
 

 

Abstract—Underwater target detection is an important part 

of marine exploration. However, in complex underwater 

environments due to factors like light absorption and 

scattering, as well as variations in water quality and clarity. 

These challenges result in inaccurate target feature extraction, 

sluggish detection speeds, and insufficient robustness in the 

detection methods. In order to address these issues, an 

enhanced YOLOv7 network (YOLOv7-SPNW-D) is proposed 

for underwater target detection in this study. The SPD-MP 

module structure replaces the MP module in the neck network 

to capture small targets and enhance detection accuracy. A 

novel NWD loss function is employed to facilitate smoother 

extraction of small target features. This enhances feature 

extraction and improves network inference speed. Additionally, 

incorporating a small target detection module enables the 

providing of more comprehensive small target information 

within a deep feature map. This, in turn, improves the capture 

of small target features in complex backgrounds, and avoids 

feature loss and enhancing model exactness. Through ablation 

experiments on the URPC dataset, it is shown that the 

improved YOLOv7-SPNW-D algorithm performs better than 

the original YOLOv7 algorithm, with the mAP50 value 

increased to 87.0%, proving the effectiveness of this method. In 

conclusion, the improved YOLOv7-SPNW-D model is more 

suitable for underwater marine organism target detection. 

 
Index Terms—underwater target detection, marine 

resources, YOLOv7, small target 

 

I. INTRODUCTION 

ur marine industry has entered a brand new stage of 

booming development, but the ocean is different from 

land areas. First of all, the Acquire optical images in 

complex commonly found underwater environments have 

serious blur, occlusion, degradation, and other problems, 

This greatly affect the dependability of underwater object 

recognition. The aim of underwater object detection [1] is to 

locate and identify targets in underwater scenes with high 

accuracy. In order to achieve this goal, the dataset can be 

collected using underwater equipment such as remote 

control operating vehicles (ROVs) [2] and autonomous 

underwater vehicles (AUVs) [3]. The success of this study 

not only makes a big step forward in underwater target 

detection in China, but also locates and identifies specific 
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small scale aquaculture organisms according to the 

particularity of the dataset. After success, it provides 

convenience for the majority of seafood aquaculture 

merchants and facilitates aquaculture merchants to monitor 

aquatic products in real time in specific areas. It is 

convenient to detect the density of aquatic products grown, 

the preferred water area range, and determine whether the 

disease state occurs through the density in underwater, 

which greatly facilitates aquatic product aquaculture 

merchants, saves manpower and material resources, and 

realizes the recycling of resources. Underwater target 

detection instead of human underwater biological 

monitoring and fishing activities, deep sea research and 

shallow aquaculture [4] also have a significant role. 

However, as we all know, various problems will be 

encountered in underwater scenarios. Firstly, in terms of 

optical images, absorption and scattering related to 

underwater wavelengths significantly reduce the quality of 

the underwater images obtained, which leads to low 

precision in detection of small objects, incorrect detection 

and missed detection. Secondly, in terms of the underwater 

environment, it is also affected by complex scenarios such as 

temperature, water source, and visibility in the ocean, which 

can increase the difficulty of underwater robot surveys [5]. 

Therefore, we have to consider the generalization capability 

of target detection in different environments, that is, models 

are trained in one domain and evaluated in another domain 

[6]. Finally, after obtaining optical images through remote 

controlled vehicles and underwater vehicles, there may also 

be some problems in the images, such as occlusion by 

plankton, overlap and blurring of different species of 

organisms. These image problems adversely affect 

performance of target detection. Classic target detection 

systems that rely on manual characteristic engineering 

include scale invariant feature transform (SIFT) [7], 

Histogram, Oriented Gradients (HOG) [8], etc. However, 

traditional target detection has certain limitations due to the 

use of manual features. Therefore, methods based on deep 

learning are gradually emerging. 

Although deep learning techniques have great success in 

computer vision, existing target detection technology in the 

ocean still encounters several obstacles stemming from the 

intricacies of underwater scenes. 

Based on the above problems, such as a fuzzy underwater 

environment, small target detection accuracy, and occlusion 

overlap, a method based on improving YOLOv7 target 

detection is proposed in this paper. On this basis, it is applied 

to marine organisms, thus supporting human underwater 

operations and fully locating and identifying small target 

organisms [9]. In this paper, the depth hierarchical 

processing transformation of the input pictures involves 
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adding an SPD module to the neck network, and applying 

the SPD module's molecular mapping principle to extract 

small targets from blurred images. This approach aims to 

reduce missed detections of small targets. By adding a new 

measure of an optimized loss function (NWD) to address 

image deviation, occlusion, and other issues, the speed of 

inference is improved. Furthermore, the addition of a tiny 

target detection module [10, 11] further strengthens the 

detection of small targets of marine organisms and enhances 

the feature extraction ability. 

 

II. RELATED  ALGORITHMS 

YOLOv7 [12] was developed by Chien and Alexey et al. 

in 2022 and is a classical representative of the one-stage 

target detection algorithm. The current YOLOv7 model 

exhibits higher accuracy compared to earlier models in the 

YOLO series. Furthermore, when evaluated on the URPC 

dataset, the YOLOv7 model demonstrates superior accuracy 

over the recently released YOLOv8 model. The YOLOv7 

model integrates E-ELAN (Extended efficient layer 

aggregation networks) [13], which is incorporated into the 

Backbone and Neck networks. A good balance between 

detection efficiency and accuracy is achieved through 

strategies such as connection-based tactical model scaling 

[14] and model reparameterization [15]. The YOLOv7 

network mainly consists of an Input, Backbone, Neck, and 

Head. 

The Backbone (backbone network) is primarily composed 

of convolutions, E-ELAN MPConv and SPPCSPC modules. 

The E-ELAN (Extended ELAN) module, building upon the 

original ELAN, it modifies the computational block 

configuration while preserving the structure of the transition 

layer, integrating the concepts of Expand, Shuffle, and 

Merge to improve the network's learning abilities without 

sacrificing the unaltered gradient trajectory. The SPPCSPC 

module prevents distortion by incorporating Integrate 

parallel MaxPool operations into a consecutive series of 

convolutions, addressing the issue of convolutional neural 

networks extracting redundant image features. In the 

MPConv, the MaxPool operation enhances the receptive 

field of the current feature layer, subsequently integrating it 

with the feature information resulting from standard 

convolution, thereby improving the network's generalization 

capabilities. Initially, the input image undergoes feature 

extraction in the backbone network, resulting in a feature 

layer that serves as the input image's feature set. Utilizing 

three feature layers, the backbone facilitates the construction 

of the subsequent network, enabling the derivation of an 

effective feature representation. 

Neck module, traditional PAFPN structure is adopted. 

FPN uses three effective feature layers obtained from the 

backbone structure for feature fusion, achieving information 

integration between different feature layers and further 

processing the effective feature layers to construct the 

enhanced feature extraction network in YOLOv7. Through 

this series of operations, the network is able to extract more 

comprehensive features for object detection.  

In the head section, YOLOv7 selects the IDetect head 

which represents three sizes of targets of large, medium and 

small. The YOLO Head serves as both the classifier and 

regressor for YOLOv7, performing both tasks 

simultaneously. Through Backbone and FPN, three 

enhanced effective feature layers can be obtained. Each 

layer of features possesses a width, a height, and a number of 

channels. we can view the feature map as a set of feature 

points after feature points. Each feature point has three prior 

frames, and multiple channel features are present in each 

preceding frame. In fact, the YOLO Head performs the 

function job of judging the characteristic points and judging 

whether the prior frame on the feature points has objects 

corresponding to them. Similar to the earlier version of 

YOLO, YOLOv7 also employs coupled decoupling heads 

where classification and regression are executed using a 1x1 

convolution. 

Predicted Network: YOLOv7 predictive network uses 

Rep structure is used to modify the number of image 

channels in the feature output by the head network. and then 

applies 1×1 convolution to predict confidence. The concept 

of the Rep structure drew inspiration from RepVGG [16] 

and a unique residuals design was introduced to facilitate the 

training process. During the model prediction process, the 

effects formed by these residual structures combinations can 

theoretically be simplified into a complex convolution 

operation, thereby reducing network complexity without 

sacrificing its predictive performance. 

Therefore, YOLOv7 model is a typical object detection 

model, which has faster and more effective network and 

feature integration methods. Compared with the previous 

YOLO series version, YOLOv7 model has more accurate 

detection methods, more effective label matching methods 

and training methods, which provides a solid basis for 

detecting target. 

In addition, the scarcity of datasets for underwater 

biological object recognition hinders the progress of 

underwater biological object detection, Obstacles exist to 

the research on underwater marine organism detection. In 

comparison to traditional detection on land, the history of 

underwater object detection is relatively brief. In 2017, Zhou 

et al. [17] by applying image enhancement techniques in the 

VGG16 network and utilizing the Faster R-CNN network 

for feature mapping processing on the URPC dataset, target 

detection and recognition of organisms are achieved. 

Moreover, Chen et al. [18] introduced a new weighted loss 

function called IMA in 2020, this approach improves 

detection performance by mitigating the impact of noise on 

detection. In 2021, Qiao et al. [19] A real-time underwater 

object classifier has been proposed specifically for the 

classification of underwater marine organisms, which is 

more suitable for underwater environments. The combined 

requirement for precise positioning and categorization poses 

significant challenges in underwater target detection tasks 

due to significant color deviation and limited visibility, often 

caused by moving acquisitions. In order to achieve better 

results in underwater target detection, we selected YOLOv7 

for improvement based on theoretical analysis, proposed the 

YOLOv7-SPNW-D algorithm, optimized known issues, and 

demonstrated the effectiveness of this algorithm through 

ablation experiments and comparative experiments.
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Fig. 1. SPD model

 

III. IMPROVEMENTS 

A. MP-SPD Module 

In the case of dim underwater light and blurred images, it 

is difficult to accurately distinguish the redundancy of small 

target pixels in the image in the neck network. When 

Conv_BN_SiLU is applied repeatedly, the original 

YOLOv7 structure filters out a large number of small targets 

and key features together. To reduce the loss of small target 

features, we replace Conv_BN_SiLU in the left branch of 

the MP structure in the sampling structure under the neck 

with the SPD module shown in Fig. 1 below. The SPD 

module achieves the spatial dimension reduction to the 

channel dimension by obtaining feature mappings from the 

upper-layer input and retains the information in the 

upper-layer channels, which is achieved by mapping each 

pixel or feature of the inputted feature representation to a 

channel. It maps the global spatial information of small 

targets to the channel dimension, achieving a transformation 

of the depth layer. This achieves the goal of preserving 

smaller target feature information in dim and fuzzy 

underwater scenes. The modified MP-SPD is shown in Fig. 

2 below. 
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Fig. 2. MP-SPD network structure 

 

B. Minor Target Detection Module 

This article uses the underwater robotic target grasping 

competition (URPC) dataset, which is composed of 

underwater images collected by autonomous underwater 

vehicles (AUV) [20] at Zhangzidao ocean ranch in Dalian. 

As the dataset accurately reproduces the real ocean 

environment, some target images may not be clear or may be 

far away, making it difficult to train the model.   The deep 

prediction feature layer may also fail to capture small 

targets. 

To address these challenges, this article introduces a 

fourfold down sampling branch to the neck network, which 

is an additional up sampling module that increases image 

resolution.   In the neck network, input resolution 160×160 

fourfold down sampled feature maps are horizontally 

connected with 8 fold, 16 fold, and 32 fold down sampled 

feature maps in the PAFPN architecture to achieve 

multi-scale fusion. 

The URPC dataset features low-pixel foreground targets 

that appear at a considerable distance against a vast 

background. Therefore, the problem of distant targets is 

solved by introducing an extra upsampling module in the 

neck network, aiming to fuse multilevel information. The 

output is directed to the fourth detector, which corresponds 

to its fourfold down sampling. This detector, combined with 

the other three detectors in the model, achieves multi-scale 

detection by altering the network hierarchy structure. This 

approach reduces the issue of detecting small distant targets 

in images and enhances the stability of the model. 

The feature maps obtained through fourfold down 

sampling contain abundant small targets and their texture 

and detail information. By passing and fusing these maps, 

the model gains access to more comprehensive small target 

data, thus increasing the capture of small target features in 

complex backgrounds. Fig. 3 illustrates the process of 

generating a feature map with improved expressive power 

while maintaining scale matching by adding an extra layer 

for upsampling at the end of neck feature pyramid's 

sampling structure. Similarly, in the PANet structure [21], a 

down sampling structure is included, and robust localization 

features are relayed to lower levels to maintain scale 

matching. 

Overall, the tiny target detection module enhances the 

effectiveness of multi scale feature fusion and bolsters the 

robustness of detection scales, significantly improving the 

model's accuracy in detecting tiny targets. 

C. Normalized Wasserstein Distance 

Aiming at the problem that marine organisms in URPC 

underwater datasets are highly responsive to slight 
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positional shifts in small targets compared with traditional 

IoU metric calculation, this paper proposes to introduce 

NWD (Normalized Wasserstein Distance) in the regression 

loss function to measure the similarity amongst the 

forecasted boundary frame and the real target boundary [22]. 

Because the original IoU metric calculates the degree of 

overlap, the representative methods are GIoU [23], CIoU 

[24], EIoU [25], etc. In addition, due to the nature of IOU, it 

is difficult to find a good threshold for the model to provide 

high-quality object detectors for samples. In this paper, 

because the underwater robots acquisition of samples may 

lead to less small target pixels in the underwater datasets, 

and the scale change is discrete, because the minor 

positional shift will lead to a significant reduction of IoU 

value, therefore, we use a new method to calculate the 

similarity of target bounding boxes and use a new metric to 

replace the original IOU. Through this method, the target 

bounding boxes are transformed into two-dimensional 

Gaussian distributions, and then the similarity of objects 

after the Gaussian distribution is measured through 

normalization within NWD. For the horizontal bounding 

region R=(cx,cy,w,h), where (cx,cy) is the center point 

coordinate and w and h are the width and height respectively 

R is represented by a normal distribution N (μ,∑), where: 

 μ=[
cx
cy

],  =[

w2

4
0

0
h

2

4

] (1) 

The wasserstein distance was then used to calculate the 

two Gaussian distribution distances between the bounding 

box R1=(cx1,cy1,w1,h1) and the bounding box 

R2=(cx2,cy2,w2,h2). 

W2
2(N1,N2)= ‖(cx1,cy1,

w1

2
,
h1

2
) , [cx2,cy2,

w2

2
,
h2

2
]
T

‖
2

2

 (2) 

Because this distance metric cannot directly measure the 

similarity between bounding box R1 and R2, it is 

exponentially normalized to obtain a new metric NWD: 

 NWD(N1,N2)=exp(-
√w2

2(N1,N2)

C
) (3) 

Here, c is a constant related to the dataset. In comparison 

with the IoU rating, NWD can respond to the change of 

target position more smoothly. Without consideration of 

target overlap, the distribution similarity is quantifiable; and 

NWD is less sensitive to targets of different sizes and is 

more appropriate for assessing small-scale targets. 
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Fig. 3. Structure diagram of the YOLOv7-SPNW-D model
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Fig. 4. The URPC marine organism dataset

 

The improved YOLOv7 algorithm structure replaces the 

MP module with the SPD-MP module in the original 

YOLOv7 neck network, making the neck network more 

stable, Increase image resolution, speeding up model 

reasoning, and enriching the features extracted by the 

network. At the same time, it adds a quadruple down 

sampling branch and a fourth target detection head, 

enhancing the effect of multi scale feature fusion without 

significantly increasing the computational load, improving 

the robustness of detection scale and the accuracy of small 

target detection. The loss function in the network is replaced 

with a new metric called the NWD loss function, replacing 

the original IoU loss function improving the detection 

capability for small objects and improve detection accuracy. 

The improved Yolov7 network structure is shown in Fig. 3. 

 

IV. EXPERIMENTS 

A. Experiment Environments 

Hardware environment: NVIDIA GeForce RTX 4070 Ti, 

12 GB video memory, Software environment Windows 10, 

CUDA 11.3, Pytorch 1.11.0, Python 3.8.0. Parameter setting 

input image resolution is 640×640, total iteration number is 

300, iteration batch size is 4, optimizer is SGD, momentum 

is 0.937, learning rate is 0.01, weight attenuation coefficient 

is 0.0005, and the learning rate is updated by cosine 

annealing learning algorithm. 

 

B. Datasetsets and Settings 

In this paper, we selected the underwater dataset from the 

Underwater Vehicle Target Grasping Contest (URPC). The 

dataset is composed of underwater images collected by the 

autonomous unmanned underwater robot (AUV) at the 

marine pasture of Zhangzi Island, Dalian, and it accurately 

represents the real marine environment. Because the 

competition test set is not publicly available, we selected 

6671 pictures containing four types of marine organisms: 

sea urchin, sea cucumber, sea star, and scallop. With their 

corresponding labels in the dataset being echinus, 

holothurian, starfish, and scallop, an illustration of certain 

exemplary images from the URPC dataset is presented in Fig. 

4. To create the experimental dataset, we established a 7:1:2 

ratio of training set, validation set, and test set with the 

training set containing 4669 pictures, the validation set 

containing 667 pictures, and the test set containing 1335 

pictures, which were randomly divided. 
 

C. Criteria for Assessing Model Performance  

The standard evaluation metrics commonly utilized for 

object detection encompass Precision (P), Recall (R), 

Intersection over Union (IoU), Average Precision (AP), and 

mean Average Precision (mAP) [26], weighted harmonic 

average F1, parameter count (Params). 

And computational complexity measured by FLOPs as 

comprehensive evaluation metrics for assessing the 

effectiveness of underwater marine organism detection. 

Specifically, Using TP, FP, and FN to indicate whether the 

number of marine organisms in the current URPC dataset is 

detected, the AP value is then represented by the area under 

the precision-recall curve, which leads to the calculation of 

the mean Average Precision (mAP) value. They were 

calculated as follows: 

 P=
TP

TP+FP
 (4) 

 R=
TP

TP+FN
 (5) 

 AP= ∫ P(R)dR
  1

0

 (6) 

 F1=
2PR

P+R
 (7) 

 mAP=
1

n
∑ AP(j)n
j=1  (8) 

Among them, TN is true negative, N is the number of 

species of marine organisms in the dataset; AP(j) indicates 

the AP of class j. To quantify the detection speed, we 

employ the measure of FPS, which signifies the rate at 

which images can be processed within a given second. On 
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the other hand, the complexity of the model is reflected 

through the number of its parameters. Below is the specific 

formula used for this calculation: 

 Params=C0×(kw×kh×Ci+1) (9) 

The notation C0 represents the number of output channels, 

Ci represents the number of input channels, while kw and kh 

respectively denote the width and height of the convolution 

kernel. 

 

D. Experimental Results and Analysis of the 

URPC Dataset 

The experimental evaluation of the detection performance 

of the proposed YOLOv7-SPNW-D model was conducted 

on the URPC dataset, focusing on the generation of P-R 

curves. As demonstrated in Fig. 5. The outcomes of the 

enhanced model exhibit an improvement in the detection 

efficiency across all target categories, and the mAP of this 

model is calculated to be 87.0%. The performance of the 

proposed YOLOv7-SPNW-D model was evaluated using a 

confusion matrix, where each column indicates the predicted 

distribution of each class and each row represents the actual 

distribution of each class in the dataset, as illustrated in Fig. 

6. From the analysis of Fig. 6, it can be seen that the 

prediction accuracy rates of "echinus", "holothurian", 

"scallop" and "starfish" are 95.0%, 87.0%, 70.0% and 93.0%, 

respectively, indicating that this model has high accuracy. 
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Fig. 5. The precision recal curve of the YOLOv7-SPNW-D model on the 

URPC dataset 
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Fig. 6. The confusion matrix of the YOLOv7-SPNW-D model on the 

URPC dataset 

 

E. Experimental Results and Analysis of the 

URPC Dataset 

In order to further prove the superiority of the proposed 

YOLOv7-SPNW-D model, the training and testing were 

performed on the URPC dataset, and its mean Average 

Precision (mAP) and other evaluation indicators were 

compared with the currently popular YOLOv5s, YOLOv6n, 

YOLOv7, YOLOv8l and comparison results with other 

target detection models are presented in Table Ⅰ. From the 

table, it can be seen that the mAP of YOLOv7-SPNW-D 

model is 1.9% higher than YOLOv7 and 4.1%, 4.5%, and 

4.8% higher than YOLOv6, YOLOv5s, and YOLOv8, 

respectively, which is superior to other detection algorithms. 

The experimental outcomes demonstrate the practical 

superiority of this approach in underwater target 

recognition. 
TABLE Ⅰ 

THE PERFORMANCE OF EACH NETWORK ON URPC DATASET 

Methop Precision Recall mAP@0.5 mAP@0.9 

YOLOv5s 85.7% 75.5% 82.2% 64.8% 

YOLOv6n 85.1% 76.1% 82.5 63.7% 

YOLOv7 84.5% 76.7% 85.1% 64.8% 

YOLOv8l 88.2% 74.2% 82.9% 67.1% 

YOLOv7-SPNW-D 85.6% 79.2% 87.0% 68.5% 

TABLE Ⅱ 

EVALUATION OF MODEL PERFORMANCE IMPROVEMENT THROUGH ABLATION STUDIES ON THE URPC DATASET. 

Model SPD-MP NWD Quadruple AP(echinus) AP(holothurian) AP(starfish) AP(scallop) mAP 

YOLOv7 

× × × 94.0% 86.4% 94.1% 66.0% 85.1% 

√ × × 94.4% 86.4% 94.3% 66.6% 85.4% 

√ √ × 93.8% 87.5% 93.8% 69.4% 86.1% 

√ √ √ 94.5% 88.1% 94.4% 71.1% 87.0% 
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Fig. 7. The inference result on YOLOv7 

 

 
Fig. 8. The inference result on YOLOv7-SWNW-D

 

F. Ablation Experiments of the URPC Dataset 

The impact of various enhancement techniques on model 

performance through ablation experiments. In this paper, the 

designed SPD-MP module is first added to the YOLOv7 

model to observe its AP value and mAP value, and then the 

CIoU loss function of the new measure of NWD loss 

function is added to the YOLOv7 model to observe its AP 

value and mAP value. Finally, the small target detection 

head is introduced to observe its AP value and mAP value. 

The final experimental the findings are presented in Table Ⅱ. 

As evident from Table Ⅱ, we can observe the use of 

SPD-MP module increases the mAP value by 0.3%. On this 

basis, the new loss function metric NWD-CIoU is used to 

increase the mAP of this model by 0.7%. Finally, mAP was 

also raised by 0.9 on the basis of preliminary experiments by 

introducing a fourfold lower sampling target detection head. 

G. Inference Result 

Fig. 7 and 8 display the inference outcomes on the URPC 

test set, showcasing the results generated by YOLOv7 and 

YOLOv7-SPNW-D, respectively. 

This can be clearly seen in Fig. 8. The confidence of 

echinus, starfish, holothurian and scallop was significantly 

improved in the YOLOV7-SPNW-D model, and it can be 

seen from Fig. 7 and 8 that scallop had missed detection in 

the YOLOv7 model. The missed scallop was detected in the 

YOLOv7-SPNW-D model, and it can be inferred that the 

YOLOv7-SPNW-D not only provides higher confidence, 

but also provides higher accuracy when detecting 

underwater organisms. 

 

V. CONCLUSION 

In this study, we introduce an enhanced version of 

YOLOv7, named YOLOv7-SPNW-D. To enhance the 

detection of smaller targets, we have incorporated a small 

target detection head module and an SPD module into the 

network architecture. Furthermore, we have introduced a 

new metric known as the NWD loss function, which aims to 

enhance detection performance, correct positional 

deviations of small targets, and address the impact of 

underwater occlusion and blurring on accuracy. These 

enhancements collectively contribute to the overall resylts 

improvement of the model. 

To assess the effectiveness of YOLOv7-SPNW-D, we 

conducted experiments using the URPC dataset and 

compared its performance with other popular target 

detection algorithms. The results demonstrate that 

YOLOv7-SPNW-D surpasses current state-of-the-art 

models in terms of robustness and detection accuracy in 

challenging underwater environments, therefore, this model 

has a wider potential for development. 
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