
Leveraging Network Slicing in SDNs for Handling
Application Failures

Bommareddy Lokesh, Member, IAENG, and Narendran Rajagopalan

Abstract—Unlike traditional networks, Software-defined net-
works (SDNs) provide an overall view and centralized control
of all the devices in the network. SDNs enable the network
administrator to implement the network policy by program-
ming applications on top of the SDN controller using generic
APIs. One or more controller instances can be deployed to
administer the data flow by maintaining unified control of
the entire network. The controller is expected to respond
quickly to queries from forwarding devices. Presuming quick
responses from the controller while enforcing a complex se-
curity mechanism is unreasonable. In this paper, the authors
propose a unique, adaptive, lightweight, yet efficient technique
called ISOLATOR to mitigate the effect of insider attacks and
malfunctioning of distributed applications in an SDN-enabled
cloud. The proposed security application upon detecting any
suspicious activity by a virtual machine, isolates it by removing
the interface to its respective shared network and reconnects
it through a restricted network operating in a highly selective
mode. By subjecting the data traffic to deep packet inspection,
the restricted network searches for a match with a known worm
pattern. The application is programmed for the OpenDayLight
controller and the results show a significant improvement
in identifying malicious activities with minimal latency and
computational cost.

Index Terms—Openstack, OpenDayLight SDN-controller,
North-bound-APIs, OpenFlow.

I. INTRODUCTION

IN an SDN environment, the controller has to supervise the
data flows between hosts by populating the forwarding ta-

bles of intermediate devices with necessary flow rules. NOX
was the first SDN controller introduced and is well-known
for C++ as the North Bound API (Application Programming
Interface). Subsequently, many other controllers supporting
a wide variety of APIs came into existence, namely ONOS,
Floodlight, OpenDayLight, and RYU. These broad ranges
of SDN controllers and their APIs improved the flexibility
and programmability of the network. The generic North
Bound APIs allow the network administrator to dynamically
manage the network traffic using flexible and policy-driven
controller applications. Accordingly, the controller installs
or modifies necessary flow rules in the device’s forwarding
tables using South Bound APIs. Openflow is the standard
and predominantly used South Bound Interface (SBI) [1].

Typically, the flow rules remain in the device’s forwarding
tables for a limited duration and are suspended upon timeout.
Usually, two types of timeouts exist in the SDN paradigm,
namely idle and hard timeouts. A flow entry hits idle timeout
and is removed from the forwarding table if no reference

Manuscript received February 3, 2023; revised December 20, 2023.
Bommareddy Lokesh is an Assistant Professor in the School of Computer

Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh,
522237, India. e-mail: lokesh.bommareddy@vitap.ac.in

Narendran Rajagopalan is an Associate Professor in the Department
of Computer Science and Engineering, National Institute of Technology
Puducherry, Karaikal, 609609, India. e-mail: narendran@nitpy.ac.in

to that particular flow entry arises for a fixed time period.
Flow entries are also evicted after a predetermined duration
irrespective of its activity. In that case, it is termed a
hard timeout. Devices can restore forwarding table entries
that have been suspended due to timeout by contacting the
controller.

The performance of the controller apparently deteriorates
if it is overwhelmed with a large number of flow queries.
Li et al. introduced CPMan for reducing the load on the
controller [2]. They propose to enhance the switches by
equipping them with more information, resulting in fewer
queries to the controller. In the case of large networks,
a single instance of the controller with practically limited
capacity may not be able to handle all the requests alone.
In a clustered approach, the data store needs to be instantly
updated to ensure a conflict-free platform for all controller
instances to maintain a logically centralized view of the
network. ONOS, by architecture, can logically centralize the
control easily and improve the scalability of the network.
However, it is recommended to operate with the minimum
number of controller instances possible to achieve better
synchronization across the network.

As OpenFlow has evolved, the number of fields in the
packet header has gradually increased, leading to a more
complex implementation. To address this issue, a high-level
language called Programming Protocol-independent Packet
Processors (P4) was proposed as a straw man proposal. It is
still in the early stages of development [3]. It is an attempt to
customize the way switches process their packets. P4 throws
light on how OpenFlow should evolve in the future. For better
scalability and manageability, cloud providers like Google
and IBM have already adopted SDN in their clouds, and
many other cloud service providers are likely to adopt SDN
technology at their data centers soon [4], [5]. Mininet is
the predominantly used emulator for testing the controller
applications. Networks with arbitrary configurations can be
set up rapidly using Mininet. Moreover, Mininet enables
the SDN controller to run as an external application on
a separate machine. Despite the benefit of simplified and
rapid prototyping, the results obtained in the Mininet are not
trustworthy, since the hosts and network components run as
kernel processes in the host machines [6].

Evaluating the performance of controller applications in
a realistic cloud platform, such as OpenStack, would result
in more realistic outcomes when compared to the results
obtained in Mininet. This is because in OpenStack, testing
can be performed on actual systems [7], [8]. DevStack is a
simplified version of Openstack that can be used to build a
cloud platform within a stand-alone machine. Since SDNs are
very new, networking devices that support SDN functionality
are very costly. Traditional devices are relatively cheap but
are proprietary in nature. To test the proposed technique, we

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

opted to use OpenvSwitch (OVS) to configure the desired
network. Apart from implementing the proposed security
mechanism, this paper also presents some of the vulner-
abilities in SDNs. Fuzzers like SCAPY (a Python script
used to learn the nature of protocols) are used to fabricate
the network traffic for identifying possible vulnerabilities.
SCAPY can be used to clone, cast packets and decode the
replies by matching them with similar responses to study the
controller functionality.
The unique contributions of this work include:
1. A dynamically adaptable statistical-based approach to de-
tect abnormal traffic in an SDN-enabled Data center network
(DCN) is proposed and implemented.
2. A simple VM isolation technique to mitigate the effect of
malfunctioning distributed applications in an SDN-enabled
network is presented.
The remaining sections of this paper are organized as follows.
section II reports the related work. Section III discusses the
nature of data center applications and their traffic patterns.
section IV presents a brief overview of Openstack and details
about the experimental setup. section V discusses the process
of configuring Openstack in conjunction with OpenDayLight
controller and the proposed security algorithms. section VI
presents the tests conducted and the results obtained on
implementing the proposed model. The concluding remarks
are presented in section VII.

II. RELATED WORK

In this section, our primary focus is to review existing
works proposed to make SDNs resilient.

Porras et al. introduced FortNOX, a framework to dy-
namically detect and resolve conflicting flow entries in-
jected by Openflow applications in NOX controller [9]. Con-
trollerSEPA, a security plug-in was introduced by Y. Tseng
[10]. This plug-in supports application-based Authentication,
Authorization, and Accounting services (AAA). A detailed
study on benefits from a security perspective through various
features of SDN is presented by Shin et al. [11].

Corybantic, a conflict-free modular model for synchroniz-
ing controller applications that compete for resources to ful-
fill their independent objectives is proposed and implemented
by Mogul et al. [12]. Seo et al. proposed a solution for
security vulnerabilities that result as a part of communication
between the identification process and cloud services [13].
Shin et al. addressed possible attacks like control plane
saturation and responsive challenge. Connection migration
and actuating triggers are the two techniques proposed and
implemented for mitigating those attacks respectively [14].

Network virtualization allows multiple isolated logical net-
works to share the same physical infrastructure while main-
taining isolation and hardware forwarding speeds. This is
achieved through a novel switch-level virtualization approach
that utilizes commodity switching chipsets and does not
require programmable hardware[15]. Caron and Cornabas
proposed a model to avoid data leakage and modification
using VM placement heuristics considering different levels of
isolation [16]. The proposed method minimizes performance
interference. Yuchi and Shetty proposed security-aware VM
placement or VM migration in the cloud to avoid the risk
of security exploits on vulnerable virtual machines [17].
The authors recommended the migration of the vulnerable

machine image into a separate physical server to reduce
the risk of attacks. However, VM migration needs a lot
of network’s bandwidth and the downtime is even daunting
[18], [19]. Woo et al. introduced a framework called RE-
CHECKER to discover bugs and vulnerabilities in RESTful
services provided by SDN controllers [20].

Bari et al. proposed ”CQNCR” a technique to determine
the ideal execution order of workload migration [19]. This
model has shown a significant improvement in the availabil-
ity of workloads and the time taken for migration within
a data center. Seungwon Shin and Guofei Gu proposed
and implemented CloudWatcher, which acts as an applica-
tion for network monitoring to provide adequate security
[21]. A multi-player dynamic game based on rewarding
and penalizing for the utilization of network bandwidth was
suggested by Chowdhary et al. [22]. Their model is tested
on the OpenDayLight controller and their model do not
allow scaling up the network. According to the authors, their
algorithmic complexity is linear and is dependent on the
system’s user count.

Chinese wall policy-based security-awareness VM place-
ment scheme (SVMPS) was proposed and implemented by
Yu et al. [23]. Their scheme provides isolation between
conflicting users. Due to the overall view of the network,
Distributed Denial of Service and Denial of Service attacks
can be easily detected and alleviated in an SDN-enabled
cloud [24], [25]. An efficient packet-level traffic monitoring
using vTAP in Openstack environment is presented by Jeong
et al. [26]. The performance analysis of live VM migration
in Openstack is presented by He et al. [27].

i Isaac Thulo and Eloff presented a collective mecha-
nism keeping in view the QoS, cost, and security of cloud
[28]. Authors have evaluated the existing VM placement
algorithms and identify those that show the potential to be
considered for future enhancement from a security perspec-
tive. SDNs offer flexibility for network virtualization which
enables them to create multiple virtual networks on top of
the existing physical network [29], [30], [31], [32], [33].

A model for the dynamic restoration of a virtual network
as a result of a breakdown in the network hardware is
proposed and implemented by Ko et al. [34]. Application-
aware prioritization of flows in collaboration with a Deep
Packet Inspection is proposed and implemented by Jeong et
al. [35]. Benchmark studies of the traditional state-of-the-art
data center network virtualization and its importance are pre-
sented by Bari et al. [36]. In [37], the authors proposed and
implemented a method for embedding Virtual Data Centers
(VDCs) by pooling resources from multiple physical data
centers using Locator/Identifier Separation Protocol (LISP)
and Openflow. The authors presented an efficient method to
connect different DCNs as a local area network.

Counters and rate fields in the meter tables introduced
in Openflow version 1.3 provide rate-limiting capabilities
in SDNs. Rate limiting capabilities of various Openflow
protocol versions and the support offered by specific open-
source SDN controllers are presented by Karakus and Durresi
[38]. Monitoring of both network and host data for detecting
abnormal activity through a machine learning algorithm is
proposed and implemented by Kim et al. [39]. The impor-
tance of SDNs in determining application-centric require-
ments at a high level is presented by Lopez et al. [40].

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Network access control through fine-grained flows in
FlowNAC and application-specific network flows in BYOD
is presented by Hong et al., and Matias et al. respectively
[41], [42]. A unique model to standardize and automate the
process of vulnerability identification in SDNs is proposed
and implemented by Lee et al. [43].

Post survey of the available literature from a security
perspective, and testing using some of the open-source tools
for known vulnerabilities in SDNs [44]. In this paper, the
authors proposed a scheme to logically isolate the suspected
VM from its shared network using the network virtualization
feature of the SDNs. The suspected VMs are blocked follow-
ing a Deep Packet Inspection. SDNs have the ability to allow
such dynamic reconfiguration of the network by virtualizing
the underlying network hardware.

Algorithm 1 Trust index algorithm.

1: Data: VMG: List of VMs in a Group.
2: Data: ShNw: Shared Network for VMs in a Group.
3: Data: RsNw: Restricted Network with a Traffic Analyzer.
4: Data: RSD(Ti): Recorded Statistical Data in time slot

Ti.
5: for all pairs of RSD[T1 → TN] in the VMG do
6: r(i, j)= Correl(RSD[i], RSD[j])
7: if pattern identified from r(i, j) then
8: PRT ← newRepeatT ime

9: Calculate trust index using (1)
10: for each RSD[x] do
11: for i = N to 1 and j = N to 1 do
12: r(i− 1, j − 1) = r(i, j)

13: while N − PRT > 0 do
14: r(N ,N -PRT)=Correl(RSD[N], RSD[N -

PRT])
15: PRT = PRT ∗ k, where k = 1→ n

16: Update trust index using (1)
17: if trust index < critical value and ShNw ← true

then
18: Detach interface to ShNw
19: Connect to RsNw
20: else if trust index > critical value and RsNw ←

true then
21: Detach interface to RsNw
22: Connect to ShNw
23: procedure CORREL(a, b)
24: ri =

n(Σab)−(Σa)(Σb)√
[nΣa2−(Σa)2][nΣb2−(Σb)2]

25: return ri

III. DATA CENTER APPLICATIONS & TRAFFIC PATTERNS

In this section, we shall explore various data center appli-
cations and their traffic patterns to realize the key points in
designing a security model for an SDN-enabled data center
network. A comparative study of traffic patterns at various
data centers including Facebook and Google is taken into
account. [45], [46].
Volume: Survey reveals that large volumes of data are being
moved within a data center. For instance, Facebook’s appli-
cation requires an average of 521 distinct internal fetches
in processing a user request to load one of its popular

Algorithm 2 Proposed Security algorithm.

Data: VMG: List of VMs in a Group.
Data: ShNw: Shared Network for VMs in a Group.
Data: RsNw: Restricted Network with a Traffic Analyzer.
for each VM in the VMG do

examine the trust index
if trust index not acceptable then

if VM frequently blacklisted or a worm pattern
is detected then

detain the VM and report to the VMG admin
else blacklist the VM

discard link to ShNw and reconnect to RsNw
else if VM not directly connected to ShNw then

retain privileges and reconnect to ShNw
else proceed to next VM

pages. Apart from the data center application traffic, data
processing tools (like Hadoop, Spark, etc.) that provide
useful information for these web applications also transfer
massive amounts of data inside the data center. [47] shows
that the volume of data at Google’s data center is noted to
be doubling every year over a decade.
Locality: An attempt to determine the locality of traffic at
Facebook’s data center discovered that around 13 percent
of data center traffic is rack local. Interestingly, about 58
percent of traffic is not within the rack but within the cluster
and is the majority of the traffic that Facebook’s servers
generate. Moreover, approximately 12 percent of the traffic
stays within the data center and 18 percent of the traffic is
across data centers. [47] More information from Google’s
data center about locality shows that almost 91 percent of
the traffic is non-local at any block. Blocks are larger when
compared to a rack, but smaller than a cluster. Google’s
stats throws light on how they organize their storage for
guaranteeing high availability.

Benson et al. analyzed the data center traffic at enterprises,
universities, and commercial cloud networks. Their study
shows that almost 70 percent of the data center traffic
is rack local which is entirely different from Facebook’s
and Google’s measurements [48]. The reason for conflicting
numbers might be due to the nature of workloads, the size of
map-reduce tasks, or the differences in organizing compute
and storage resources, etc.
Concurrent connections: Facebook’s data shows that hun-
dreds and thousands of concurrent connections are quite
common for web servers in their data center. Facebook’s
Hadoop-style workloads tend to have an average of about
25 concurrent connections which is much higher when com-
pared to only six correspondents at a different data center
running similar workloads (two rack local servers and four
non-local servers).
Flow rate: The average flow rate at a server in Facebook’s
data center is approximately 2ms; on the contrary, at a
different data center with at least 1000 servers in a cluster,
the inter-flow arrival time is much larger by almost ten times
[49].
Flow size: Hadoop flows at Facebook’s data center are lesser
than a kilobyte and are the majority of flows that their servers
exchange at irregular time intervals. A small fraction of flows

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Figure 1: Integration of Openstack and OpenDayLight SDN controller.

exceed a megabyte and persist for more than 100sec.
The necessary inference from the above discussion is that

the traffic pattern at a data center is dependent on several
aspects like the nature and design of web applications, the
scale at which they are running, the network’s design, etc.

Another significant finding from the analysis of data center
traffic is that application-specific traffic tends to persist for
longer durations and exhibit a harmonic pattern. Most of
them may be using TCP connections and perhaps to avoid
the overhead involved in TCP handshakes, they remain
connected for a longer duration.

IV. EXPERIMENTAL SETUP

Openstack is a cloud operating system providing IaaS
(Infrastructure-as-a-Service). It can virtualize computing,
network, and storage resources throughout the cloud envi-
ronment [50]. The six core components of Openstack are
i. Horizon: A dashboard to manage the cloud resources.
However, in Openstack managing resources via. CLI (Com-
mand Line Interface) is also possible.
ii. Neutron: Provides a layer of abstraction on the underlying
physical networking devices to achieve desired Network
Function Virtualization (NFV).
iii. Glance: An Openstack service that provides services to
store, share and handle bootable disk images.
iv. Keystone: An identity validation service that provides
Authentication, Authorization, and Accounting (AAA).

v. Cinder: Provides access to block storage resources.
vi. Nova: Provides access to compute resources, including
containers.
By default, Openstack does not allow incoming traffic to
any of the spawned machine instances. So, a security group
rule shall be explicitly added to permit external access to the
VMs. To implement the proposed model the experimental
setup with the following specifications is considered. The
graphical view for the same is shown in Figure 1.

A. Hardware specifications
CPU Cores RAM Compute node

i7-2600 @3.4 GHz 4 16GB server-1
i7-2600 @3.4 GHz 4 8GB server-2

B. Software specifications
Operating System : Ubuntu 18.04.3 LTS
Cloud Platform : Openstack pike
SDN Controller : OpenDayLight Lithium

V. OPENSTACK IN CONJUNCTION WITH OPENDAYLIGHT
CONTROLLER

SDNs can facilitate the creation of a cutting-edge cloud
platform that offers improved security and flexibility. This
platform can adapt to dynamically changing workloads and
can be controlled from a single point. In this section, the
procedure to integrate Openstack with OpenDayLight (ODL)

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

for each VM
in the network

examine the
traffic pattern
for dubious

activity

demote trust index

is the VM
already

blacklisted?

blacklist the VM and
discard direct interface

to its shared network(s).

worm pattern
detected?

block the VM and send
the report to the admin

to cause an action.

reconnect to the shared
network through a

Deep Packet Inspector.

elevate trust index.

continue matching
with a known
worm pattern.

yes

DPI

yes

no

no

yes

no

Figure 2: Flow diagram of the proposed security technique.

controller and manage networking services is discussed
in detail. Integrating Openstack with OpenDayLight SDN
controller facilitates substantial control over monitoring and
managing the network resources at layer 2. ODL is a widely
used open-source SDN controller developed by the Linux
team and runs on the Java platform. OpenStack is a set
of open-source projects that can be leveraged to create a
cloud environment on a server. Using Openstack, VMs can
be spawned rapidly with readily available bootable system
images like Cirros, Fedora, Ubuntu, etc.

A. Configuring Openstack and OpenDayLight

Before launching OpenStack or ODL, it is advisable
to remove all existing virtual machines (VMs), networks,
subnets, and ports. Later the ODL controller is initiated
and the following features are installed. To integrate ODL
with OpenStack, the odl-ovsdb feature is essential, while the
odl-dlux feature is optional and provides a graphical user
interface. After creation, each machine instance is assigned
an IP address within the local network. OpenStack only
permits a restricted range of IP addresses.

Machine instances can communicate with each other in
OpenStack through the use of Linux bridges and Open-
vSwitch (OVS). In comparison to Linux bridges, OVS pro-
vides improved control at layer 2, such as VLAN segmenta-
tion, reuse of IP addresses, and enhanced flexibility for vir-
tual machine communication. Apart from a direct interface to

the external network, OpenStack enables machine instances
to access the external network via a private network, which
is facilitated by a router. Virtual machines that belong to the
private network cannot communicate with the external net-
work directly. Therefore, to enable communication with the
external network, each machine instance requires a floating
IP address. Openstack uses the conventional RSA algorithm
for key pair generation.

The Modular Layer 2 (ML2) plug-in of the Neutron
module allows the Openstack to coalesce with the ODL
controller. ML2 can collectively work with the OpenvSwitch,
HyperV, and Linux bridge L2 agents. By default, ML2 do
not load any mechanism drivers. The odl-neutron-service
feature provides integration support for Openstack via the
OpenDayLight ML2 mechanism driver. IP tables are used to
realize security groups in the Openstack platform. Security
groups help to filter traffic based on the VM group policies.
The reservation module in the OpenDayLight controller
provides dynamic low-level resource reservation capability.

B. Algorithm

The proposed algorithm is based on the fact that harmonic
traffic is more likely to be legitimate. We employed four
different pattern recognition techniques, in addition to logis-
tic regression, to detect harmonic traffic patterns and then

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Figure 3: Initial configuration.

Table I: Attacks vs Mitigation Techniques.

Attack Scenario Mitigation Technique
Run a port scanner on a host machine and try to learn the network
details or perform DoS attacks on open ports.

Due to the overall view of the entire network in SDNs, port scanners like nmap,
superscan can be easily detected and blocked because they flood the traffic.

Create raw packets using SCAPY and flood them to the peer
machine instances. IP spoofing attack on peer machine instance
performed using SCAPY.

By virtue of HostLocationService at the controller and enforcing port classification
technique, spoofed packets can be readily identified and dropped.

SDN controller periodically casts LLDP packets in plain text for-
mat to learn the network topology using the LinkDiscoveryService.
Similar control packets are fabricated and broadcasted through
different ports for topology poisoning.

Efficient link discovery by guarding against link fabrication attack and improving
the performance by eliminating superfluous traffic is proposed by Zhao et al. [51].

In Single, multiplanar or a hybrid private planar network models,
one VM demanding more shared resources leads to side-channel
attacks.

Algorithms to mitigate similar attacks are proposed by Lopez et al. [40] that allow
application-centric sharing of network resources by a group of VMs [40].

Table II: Application Specific Results.

Application Protocol Total Flows % of flows classified as benign
traffic

% of flows classified as du-
bious traffic

Detection Rate

ICMP 157 100.00 0.00 100%
FTP(active) 97 81.44 18.56 98%
FTP(passive) 126 88.10 11.90 97%
SSH 12,465 99.41 0.59 87%
SMTP 154 98.05 1.95 100%
HTTP 26,254 95.11 4.89 81%
POP 57 100.00 0.00 100%
DNS 5,962 100.00 0.00 100%

compared their outcomes with those of logistic regression.
i. Fourier Transform: The Fourier transform stands as a
powerful method for examining harmonic patterns. It dissects
time series data into its fundamental sinusoidal constituents,
unveiling the frequencies and amplitudes of the harmonic
patterns.
ii. Periodogram Analysis: A Periodogram is employed to
estimate the frequency components or recurring patterns
within time series data. In this approach, we compute the
periodogram, which is a tool for frequency-domain analysis,
to pinpoint the primary periodic elements within the traffic

patterns.
iii. Autocorrelation Analysis: Autocorrelation analysis, also
referred to as auto-correlation, is a statistical approach
utilized to assess and quantify the level of resemblance
or correlation between time series data and a time-shifted
version of itself. Autocorrelation assesses the likeness of a
signal at various time lags and can unveil inherent patterns,
recurring cycles, and trends within the data. Within this
method, we calculate the autocorrelation function of time
series data to identify recurring patterns or periodicities.
iv. Harmonic Regression: In this method, we employ regres-

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

sion techniques to represent data as a composite of harmonic
functions, such as sine and cosine waves. The amplitudes
and frequencies of these functions symbolize the harmonic
elements.

The findings indicate that the utilization of logistic regres-
sion to identify harmonic traffic patterns in the KDD dataset
yielded a higher F1 score.

Based on the VM’s historical behavior and resource usage,
the controller maintains the trust index for each VM operat-
ing under its supervision using Algorithm 1. The credibility
of VMs is assessed by examining their trust index. In a VM
group, the ACL is used for identifying collaborative VMs. In
a supervised approach, along with the ACL, the VM group
admin has to provide information about the probability of
communication between all pairs of VMs in the group. In
an unsupervised approach, the communication probability
between all pairs of VMs in the group can be learned by
analyzing the network traffic over a certain period.

The controller can retrieve various types of statistics,
such as flow, table, or group statistics, from an OpenFlow
switch by sending an OFPT STATS REQUEST message.
The switch responds with an OFPT STATS REPLY message
that contains information about the requested statistics. The
proposed algorithm tries to identify a harmonic pattern from
the correlation coefficients. The recorded statistical data is
used to calculate the correlation coefficients ’r’ and subse-
quently the trust index of VMs.

trust index = w1 ∗ r1 + w2 ∗ r2 + ...wN ∗ rN (1)

For,
N∑
i=1

wi = 1

and ’N ’ is the number of past correlation coefficients taken
into account and 0 < i ≤ N . Where, ’n’ is the number
of peer machine instances, ’wi’ is the weight attributed
for ith correlation coefficient. The Trust index algorithm
periodically updates the trust index of each VM by matching
the similarity of the recorded statistical information with
respect to the detected harmonic pattern.

To have better adaptability to the dynamically changing
traffic patterns within the data center the past ′N ′ correlation
coefficients calculated for that VM alone are taken into
account. A weighted average of the current and historical
correlation coefficients contribute to updating the trust index
of a VM as shown in equation (1). If a substantial dissim-
ilarity is found in the traffic pattern, then its trust index
plunges accordingly. trust index is a numerical value ranging
between -1 to +1. A trust index value close to +1 indicates no
suspicious activity by the corresponding VM, while a value
approaching -1 suggests a discrepancy between the VM’s
reported probability of outgoing traffic to its collaborative
VMs and the actual traffic observed by the controller. A value
near 0 implies abnormal changes in the VM’s outgoing traffic
pattern.

If the trust index of a particular VM in a VM group
drops below an acceptable level, it will be blacklisted and
restricted from direct access to its shared network unless
it regains an acceptable trust index value. All blacklisted

VMs will undergo deep packet inspection to identify any
potential threats. The HostLocationProvider service of the
controller helps to maintain a mapping of host IP addresses,
MAC addresses, VLAN IDs, and the ports on which they
are connected to the network. The trust index is updated
by analyzing the network traffic at edge switches and their
respective ports using the HostLocationProvider service.

A VM is blocked if it is found malicious, and can be
retained only after the approval of the VM group admin-
istrator. This can be done by altering the probability of an
outgoing packet to its respective peer machines. Once a VM
is blocked, a report is sent to the VM group administrator
for initiating necessary action.

The flow diagram in Figure 2 gives a brief idea of the
proposed security mechanism. Traffic analyzing tool ntopng
is used to capture and analyze flows for detecting malicious
activities by VMs. ntopng is the next generation version of
ntop that works based on libpcap to monitor application-
specific network traffic. nDPI library is used along with
the ntopng traffic analyzer tool. Application-specific worm
patterns are recorded and registered with the existing nDPI
library for more accurate results [52]. Port classification
is used to determine hosts connected over a specific port.
The proposed model, due to its nature of simplicity may
not prevent attacks, but can effectively mitigate them at a
minimum computational cost.

VI. TESTING AND RESULTS

The investigation into the operational flow of the Open-
DayLight controller has provided a comprehensive under-
standing of the potential attack surfaces within the SDN
stack. This critical analysis has enabled us to identify and
assess vulnerabilities that could be exploited by malicious
actors. To delve deeper into these vulnerabilities, a series of
rigorous tests were meticulously carried out on the identified
attack surfaces. These tests were designed to simulate various
attack scenarios and evaluate the system’s response under
different conditions. In the pursuit of a thorough evaluation,
our study focused on an SDN-enabled Openstack cloud
platform, a representative environment for real-world SDN
deployments. The exhaustive nature of our testing regimen
is illustrated in Table I, where an itemized compilation of the
conducted tests is presented. The table outlines the specific
tests executed and also provides a comprehensive overview of
the obtained results. These insights into our study strengthen
its reliability and relevance, as the combined analysis of
attack surfaces and rigorous testing provides a more holistic
perspective on the security posture of SDN systems.

Figure 3, depicts the basic network topology of the VMs
spawned in the Openstack cloud platform. VM01 and VM02
are connected to shared network1, and similarly, VM03 and
VM04 are connected to shared network2. In addition, both
the shared networks are connected through a router. The
outgoing traffic from VM01 is captured and analyzed for
suspicious activity. In Figure 4, VM01 is moved to the
restricted network upon detecting suspicious activity. Results
obtained on implementing the proposed model are presented
in Table II. The percentage of malicious activities or attacks
successfully detected by the proposed method is presented

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Figure 4: vm01 shifted to a restricted network.

under the Detection Rate column. Default driver libvirt in
Openstack is used for live migration [27].

SDNs offer flexibility for VM migration by virtualizing
the network hardware. As a proof of concept, the proposed
technique is validated with real traces that are captured
during the experimental evaluation. The resultant trust index
is presented in the form of a graph in Figure 6. The
average round trip time before and after introducing the
security application in Openstack environment are 0.523
ms and 0.581 ms respectively. The average round trip time
shows that the additional delay caused due to the proposed
security application is negligible. In addition, the ability
of the proposed model to withstand and adapt to various
attack scenarios, including novel or sophisticated attacks is
evaluated and presented in Table III.

A. Further analysis of the proposed technique using the
KDD dataset:

We applied the proposed technique to the standard KDD
dataset to assess its real-time performance. In Figure 5,
the test results and scores of logistic regression, Fourier
transform, Periodogram analysis, Autocorrelation analysis,

and harmonic regression on the KDD dataset are presented.
The results indicate that the proposed technique performed
adequately on the KDD dataset, demonstrating its potential
effectiveness in real-time scenarios. Furthermore, in Figure 7,
a visual representation showcases a segment of the predicted
and actual outcomes obtained by employing the logistic
regression technique. This visualization not only provides
insight into the technique’s accuracy but also offers a clear
understanding of its ability to differentiate between normal
and anomalous traffic patterns. Overall, these findings under-
score the viability of the proposed technique as a valuable
asset in network security and anomaly detection applications.

VII. CONCLUSION

From the above results, it is quite evident that insider
attacks and orchestration failures can be effectively detected
and mitigated with the help of the proposed technique at a
minimum computational cost. In particular, the malfunction-
ing of distributed applications in a cloud platform can be
readily reported. Moreover, machines responsible for DoS
and DDoS attacks can be easily identified and blocked. Since
the device’s flow entries themselves are used to filter traffic,

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Table III: Proposed Security Model vs Sophisticated Attack Scenarios.

Attack Scenario Description Can the Proposed Security
Model Detect the Attack?

Advanced Persistent
Threats

Sophisticated and long-term in nature, these attacks involve unauthorized network
access by an attacker who evades detection for an extended period while targeting
specific information or valuable assets.

No

Zero-Day Exploits
By leveraging vulnerabilities in software or systems that are either unknown to the
vendor or have not yet been patched, attackers can clandestinely infiltrate a network
without detection.

No

Insider Threats
These attacks or data breaches occur when authorized individuals with privileged
access to a network, either intentionally or unintentionally, misuse their privileges,
compromising the security of the network.

Yes

Botnets
These are networks of compromised devices that are under the control of a centralized
entity. They are frequently utilized to carry out malicious activities, including DDoS
attacks, spamming, and the distribution of malware.

Yes

Advanced Malware
This refers to sophisticated and covert malicious software intentionally created to evade
conventional security measures. It encompasses polymorphic malware, rootkits, and
advanced persistent malware, among others.

Yes

Social Engineering At-
tacks

This involves manipulating human psychology with the intention of deceiving individ-
uals into revealing sensitive information or engaging in actions that jeopardize network
security. Examples include phishing, spear phishing, and impersonation techniques.

Yes

Cryptojacking
This refers to the unauthorized exploitation of a victim’s computing resources to mine
cryptocurrencies without their knowledge or consent. This activity is typically carried
out by injecting malicious code into websites or applications.

Yes

DNS Tunneling
This involves the exploitation of DNS (Domain Name System) protocols to circumvent
network security measures and establish unauthorized communication channels or
extract data.

Yes

SQL Injection
By exploiting vulnerabilities in web applications, attackers can inject malicious SQL
statements into the underlying database, potentially enabling unauthorized access or
manipulation of data.

Partially Yes

Cross-Site Scripting
By injecting malicious scripts into web pages accessed by other users, it often results
in session hijacking, data theft, or defacement. Partially Yes

Wi-Fi Eavesdropping
This involves intercepting wireless network traffic with the intention of capturing sen-
sitive information transmitted over unsecured or inadequately secured Wi-Fi networks. No

Phishing
This refers to the act of sending deceptive emails or messages that have the appearance
of legitimacy, deceiving recipients into disclosing sensitive information such as login
credentials or financial details.

No

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Logistic Regression Fourier Transform Periodogram Analysis Autocorrelation Analysis Harmonic Regression

AUC
CA

F1-Score

Figure 5: Scores of various harmonic pattern detection techniques on the KDD dataset.

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Figure 6: Trust index for the dataset.

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Fi
gu

re
7:

A
sa

m
pl

e
sn

ip
pe

t
of

Pr
ed

ic
tio

ns
.

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

restricted. Containers simplify the scaling of applications.
In future endeavors, we plan to expand our experimen-

tation to a container-enabled OpenStack setup, exploring
formats like ari, ami, bare, aki, ovf, ova, and docker. This
extension will enable us to comprehensively examine se-
curity implications within different container environments,
enhancing our understanding of potential vulnerabilities and
mitigation strategies in the context of software-defined net-
works.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[2] J. Li, J. Yoo, and J. W. Hong, “Cpman: Adaptive control plane
management for software-defined networks,” in 2015 IEEE Conference
on Network Function Virtualization and Software Defined Network
(NFV-SDN), Nov 2015, pp. 121–127.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker, “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2656877.2656890

[4] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network:
Google’s move to sdn,” Queue, vol. 13, no. 8, pp. 100:100–100:125,
Oct. 2015. [Online]. Available: http://doi.acm.org/10.1145/2838344.
2856460

[5] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
“Meridian: an sdn platform for cloud network services,” IEEE Com-
munications Magazine, vol. 51, no. 2, pp. 120–127, February 2013.

[6] P. Patel, V. Tiwari, and M. K. Abhishek, “Sdn and nfv integration in
openstack cloud to improve network services and security,” in 2016
International Conference on Advanced Communication Control and
Computing Technologies (ICACCCT), May 2016, pp. 655–660.

[7] S. Wang, “Comparison of sdn openflow network simulator and emu-
lators: Estinet vs. mininet,” in 2014 IEEE Symposium on Computers
and Communications (ISCC), June 2014, pp. 1–6.

[8] J. Son and R. Buyya, “A taxonomy of software-defined networking
(sdn)-enabled cloud computing,” ACM Comput. Surv., vol. 51,
no. 3, pp. 59:1–59:36, May 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3190617

[9] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings
of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 121–126.
[Online]. Available: http://doi.acm.org/10.1145/2342441.2342466

[10] F. N.-A. Y. Tseng, Z. Zhang, “Controllersepa: A security-enhancing
sdn controller plug-in for openflow applications,” in 2016 17th Inter-
national Conference on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT), Dec 2016, pp. 268–273.

[11] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (sdn),” in 2016 25th International
Conference on Computer Communication and Networks (ICCCN),
Aug 2016, pp. 1–9.

[12] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee,
J. Mudigonda, P. Sharma, and Y. Turner, “Corybantic: Towards the
modular composition of sdn control programs,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, ser. HotNets-XII.
New York, NY, USA: ACM, 2013, pp. 1:1–1:7. [Online]. Available:
http://doi.acm.org/10.1145/2535771.2535795

[13] J. Seo, J. Nam, and S. Shin, “Towards a security-enhanced cloud
platform,” in 2018 IEEE 23rd Pacific Rim International Symposium
on Dependable Computing (PRDC), Dec 2018, pp. 229–230.

[14] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard:
Scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 413–424. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516684

[15] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Flowvisor: A network virtualization
layer,” 01 2009.

[16] E. Caron and J. R. Cornabas, “Improving users’ isolation in iaas:
Virtual machine placement with security constraints,” in 2014 IEEE
7th International Conference on Cloud Computing, June 2014, pp.
64–71.

[17] X. Yuchi and S. Shetty, “Enabling security-aware virtual machine
placement in iaas clouds,” in MILCOM 2015 - 2015 IEEE Military
Communications Conference, Oct 2015, pp. 1554–1559.

[18] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migra-
tion techniques: Survey and research challenges,” in 2013 3rd IEEE
International Advance Computing Conference (IACC), Feb 2013, pp.
963–969.

[19] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “Cqncr:
Optimal vm migration planning in cloud data centers,” in 2014 IFIP
Networking Conference, June 2014, pp. 1–9.

[20] S. Woo, S. Lee, J. Kim, and S. Shin, “Re-checker: Towards secure rest-
ful service in software-defined networking,” in 2018 IEEE Conference
on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Nov 2018, pp. 1–5.

[21] Seungwon Shin and Guofei Gu, “Cloudwatcher: Network security
monitoring using openflow in dynamic cloud networks (or: How to
provide security monitoring as a service in clouds?),” in 2012 20th
IEEE International Conference on Network Protocols (ICNP), Oct
2012, pp. 1–6.

[22] A. Chowdhary, S. Pisharody, A. Alshamrani, and D. Huang,
“Dynamic game based security framework in sdn-enabled cloud
networking environments,” in Proceedings of the ACM International
Workshop on Security in Software Defined Networks &
Network Function Virtualization, ser. SDN-NFVSec ’17. New
York, NY, USA: ACM, 2017, pp. 53–58. [Online]. Available:
http://doi.acm.org/10.1145/3040992.3040998

[23] S. Yu, X. Gui, F. Tian, P. Yang, and J. Zhao, “A security-awareness
virtual machine placement scheme in the cloud,” in 2013 IEEE
10th International Conference on High Performance Computing and
Communications 2013 IEEE International Conference on Embedded
and Ubiquitous Computing, Nov 2013, pp. 1078–1083.

[24] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 602–622,
Firstquarter 2016.

[25] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention ex-
tension in software-defined networks,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2015, pp. 239–250.

[26] S. Jeong, J. You, and J. W. Hong, “Design and implementation of
virtual tap for sdn-based openstack networking,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM),
April 2019, pp. 233–241.

[27] T. He, A. N. Toosi, and R. Buyya, “Performance evaluation of live
virtual machine migration in sdn-enabled cloud data centers,” Journal
of Parallel and Distributed Computing, vol. 131, pp. 55 – 68, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S074373151830474X

[28] M. i Isaac Thulo and J. H. P. Eloff, “Towards optimized security-aware
(o-sec) vm placement algorithms,” in ICISSP, 2017.

[29] Y. Han, J. Li, D. Hoang, J. Yoo, and J. W. Hong, “An intent-based
network virtualization platform for sdn,” in 2016 12th International
Conference on Network and Service Management (CNSM), Oct 2016,
pp. 353–358.

[30] Yoonseon Han, Jonghwan Hyun, and James Won-Ki Hong, “Graph
abstraction based virtual network management framework for sdn,”
in 2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2016, pp. 884–885.

[31] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Flowvisor: A network virtualization
layer,” 2009.

[32] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: Make your virtual sdns
programmable,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620741

[33] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualiza-
tion in software-defined networks,” IEEE Internet Computing, vol. 17,
no. 2, pp. 20–27, March 2013.

[34] K. Ko, D. Son, J. Hyun, J. Li, Y. Han, and J. W. Hong, “Dynamic
failover for sdn-based virtual networks,” in 2017 IEEE Conference on
Network Softwarization (NetSoft), July 2017, pp. 1–5.

[35] S. Jeong, D. Lee, J. Hyun, J. Li, and J. W. Hong, “Application-aware
traffic engineering in software-defined network,” in 2017 19th Asia-

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

Pacific Network Operations and Management Symposium (APNOMS),
Sep. 2017, pp. 315–318.

[36] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny,
M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data center network
virtualization: A survey,” IEEE Communications Surveys Tutorials,
vol. 15, no. 2, pp. 909–928, Second 2013.

[37] Yoonseon Han, Jian Li, Jae-Yoon Chung, Jae-Hyoung Yoo, and
J. W. Hong, “Save: Energy-aware virtual data center embedding and
traffic engineering using sdn,” in Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft), April 2015, pp. 1–9.

[38] M. Karakus and A. Durresi, “Quality of service (qos) in
software defined networking (sdn): A survey,” Journal of Network
and Computer Applications, vol. 80, pp. 200 – 218, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1084804516303186

[39] T. Kim, Y. Choi, S. Han, J. Y. Chung, J. Hyun, J. Li, and J. W.
Hong, “Monitoring and detecting abnormal behavior in mobile cloud
infrastructure,” in 2012 IEEE Network Operations and Management
Symposium, April 2012, pp. 1303–1310.

[40] V. Lopez, J. M. Gran, J. P. Fernandez-Palacios, D. Siracusa, F. Ped-
erzolli, O. Gerstel, Y. Shikhmanter, J. Martensson, P. Skoldstrom,
T. Szyrkowiec, M. Chamania, A. Autenrieth, I. Tomkos, and D. Kloni-
dis, “The role of sdn in application centric ip and optical networks,”
in 2016 European Conference on Networks and Communications
(EuCNC), June 2016, pp. 138–142.

[41] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards
sdn-defined programmable byod (bring your own device) security,” in
NDSS, 2016.

[42] J. Matı́as, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “Flownac:
Flow-based network access control,” 2014 Third European Workshop
on Software Defined Networks, pp. 79–84, 2014.

[43] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. A.
Porras, “Delta: A security assessment framework for software-defined
networks,” in NDSS, 2017.

[44] W. Huang, A. Ganjali, B. H. Kim, S. Oh, and D. Lie, “The state
of public infrastructure-as-a-service cloud security,” ACM Comput.
Surv., vol. 47, no. 4, pp. 68:1–68:31, Jun. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2767181

[45] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in Presented as
part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp. 385–398. [Online]. Available: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/nishtala

[46] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of datacenter traffic: Measurements —& analysis,” Jan. 2009,
pp. 202–208.

[47] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, G. Boving, Seband Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter network,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, p. 183–197, Aug.
2015. [Online]. Available: https://doi.org/10.1145/2829988.2787508

[48] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10.
New York, NY, USA: Association for Computing Machinery, 2010,
p. 267–280. [Online]. Available: https://doi.org/10.1145/1879141.
1879175

[49] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, p. 123–137, Aug. 2015. [Online].
Available: https://doi.org/10.1145/2829988.2787472

[50] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Article: Openstack: Toward
an open-source solution for cloud computing,” International Journal
of Computer Applications, vol. 55, no. 3, pp. 38–42, October 2012,
full text available.

[51] X. Zhao, L. Yao, and G. Wu, “Esld: An efficient and secure link
discovery scheme for software-defined networking,” International
Journal of Communication Systems, vol. 31, no. 10, p. e3552, 2018,
e3552 dac.3552. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/dac.3552

[52] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-
source high-speed deep packet inspection,” in 2014 International Wire-
less Communications and Mobile Computing Conference (IWCMC),
Aug 2014, pp. 617–622.

Bommareddy Lokesh received a Bachelor of Technology degree in in-
formation technology from the PVP Siddhartha Institute of Technology,
Vijayawada, in 2011, and a Master of Technology degree in computer
science and technology from the Andhra University College of Engineering
in 2013. He was awarded a Ph.D. in Computer Science and engineering
from the National Institute of Technology Puducherry, Karaikal in the year
2022.

He is currently working as an Assistant Professor in the School of
Computer Science and Engineering at VIT-AP University, Amaravati, India.
His research interests include software-defined networking, Internet of
Things, network function virtualization, and 5G communications.

Narendran Rajagopalan received the Bachelor of Engineering degree in
information science and engineering from the Vidyavikas Institute of Engi-
neering and Technology, Mysore, in 2004, and the Master of Technology
in networking and Internet engineering from the Sri Jayachamarajendra
College of Engineering, Mysore, in 2007, and Ph.D. degree in computer
science and engineering from the National Institute of Technology Trichy,
Trichy, in 2013.

He is currently working as an Associate Professor in the Department
of Computer Science and Engineering, National Institute of Technology
Puducherry, Karaikal. His research interests include wireless sensor net-
works, software-defined networking, data center networks, 5G communica-
tions, and blockchain.

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 409-421

__

