
 

 
Abstract—Non-intrusive load monitoring (NILM) has become 

a widely used approach to monitor energy consumption by 
installing monitoring equipment at the power supply entrance. 
However, the accuracy of traditional deep neural network 
decomposition models falls short of meeting practical demand. 
To address this limitation, the present study introduces a novel 
hybrid neural network model, which integrates temporal 
feature extraction and an attention mechanism. The proposed 
model is designed to discern the salient attributes within power 
time series signals, thereby reducing the dimensionality of the 
resulting characteristic temporal signals via the application of 
Principal Component Analysis (PCA). Next, a Gated Recurrent 
Unit (GRU) neural network with an attention mechanism 
extracts the features of the generated information vector, and 
generates the load decomposition model after multiple iterations 
of learning. The experimental outcomes on the REDD public 
dataset substantiate the superiority of the proposed model over 
alternative deep learning techniques, including CNN, GRU, and 
GRU with attention. The proposed model demonstrates a 
significantly elevated degree of precision within the domain of 
load identification. 
 

Index Terms—Non-intrusive load monitoring; Attention 
mechanism; Feature extraction; Gated recurrent unit. 
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costs. These goals are of significant importance for reducing 
carbon emissions. As a result, NILM has emerged as an 
effective approach to promoting energy conservation and 
reducing environmental pollution [2-3]. 

In recent years, artificial intelligence and advanced 
measurement technology have developed rapidly. Scholars 
began to apply new technologies to the research of new 
electricity consumption [4], load forecasting [5] and load 
monitoring [6]. In 2015, Professor Kelly [7] introduced the 
application of deep learning algorithms to NILM for the first 
time. Compared with traditional algorithms, this method has 
higher accuracy and is more easily scalable. Currently, 
numerous scholars are applying neural network methods to 
NILM. For instance, Zhang et al. [8] proposed a sequence-to-
point model that utilizes convolutional neural networks to 
train a load monitoring model. Experiments conducted on 
real-world household datasets demonstrated that the proposed 
neural network model outperforms other methods. Bonfigli et 
al. [9] introduced a NILM algorithm that uses the Denoising 
Autoencoder model to approach the NILM problem as noise 
reduction. Experiments conducted on three NILM datasets 
confirmed that the proposed model outperforms other 
comparison models. Shin et al. [10] have developed a deep 
network to improve the ability to analyze appliance on/off 
status. The proposed Subtask Gated Networks achieved 
superior performance compared to most of the benchmark 
cases. 

Extensive research has been conducted to enhance the 
performance of NILM algorithms by analyzing features 
extracted from current and voltage signals. Wang et al. [11] 
successfully applied the Voltage-Current (V-I) trajectory in 
the NILM field, yielding positive outcomes. Jimenez et al. 
[12] investigated a combined approach employing the S-
Transform and Support Vector Machines for load monitoring. 
Khalid et al. [13] developed a time-time-transform-based 
method to improve the accuracy of load identification. 
Moreover, various scholars have extensively studied the 
application of wavelet transform in NILM [14-16]. 
Collectively, experimental results from these studies have 
consistently demonstrated the effectiveness of hybrid models 
based on wavelet transform in NILM. 

As an increasingly popular technique in various fields such 
as image recognition and speech recognition, the attention 
mechanism [17] has also been studied in the context of NILM. 
Wang et al. [18] developed a NILM model that integrates the 
sequence-to-sequence model with attention mechanism. 
Piccialli et al. [19] proposed a deep neural network that 
incorporates a tailored attention mechanism for NILM. Both 
studies show that the use of attention mechanism improves 
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The issue of global warming and environmental pollution

has resulted in increasing attention towards scientific
electricity usage and promoting efficient power consumption
[1]. Non-intrusive load monitoring (NILM) represents an
intelligent power utilization technology that aims to analyze
the power data at the user's power supply and obtain load
category and power utilization information in the user's area.
The primary function of NILM is to decompose and classify
loads, specifically to manage user's electricity consumption
behavior, achieve refined energy management, improve
energy utilization efficiency, and reduce energy consumption
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the effectiveness of load monitoring compared to 
conventional neural networks. 

Inspired by the aforementioned deep learning models and 
feature extraction methods, a hybrid model for NILM using 
time series feature extraction and attention mechanism is 
proposed in this study. 

II. METHODOLODGY 

2.1 Workflow of hybrid NILM model: TS-Attention-GRU 

 
Fig. 1.  Flowchart of TS-Attention-GRU NILM approach 

 
The flow chart of the hybrid NILM model TS-Attention-

GRU used in this paper is shown in Fig. 1. The load 
identification algorithm mainly includes the following steps: 

1) Extraction of Typical Operational States: The process 
involves the collection of household electricity data, 
encompassing the active power consumption of the entire 
household as well as individual electrical appliances. By 
aggregating the active power and total power measurements 
of distinct electrical appliances, a comprehensive dataset is 
created for each specific appliance. 

2) Time Series Feature Extraction: To enhance the 
effectiveness of load decomposition, the extraction of time 
series features is employed to extract the active power data of 
the load. In this study, the time series feature extraction 
method utilized the Python package "tsfresh," developed by 
Chris [20], as the preferred tool for this purpose. 

3) Principal Components Analysis (PCA): The 
dimensionality of the feature vectors obtained from the time 
series analysis of electrical appliances is typically quite high, 
often reaching several hundreds. Training these feature 
vectors directly using neural networks would result in 

excessive training time. Hence, it becomes necessary to 
reduce the dimensionality of the previously extracted time 
series features through the application of PCA. 

4) Neural Network Training: The load features acquired 
in the initial three steps are inputted into a Gated Recurrent 
Unit (GRU) neural network, incorporating an attention 
mechanism, for the purpose of training. 

5) Load decomposition: The unidentified load is subjected 
to the same processing steps as outlined in steps 1 to 3. 
Subsequently, it is inputted into the trained neural network to 
undergo load decomposition. 

. 2.2. Time series feature extract methods 
Time series feature extraction holds significant 

importance within data science projects. Investigating and 
assessing the statistical characteristics of time series features 
play a crucial role in time series prediction. In this regard, 
Chris et al. have developed a Python package named "tsfresh" 
specifically designed for time series feature extraction. This 
software amalgamates 63 time series characterization 
methods to provide a total of 794 time series features. Tsfresh 
facilitates the computation of various time series features that 
encompass fundamental characteristics such as peak count, 
average value, maximum value, and time reversal symmetric 
statistics, among others. Furthermore, these features are 
subjected to hypothesis testing to identify the subset of 
features that best elucidate the underlying trend, a process 
referred to as decorrelation. The resulting feature sets can be 
effectively utilized in training machine learning models, 
regardless of whether the problem at hand involves time 
series regression or classification. 

Fig. 2 illustrates the three sequential stages of the tsfresh 
algorithm. Initially, the algorithm employs a thorough and 
precise feature mapping technique to represent the time series 
data, while simultaneously taking into account 
supplementary features that describe the meta information. 
Subsequently, each feature vector's significance in relation to 
the predicted target is independently evaluated. This 
evaluation yields a p-value vector, which quantifies the 
relative importance of each feature with respect to the 
predicted target. Finally, the p-value vector undergoes 
assessment using the Benjamini-Yekutieli (BY) multiple 
testing procedure [21] to determine the selection of features 
to be retained for further analysis. 

 
Fig. 2.  Feature extraction workflow of tsfresh 

 
2.3 GRU 
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Long Short-Term Memory (LSTM) is often used in time 
series prediction. Nevertheless, because of its complicated 
internal structure, it usually takes more time to train the LSTM 
model. 

 
Fig. 3.  Unit structure of GRU 

 
Unlike LSTM, GRU [22] only has update door and reset 

door. The internal structural of GRU is shown in Fig. 3. Its 
internal relationship is: 

𝑧௧ ൌ 𝜎ሺ𝑊௭ℎ௧ିଵ ൅ 𝑈௭𝑥௧ ൅ 𝑏௭ሻ              (1) 
𝑟௧ ൌ 𝜎ሺ𝑊௥ℎ௧ିଵ ൅ 𝑈௥𝑥௧ ൅ 𝑏௥ሻ                   (2) 

ℎ௧෩ ൌ 𝑡𝑎𝑛ℎሺ𝑊௛ሺ𝑟௧ℎ௧ିଵሻ ൅ 𝑈௛𝑥௧ ൅ 𝑏௛ሻ                 (3) 
ℎ௧ ൌ ሺ1 െ 𝑧௧ሻℎ௧ିଵ ൅ 𝑧௧ℎ௧෩ ሻ                   (4) 

where 𝑧௧ is update gate, 𝑟௧ is reset gate, ℎ௧෩  is the summary of 
the input 𝑥௧ and output of the previous hidden layer ℎ௧ିଵ. 𝜎 is 
the sigmoid function. 𝑊௭ , 𝑊௥ , 𝑊௛ , 𝑈௭ , 𝑈௥ , 𝑈௛ , 𝑏௭ , 𝑏௥ , 𝑏௛  are 
the weight matrix of the cell. 
2.4 Attention mechanism 

 
Fig. 4.  Attention unit structure 

 
The attention mechanism efficiently directs limited 

computational resources towards crucial information within the 
power sequence, thereby optimizing computing efficiency and 
expediently extracting the most effective information. Through 
weighted summation, the attention mechanism determines the 
attention weight assigned to each element within the power 
sequence, signifying the relative importance of the input 
information. The adaptive allocation of these weights enhances 
both the training efficiency and convergence speed of the 
model. Attention unit structure is shown in Fig. 4, where 𝑥ଵ , 
𝑥ଶ ,…, 𝑥௧  are the power sequence data. ℎଵ  , ℎଶ ,…, ℎ௧are the 
state value of the GRU hidden layer output corresponding to 

the input. 𝑎௧,௜  are the current attention weight value 
corresponding to the GRU hidden layer output value. 𝑆௧ are the 
final output hidden layer status value. The calculation steps of 
attention mechanism are as follows: 

𝑒௧,௜ ൌ 𝑉் tanhሺ𝑊ℎ௧ ൅ 𝑈ℎ௜ሻ , 𝑖 ൌ 1,2, … , 𝑡 െ 1     (5) 

𝑎௧,௜ ൌ
௘೟,೔

∑ ௔ೖ,೔
ಿ೟
ೖస೔

, 𝑖 ൌ 1,2, … , 𝑡 െ 1     (6) 

𝐶 ൌ ∑ 𝑎௧,௜ℎ௜
ே೔
௜ୀଵ , 𝑖 ൌ 1,2, … , 𝑡 െ 1     (7) 

𝑆௧ ൌ fሺ𝐶,ℎ௜ሻ     (8) 
where V, W and U are training parameters. 

III. EXPERIMENTS 

To verify the validity of the algorithm proposed, this paper 
selected the public dataset REDD [23] for experiment. The 
neural network was built in PyTorch 1.11 environment. The 
hardware platform is Intel Xeon platinum 8124 with 128G 
memory and RTX3080 graphics card. 

3.1. Datasets 

. The REDD dataset encompasses long-term power 
consumption data from six households, comprising primarily 
high-voltage current data (16.5 kHz) and low-power (1 Hz) 
sampling data. Specifically, the high-frequency sampling data 
is acquired from the current and voltage acquisition device 
connected to the household's power supply port, whereas the 
low-frequency power data is obtained from power acquisition 
devices installed on each load branch and two buses. For the 
experimental purposes of this paper, the low-frequency power 
data of household 1 within the REDD dataset is utilized. 
3.2. Metrics 

NILM has many evaluation metrics. In this paper, we 
choose metrics for status monitoring: Accuracy, and 𝐹ଵ score. 
Meanwhile, we choose Mean Absolute Error (MAE) as the 
metric for power decomposition. 
1) Status monitoring metrics: 

𝑃𝑅 ൌ
்௉

்௉ାி௉
                     (9） 

𝑅𝐸 ൌ
்௉

்௉ାிே
                （10） 

𝐹ଵ ൌ
ଶൈ௉ோൈோா

௉ோାோா
             （11） 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
்௉ା்ே

்௉ା்ேାி௉ାிே
             （12） 

where true positive (TP) indicates the number of status 
monitoring are consistent with the actual status; false positive 
(FP) indicates the number of positive but actually negative 
status monitoring; false negative (FN) indicates the number 
of negative but actually positive status monitoring; true 
negative (TN) is the count of correctly captured negative 
status. The closer Accuracy and 𝐹ଵ are to 1, the higher the 
accuracy of the model. 
2) Metric for power decomposition: 

𝑀𝐴𝐸 ൌ
ଵ

்
∑ |𝑦ሺ𝑡ሻ െ 𝑦ොሺ𝑡ሻ|்
௧ୀଵ             （13） 

where 𝑦 (𝑡) is the power decomposition value at time t; 𝑦ොሺ𝑡ሻ 
is the actual power value at time t; T is the duration. The 
smaller the MAE, the higher the accuracy of the model. 
3.3. Experimental results 

In order to assess the algorithm's performance, the 
proposed model is compared with convolutional neural 
network (CNN), GRU, and GRU enhanced with attention 
mechanism. The experimental results are presented in Tables 
Ⅰ-Ⅲ. The tables reveal that the algorithm proposed in this 
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paper achieves the highest values across all three 
performance indicators: accuracy, 𝐹ଵ score, and MAE, with 

the exception of sockets. Overall, the proposed algorithm 
exhibits improvements ranging from 5% to 30% in 
comparison to other algorithms. However, it is worth noting 
that the algorithm proposed in this paper does not exhibit 
significant advantages for electrical equipment that is  
infrequently used, such as sockets. 

Fig.5 presents the outcomes of load power decomposition 
achieved through the algorithm proposed in this study. The 
figure showcases the accurate identification of the initiation 
and termination phases of electrical equipment, alongside a 
notable effectiveness in power decomposition. 
Consequently, the load decomposition model proposed in 
this paper successfully fulfills the requirements of the NILM 
task. 

IV. CONCLUSION 

This study presents a non-intrusive load monitoring 
(NILM) model integrating time series feature extraction and 
an attention mechanism. The methodology entails 
decomposing the time series features of large-scale load data, 
then inputting the PCA-reduced data into a gated recurrent 

unit (GRU) neural network with an incorporated attention 
mechanism. This approach facilitates non-intrusive load 
monitoring and power disaggregation. The experimental 
results indicate that the proposed method displays higher 
predictive accuracy relative to convolutional neural networks 
(CNNs), GRUs, and GRUs with an attention mechanism 
when applied to frequently used electrical devices. In contrast, 
for infrequently utilized electrical devices such as sockets, the 

Table Ⅱ.  Comparison of prediction 𝐹ଵ of each model. 

Accuracy
. 

Washing 
Machine 

Dish 
Washer 

Fridge 
Micro
wave 

Sockets 

CNN 0.4575 0.1860 0.7487 0.2353 0.9533 

GRU 0.4399 0.2014 0.7597 0.2577 0.9314 

Attention 
with GRU 0.5105 0.2354 0.7476 0.2498 0.9536 

TS-
Attention-
GUR 

0.7719 0.3518 0.7652 0.3019 0.9525 

 

Table Ⅰ.  Comparison of prediction accuracy of each model. 

Accuracy
. 

Washing 
Machine 

Dish 
Washer 

Fridge 
Micro
wave 

Sockets 

CNN 0.9428 0.6599 0.8232 0.9572 0.9111 

GRU 0.9379 0.6887 0.8377 0.9598 0.8722 

Attention 
with GRU 0.9542 0.8299 0.8477 0.9570 0.9116 

TS-
Attention-
GUR 

0.9859 0.9557 0.8655 0.9914 0.9038 

 
(a)  Fridge 

 
(b) Dishwasher 

 
(c) Washing machine. 

Fig. 5.  Load power decomposition results 

Table Ⅲ.  Comparison of prediction MAE of each model. 

Accuracy
. 

Washing 
Machine 

Dish 
Washer 

Fridge 
Micro
wave 

Sockets 

CNN 38.14 79.15 41.85 52.66 1.52 

GRU 36.97 77.46 43.09 44.442 1.6109 

Attention 
with GRU 33.92 63.2 42.58 45.72 1.58 

TS-
Attention-
GUR 

31.47 29.36 38.07 40.35 1.5923 
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predictive accuracy of the proposed method is analogous to 
that of the other benchmark models. 

In the future, it is anticipated that a broader range of load 
characteristic libraries encompassing diverse types and 
models will be established with the aim of enhancing the 
effectiveness of NILM algorithms. 
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