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Abstract—This paper studies about the sufficient conditions
for identical synchronization in the network constructed by
levels consisting of n nodes. Each node is connected to other
nodes in the upper level by linear coupling and represented
by a reaction-diffusion system of Hindmarsh-Rose type. With
this network topology, a sufficient condition on the coupling
strength is identified to achieve the desired synchronization.
The result shows that when the in-degree of the nodes grows,
the network becomes easier to synchronize. In addition, the
coupling strength needed to synchronize a chain network grows
with its diameter.

Index Terms—linear coupling, network constructed by levels,
reaction-diffusion system of Hindmarsh-Rose type, identical
synchronization.

I. INTRODUCTION

SYNCHRONIZATION has been ubiquitously studied in
many domains and many natural phenomena presenting

the synchronization such as the movement of birds forming
the cloud, the movement of fishes in the lake, the movement
of the parade, the reception and transmission of a group
of neurons [1], [4], [5], [6], [7], [8], and the identical
synchronization in the neural network is investigated in
this paper. In the human brain, there are a lot of neurons
that connect together in order to form a network. A neural
network is a community of neurons that are physiologically
connected together. The exchange between cells is mainly
based on electrochemical processes. In addition, this paper
only considers the networks of n neurons coupled linearly,
and each neuron is presented by a system of reaction-
diffusion equations of Hindmarsh-Rose type (HR).

Recently, there have been a lot of research papers on
synchronization of the neural network, but most of them
only study cells stimulated by the equations of FitzHugh-
Nagumo type [10], [11] or the system of ordinary differential
equations of Hindmarsh-Rose type [2]. In [13], we have
a published work about the system of reaction-diffusion
equations of Hindmarsh-Rose type in complete networks
with linear coupling, also with nonlinear coupling [14]. So,
there is no study related to the system of reaction-diffusion
equations of the Hindmarsh-Rose type in the networks con-
structed by level with linear coupling. Moreover, this type
of network is more realistic than the complete networks.
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Hence, the research on this issue is literally meaningful
and brings a practical application value to the currently
applied mathematics, and this work is really an improvement
compared to two previous published papers of the author
[13].

In this article, we are interested in the identical synchro-
nization in the network of n nodes constructed by levels. In
order to understand such a type of network, we take one
example of a network containing 42 nodes distributed in
9 levels that we can see in Fig. 1. Each node receives a
signal only from nodes of the previous level. We know that
a necessary condition for the synchronization of two nodes
of a network is that either one of them must be influenced by
the other one or both of them must be influenced by a third
node. At network level, this implies the existence of at least
one ”root” node from which all nodes can be reached. In
this section, we use networks constructed by levels. Level 0
contains the root node. Nodes of level l (any integer) receive
signal only from nodes of level l−1, l ≥ 1. Thus the distance
between the root and all the nodes of level l is exactly l.
The simplest case of networks constructed by levels is a
chain network in which each level contains only one node
connected to the node of the previous level (see Fig. 2).

In this study, each node represents a neuron modeled by
a system of reaction-diffusion equations on HR type and
each edge represents a synaptical connection modeled by
a coupling function. Hindmarsh-Rose model was actually
obtained by simplifying the famous Hodgkin-Huxley model.
In 1952, Hodgkin and Huxley introduced a four-dimensional
mathematical system that could approximate many proper-
ties of neural membrane potential [2], [4], [7]. Based on
this system, a lot of scientists published simpler models
describing the neuron voltage dynamics. In 1982, Hindmarsh
J. L. and Rose R. M. introduced a new simpler model
called the Hindmarsh-Rose model [9]. This system was
known as a simplified two-dimensional model from Hodgkin-
Huxley’s famous model [6]. Although this system is simpler,
it has a lot of extraordinary analytical results and retains the
energizing properties and biological significance of cells. It
represents the equilibrium state, activity, and bursting of the
neuron voltage. The system consists of two equations in the
two variables u and v. The first variable is the fast one. It
is excitatory and represents the transmembrane voltage. The
second one is the slow recovery variable presenting some
physical quantities, such as the electrical conductivity of
ion currents across the membrane. The ordinary differential
equations of Hindmarsh-Rose type are given by [2]:
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Fig. 1. Example of a network constructed by levels containing 42 nodes distributed in 9 levels. Each node receives signal only from nodes of the previous
level.


du

dt
= ut = v − u3 + au2 + I,

dv

dt
= vt = 1− bu2 − v,

(1)

where the parameters a = 3, b = 5 are constants determined
by practical experience, I presents the external current.

However, the system (1) is not strong enough in order
to describe the propagation of action potential. In order to
solve this problem, the cable equation is investigated in this
work. This mathematical system is obtained from a circuit
model of the membrane and its intracellular and extracellular
space to provide a quantitative description of current flow
and voltage change both within and between neurons. It
allows us to understand how cells function quantitatively
and qualitatively. Hence, the reaction-diffusion system of
Hindmarsh-Rose type (HR) is considered as follows:

du

dt
= ut = v − u3 + au2 + I + d∆u,

dv

dt
= vt = 1− bu2 − v,

(2)

where u = u(x, t), v = v(x, t), (x, t) ∈ Ω × R+, d
is a positive constant, ∆u is the Laplace operator of u,
Ω ⊂ RN is a regular bounded open set with Neumann
zero flux boundary conditions, and N is a positive integer.
This model allows the appearance of many patterns and
relevant phenomena in physiology. This model consists of
two nonlinear partial differential equations. The first one
presents the action potential and the second one introduces
the recovery variable describing some physical quantities,
such as the electrical conductivity of ion currents across
the membrane. Besides, the first equation is similar to the
cable equation. It presents the distribution of the membrane
potential along the axon of a single cell [6], [7]. Hereafter,
system (2) is considered as a neural model, and a network
of n coupled systems (2) is constructed as follows: uit = vi − u3

i + au2
i + I + d∆ui − h(ui, uj),

vit = 1− bu2
i − vi,

i, j = 1, ..., n, i 6= j,
(3)

where (ui, vi), i = 1, 2, ..., n is defined by (2).

Function h presents the coupling function describing the
type of connection between cell ith and jth. Neurons connect
through synapses, then it leads to two types of connections
between cells such as chemical connections and electrical
ones. It is known that the chemical connection is more
abundant than the electrical one. For easy research, this
paper only focuses on electrical connection, then the coupling
function is linear [2], [10], [11] and is given by the following
formula:

h(ui, uj) = gsyn

n∑
j=1,j 6=i

cij(ui − uj), i = 1, 2, ..., n.

Parameter gsyn represents the coupling strength. The co-
efficients cij are the elements of the connectivity matrix
Cn = (cij)n×n, defined by: cij = 1 if neuron ith and jth
are coupled, cij = 0 if neuron ith and jth are not coupled,
where i, j = 1, 2, ..., n, i 6= j.

II. IDENTICAL SYNCHRONIZATION IN THE NETWORKS
CONSTRUCTED BY LEVELS

Identical synchronization is defined as the coincidence of
states of interacting systems [1], [10], [11]. Synchronization
usually means having the same behavior at the same time
[1]. Therefore, the synchronization of two dynamical systems
could be understood that one system copies the behavior
of the other. In other words, if the behaviors of some
dynamical systems are synchronized, these systems are called
synchronous. In the studies of Aziz-Alaoui [1] and Corson
[2], it is said that a phenomenon of synchronization may
appear in a network of many weakly coupled oscillators.
The phenomenon of synchronization can be seen in a lot of
different applications such as increasing the power of lasers,
controlling oscillations in chemical reactions, encoding elec-
tronic messages for secure communications, or synchronizing
the output of electric circuits [1], [3]. Mathematically, we
have the following definition of identical synchronization:

Definition 1 (see [10]). Let Si = (ui, vi), i = 1, 2, ..., n
and S = (S1, S2, ..., Sn) be a network. We say that S is
identically synchronous if

lim
t→+∞

n−1∑
i=1

(
‖ui − ui+1‖L2(Ω) + ‖vi − vi+1‖L2(Ω)

)
= 0,
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where L2(Ω) is function space on Ω defined using a natural
generalization of the 2-norm for finite-dimensional vector
spaces.

According to the description of the network constructed
by levels, we can model such a network based on the HR
system as follows:

εu1t = v1 − u3
1 + au2

1 + I + d∆u1,
v1t = 1− bu2

1 − v1,
εuit = vi − u3

i + au2
i + I + d∆ui,

−gj
∑

uk∈N(j−1)

αik(ui − uk),

vit = 1− bu2
i − vi,

i = 2, ..., n; j = 1, ..., l; 1 ≤ k < n,

(4)

where gj is the coupling strength between neuron ui of level
j and neurons uk of level j − 1, N(j) is the set of neurons
of level j, and

αik =

{
0 if ui anduk are not connected,
1 if ui anduk are connected.

Theorem 1. If the coupling strength gj verifies the condition:

gj ≥ max

{
a2

3N(αj−1
icon)

,
1

4N(αj−1
icon)γ

+
(b− 2a)

2

4N(αj−1
icon)(3− γb2)

}
,

j = 1, 2, ..., l, where 0 < γ <
3

b2
, for all initial conditions

ui(x, 0), vi(x, 0), i = 1, 2, ..., n, N(αj−1
icon) is the number of

neurons of level j− 1 connected to the neuron ui of level j,
the system (4) will synchronize.

Remark 1. Following this theorem, we find that more and
more the number of neurons of level j − 1 connected to the
neuron ui of level j is, less and less the threshold value of
synchronization is.

Proof: We proceed by mathematical induction. We
consider the following Lyapunov function:

Φji (t) =

∫
Ω

(
1

2
X2 +

γ

2
Y 2

)
dx,

where γ is a positive constant, X = ui−uicon, Y = vi−vicon
and U = ui + uicon, i = 2, ..., n, ui ∈ N(j), uicon ∈ N(j −
1) connected to ui.

We show for all j = 1, 2, ..., l;
dΦji (t)

dt
≤ 0.

First of all, we consider Φ1
i (t) =

∫
Ω

(
1

2
X2 +

γ

2
Y 2

)
dx,

where X = ui − u1, Y = vi − v1 and U = ui + u1, i =
2, ..., n, ui ∈ N(1), uicon = u1 connected to ui.

We have then the system corresponding to the variables
X,Y :

dX

dt
= Y − 1

4
X3 +X(aU − 3

4
U2 − g1) + ∆X,

dY

dt
= −bXU − Y,

By deriving Φ1
i (t) and using the Green’s formula, we get:

dΦ1
i (t)

dt
≤
∫
Ω

(
−X

4

4
−
(
AX2 −BXY + γY 2

))
dx,

where A =
3

4
U2 − aU + g1, B = γbU − 1.

It can be seen that AX2−BXY+γY 2 > 0 if the following
two conditions are verified:

(i) Since A =
3

4
U2−aU+g1, the solutions of the equation

A = 0 are U1,2 =
2
(
a±
√
a2−3g1

)
3 if g1 ≤

a2

3
. Therefore,

A > 0 if g1 >
a2

3
;

(ii) γA−B
2

4
> 0⇔ (3−γb2)U2−2(a−2b)U+4g1−

1

γ
>

0. This condition is satisfied if g1 >
1

4γ
+

(b− 2a)
2

4(3− γb2)
and

γ <
3

b2
.

Then, if g1 ≥ max

{
a2

3
,

1

4γ
+

(b− 2a)
2

4(3− γb2)

}
, and

0 < γ <
3

b2
, we have AX2 −BXY + γY 2 > 0.

Hence,
dΦ1

i (t)

dt
≤ 0.

Suppose that the result is true until l−1. This implies that:

dΦji (t)

dt
≤ 0, j = 1, 2, ..., l − 1.

It implies that the origin is globally asymptotically stable
for Φji (t), j = 1, 2, ..., l − 1.

We consider now the following function:

Φli(t) =

∫
Ω

(
1

2
X2 +

γ

2
Y 2

)
dx,

where γ is a positive constant, X = ui−uicon, Y = vi−vicon
and U = ui + uicon, i = 2, ..., n, neuron ui ∈ N(l), uicon ∈
N(l − 1) connected to ui. By deriving Φli(t) and using the
Green’s formula, we obtain:

dΦli(t)

dt
≤
∫

Ω

[
−X

4

4
−
(
AX2 −BXY + γY 2

)
−gl

∑
uk∈N(l−1)

αik(uicon − uk)(ui − uicon)

+ gl−1

∑
uh∈N(l−2)

αiconh(uicon − uh)(ui − uicon)

]
dx,

where A =
3

4
U2−aU+glN(αl−1

icon), B = γbU−1, N(αl−1
icon)

is the number of neurons on level l − 1 connected to u − i
on level l. By applying the inequality of Young and Hölder,
we can find the positive constants k1 and k2 such that:

dΦli(t)

dt
≤
∫

Ω

(
−X

4

4
−
(
AX2 −BXY + γY 2

))
dx

+k1

∑
uk,vk∈N(l−1)

αik
∫

Ω

[
aε(uicon − uk)

2

+(vicon − vk)
2
]
dx

+k2

∑
uh,vh∈N(l−2)

αiconh
∫

Ω

[
aε(uicon − uh)

2

+(vicon − vh)
2
]
dx

≤
∫

Ω

(
−X

4

4
−
(
AX2 −BXY + γY 2

))
dx

+
∑

j=1,...,(l−1)

k1Φji (t) +
∑

j=1,...,(l−2)

k2Φji (t).

It can be seen that AX2−BXY+γY 2 > 0 if the following
two conditions are verified:
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(i) Since A =
3

4
U2−aU+glN(αl−1

icon), the solutions of the

equation A = 0 are U1,2 =

2

(
a±

√
a2 − 3glN(αl−1

icon)

)
3

if

gsyn ≤
a2

3N(αl−1
icon)

. Therefore, A > 0 if gsyn >
a2

3N(αl−1
icon)

;

(ii) γA − B2

4
> 0 ⇔ (3 − γb2)U2 − 2(a − 2b)U +

4glN(αl−1
icon)− 1

γ
> 0. This condition is satisfied if

gl >
1

4N(αl−1
icon)γ

+
(b− 2a)

2

4N(αl−1
icon)(3− γb2)

,

and γ <
3

b2
.

Then, if

gl ≥ max

{
a2

3N(αl−1
icon)

,
1

4N(αl−1
icon)γ

+
(b− 2a)

2

4N(αl−1
icon)(3− γb2)

}
,

and 0 < γ <
3

b2
, we have AX2 −BXY + γY 2 > 0.

Hence,
dΦli(t)

dt
≤ 0. It implies that the origin is glob-

ally asymptotically stable for Φli(t). Hence, the neurons of
network (4) is globally asymptotically synchronized.

Remark 2. As the result of Theorem 1, we can easily see
that the coupling strength needs to reach certain threshold
values in order to synchronize the network. Moreover, when
the in-degree of the nodes grows, the network becomes easier
to synchronize.

Following Theorem 1, we deduce the result into some
particular networks, and we get some following corollaries.

Corollary 1. Consider the chain network (for example, Fig.
2), suppose that:

gj ≥ max

{
a2

3
,

1

4γ
+

(b− 2a)
2

4(3− γb2)

}
, j = 1, 2, ..., l,

where 0 < γ <
3

b2
, for all initial conditions

ui(x, 0), vi(x, 0), i = 1, 2, ..., n, the system (4) will synchro-
nize.

In order to see clearly the influence of in-degrees which
is equal to the number of edges with that node as the target,
we consider the modified chain network (for example, see
Fig. 3(a)) in which on level γ (any integer bigger than 1),
we introduce k nodes, each node receives the signal of node
on level γ − 1 and send the signal to node on level γ + 1.
Thus, the in-degree of the root is 0, the in-degree of nodes
on level γ + 1 is k and the in-degree of the others is 1. In
this case, we have the following corollary.

Corollary 2. Consider the modified chain network (for
example, Fig. 3(a)) where the level γ − 1 contains k nodes.
Suppose that:

gγ+1 >
M

k
and gj > M, j = {1, 2, ..., l} \(γ + 1).

Then, the network corresponding to Fig. 3(a) synchronizes.

Remark 3. As the result of Corollary 2, when the in-degree
of nodes grows, the network becomes easier to synchronize.

We consider now a regular network, for example, Fig. 3(b).
In such a network, all levels (except level 0) contain the same
number of nodes k and each node is connected to all nodes
on the previous level. To ensure the same in-degree for all
nodes, the nodes on level 1 are connected to the root with k
edges.

Corollary 3. Consider the regular level network (for exam-
ple, Fig. 3(b)) where each level contains k nodes connected
to all the nodes from the previous level. Suppose that:

gj >
M

k
, j = 1, 2, ..., l.

Then, the network corresponding to Fig. 3(b) synchronizes.

III. NUMERICAL RESULTS AND DISCUSSION

This section focuses on finding numerically the minimal
values of coupling strength to observe the synchronization
between n subsystems modeling the function of neuron
networks, and to verify the effectiveness of the theoretical
results above. The integration is realized by using C++ and
the results are represented by Gnuplot.

A. Example 1.

In this example, the paper shows the numerical results
obtained by integrating the modified chain network (see Fig.
4) of linearly coupled reaction-diffusion systems of HR type,
where

n = 4, a = 3, b = 5, I = 0, d = 1, i = 1, 2,

[0;T ]× Ω = [0; 200]× [0; 100]× [0; 100] .

Fig. 4 presents a modified chain network containing 4
nodes. Level 0 contains one node called root node, level
1 contains 2 nodes, and level 2 contains 1 node. Hence, the
in-degree of 2 nodes on level 1 is 1, and the in-degree of the
node on level 2 is 2.

In this section, we would like to compare the coupling
strengths between different levels in order to check the
effectiveness of Corollary 2. Then, we label the coupling
strengths between node 1 and nodes on level 1 (node 2 and
3) as g1, and the coupling strengths between nodes on level
1 (node 2 and 3) and node 4 as g2.

Fig. 4. A modified chain network where level 1 contains two nodes and
level 2 contains one node.

Fig. 5 below presents the synchronization errors between
nodes with respect to different values of coupling strength.
Specifically, Fig. 5(a), 5(b), 5(c), 5(d) represent, respectively,
the synchronization errors of the coupled solutions
(u1(x1, x2, t), u2(x1, x2, t)), (u1(x1, x2, t), u3(x1, x2, t)),
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Fig. 2. Chain network containing 10 neurons. In this network, neuron i (i > 1) receives only the signal from neuron i− 1.

Fig. 3. Figure (a) is a modified chain network where level 3 contains five nodes. Figure (b) is a regular-level network where each level contains 3 nodes
connected to all the nodes from the previous level.

(u2(x1, x2, t), u4(x1, x2, t)), (u3(x1, x2, t), u4(x1, x2, t)),
where g1 = 1.3, g2 = 1, t ∈ [0;T ] and for all (x1, x2) ∈ Ω.
The simulations show that all synchronization errors reach
zero, which means:

u1(x1, x2, t) ≈ u2(x1, x2, t),

u1(x1, x2, t) ≈ u3(x1, x2, t),

u2(x1, x2, t) ≈ u4(x1, x2, t),

u3(x1, x2, t) ≈ u4(x1, x2, t),

for all (x1, x2) ∈ Ω. In other words, the network synchro-
nizes.

Fig. 5(e), 5(f), 5(g), 5(h) represent, respectively,
the synchronization errors of the coupled solutions
(u1(x1, x2, t), u2(x1, x2, t)), (u1(x1, x2, t), u3(x1, x2, t)),
(u2(x1, x2, t), u4(x1, x2, t)), (u3(x1, x2, t), u4(x1, x2, t)),
where g1 = 1, g2 = 1.3, t ∈ [0;T ] and for all (x1, x2) ∈ Ω.
It is easy to see that all synchronization errors do not reach
zero, which means the network does not synchronize in this
case.

Similarly, we take more different values of coupling
strengths g1 and g2 to get the synchronization. The numerical
results are presented in Table I. After observation, in order
to get the synchronization in such a network, the minimal
values necessary of coupling strengths g1 and g2 should be
1.3 and 1, respectively.

When g1 = 1.3 and g2 go up to 1.2 or 1.3, the synchro-
nization also happens, since the minimal value necessary of
g2 is equal to 1. In other words, the values 1.2 or 1.3 have
already passed the threshold value of g2. It implies that to get
the synchronization of node 4 is easier than nodes 2 and 3.
Remind that the in-degree of node 4 is 2, and the in-degree

of nodes 2 or 3 is 1. It really matches with the result of
Corollary 2.

When g2 = 1.3 and g1 goes down to 1 or 1.2, the synchro-
nization does not occur. It means that the synchronization of
nodes on level 1 is not easier than node 4 on level 2. It also
shows that this result matches with Corollary 2.

When g1 = g2 = 1.2, the synchronization does not
happen, since the value 1.2 is lower than the threshold value
of g1 to get the synchronization. And when g1 = g2 = 1.5
(or bigger), the synchronization certainly occurs, since this
value is bigger than the threshold values of g1 and g2.

TABLE I
VALUES OF COUPLING STRENGTHS g1 AND g2 TO OBTAIN THE

SYNCHRONIZATION

g1 g2 Synchronization
1.3 1.3 yes
1.3 1.2 yes
1.3 1 yes
1 1.3 no
1.2 1.3 no
1.2 1.2 no
1.5 1.5 yes

B. Example 2.

In the following, we label the coupling strength as gn
according to n which is the number of nodes of the net-
work. The paper shows the numerical results obtained by
integrating the chain network (see Fig. 2) of linearly coupled
reaction-diffusion systems of HR type, where

n = 2, a = 3, b = 5, I = 0, d = 1, i = 1, 2,

[0;T ]× Ω = [0; 200]× [0; 100]× [0; 100] .
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Fig. 5. Synchronization errors between nodes of modified chain network where level 1 contains two nodes and level 2 contains one node.

Fig. 6 below illustrates the identical synchronization of the
chain network of 2 systems of reaction-diffusion equations
of Hindmarsh-Rose type with linear coupling (see Fig. 2).
The simulations show that the system synchronizes from the
value g2 = 0.75.

Fig. 6(a), 6(d), 6(g), 6(j) represent the synchronization
errors of the coupled solutions (u1(x1, x2, t), u2(x1, x2, t))
where t ∈ [0;T ] and for all (x1, x2) ∈ Ω.

In Fig. 6(j) with g2 = 0.75, the simulation shows that the
synchronization errors reach zero, which means:

u1(x1, x2, t) ≈ u2(x1, x2, t),

for all (x1, x2) ∈ Ω.
Fig. 6(b), 6(e), 6(h), 6(k) represent the solutions

u1(x1, x2, 190), and Fig. 6(c), 6(f), 6(i), 6(l) represent the
solutions u2(x1, x2, 190) of the chain network of 2 neurons
from the moment when no synchronization has occurred
until they have the same shape, i.e., the synchronization is
performed.

Before synchronization with g2 = 0.1, Fig. 6(a) repre-
sents the synchronization error between u1 and u2, for all
(x1, x2) ∈ Ω; Fig. 6(b) and 6(c) represent the solutions
u1(x1, x2, 190) and u2(x1, x2, 190), respectively, when they
are coupled together in the chain network; the results are
similarly done for g2 = 0.3 (Fig. 6(d), 6(e), 6(f)) and
g2 = 0.5 (Fig. 6(g), 6(h), 6(i)). For g2 = 0.75 (Fig. 6(j),
6(k), 6(l)), the synchronization occurs. Since it is easy to see
that the synchronization errors in Fig. 6(j) reach zero, and
all patterns in Fig. 6(k), 6(l) are the same.

In other words, the coupling strength is over or equal to
g2 = 0.75, two linearly coupled neurons in the chain network
have synchronous properties. By doing similarly for the chain
networks in which the number of nodes gradually increases,
the values of coupling strength with respect to the number
of neurons n are reported in Table II. In Table II, for each
value of n, we seek one necessary value of coupling strength
to get the synchronization in the chain networks with respect
to n from 2 to 20.

Based on these numerical experiments, it is clear to see
that the coupling strength required to obtain the synchro-
nization of n neurons depends on the number of neurons.
Indeed, the points in Fig. 7 represent the coupling strength

TABLE II
MINIMAL COUPLING STRENGTH NECESSARY TO OBSERVE THE

SYNCHRONIZATION

n 2 3 4 5 6
gn 0.75 0.85 0.94 1.045 1.14
n 7 8 9 10 11
gn 1.23 1.35 1.44 1.54 1.65
n 12 13 14 15
gn 1.74 1.845 1.94 2.04
n 16 17 18 19 20
gn 2.14 2.245 2.34 2.445 2.55

of synchronization with respect to the number of neurons
in the chain networks from Table II, and we would like to
find a relationship between the number of neurons n and the
coupling strength reported in Table II. This relationship is
presented by the following function:

gn = 0.1n+0.55. (5)

In Fig. 7, the function (5) is represented by a line where
the points corresponding to the coupling strengths are almost
on. It means the coupling strength necessary to obtain the
synchronization in the chain networks follows the law given
by (5). These simulations show that the bigger the number
of neurons is, the bigger the coupling strength is. In other
words, the synchronization is more difficult to take place
when the diameter of chain networks increases.

IV. CONCLUSION

This study gave sufficient conditions on the coupling
strength to achieve the synchronization in the networks con-
structed by levels of n linearly coupled systems of reaction-
diffusion equations of Hindmarsh-Rose type. The result
shows that when the in-degree of nodes grows, the network
becomes easier to synchronize. Numerically, it displays that
the synchronization is stable when the coupling strength
exceeds a certain threshold and a compromise between the
theoretical and numerical results can be reached. Especially,
in the chain network, the bigger the number of neurons is,
the more difficult the phenomenon of synchronization will
be obtained. In other words, the value of coupling strength
grows with its diameter. In addition, it is necessary to conduct
further studies on the different synchronization regimes in
free networks coupled with chemical synapses.
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Fig. 6. Synchronization in the chain network of 2 electrically connected cells.

Fig. 7. The evolution of the coupling strength with respect to the number
of neurons.
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