
ones. This gap between the two weight size models
becomes highlighted in the mean average precision mAP-
50-95. However, comparing the two architectures, YOLOVS
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Fig. 16: Losses of YOLOv6s and YOLOv6m in the training
stage for welding detection

outperforms YOLO®, as figured out in Figures 20a] and 20b]

2) Welding  discontinuity  detection  model:  For
discontinuity detection, as a complex task, compared
to welding zone detection, we can see a slow convergence
of the loss function for both the YOLOvV5 and YOLOvV6
models (Figures 2Ta] 21b] 22a] and 22b). Nonetheless, the
results shown in Figures 23a] [23b] reveal a gap in loss values
between the two versions of YOLO, which is an advantage
to YOLOVS.

The precision analysis depicts, in fact, the good
performance of YOLOvV6 models in discontinuity detection
compared to YOLOvV5 models, as shown in Figures @ and
[26b] In fact, there is a slow evolution of precision values
within the training epochs in the YOLOvS models (Figures
[24a] and [24b). On the contrary, YOLOv6 models present
good precision evolution within training epochs, as shown

in Figures 252 and [25b]

C. Inference

In order to assess the pragmatic applicability of the
proposed model within real-world scenarios, the inference
results, encompassing the progression from the raw target
image to the identification of weld discontinuities will be
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Fig. 17: Losses of YOLOvS and YOLOv6 models in the
training stage for welding detection
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Fig. 18: Mean Average Precision (mAP) of YOLOvVS models
in the training stage for welding detection

examined.

Tables [V] and [V]] highlight the inference results derived
from various instances of weld radiographs. The evaluated
images exhibit good performance in detection scenarios for
both Yolo 5 and Yolo 6 models. Notably, in the context of
discontinuity detection, Yolo 5 models demonstrate superior
results when compared to their Yolo 6 counterparts.
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TABLE V: Examples of welding radiographs inference results using Yolo detection models.
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TABLE VI: Examples of welding radiographs inference results using Yolo discontinuities models.
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Fig. 20: Mean Average Precision (mAP) of all models in the
training stage for welding detection
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Fig. 23: Losses of YOLOvS and YOLOv6 models in the
training stage for welding discontinuity detection
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Fig. 24: Mean Average Precision (mAP) of YOLOvS5 models
in the training stage for welding discontinuity detection
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Fig. 26: Mean Average Precision (mAP) of all models in the
training stage for welding discontinuity detection

VI. CONCLUSION

In this paper, a turn-key system is presented. It offers
automatic detection of welding zones and film quality,
along with the classification of discontinuities in weld
process piping assembly. This system is designed with
high generalization capabilities that extend beyond specific
industry or piping size requirements.

With the advent of technological evolution in radiographic
control, the field of digital radiography usage can be
expanded. Our proposed solution, which digitizes numerical
X-ray film, offers an opportunity for its widespread use.

It is important to note that while our proposed solution
cannot fully replace human interpretation, it can complement
it by making the interpretation task more manageable.

In conclusion, this turn-key system represents an important
advancement in the welding industry, with the potential to
revolutionize welding quality evaluation and maintenance
practices.
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