
 

  

Abstract—The integration of deep learning with 

conventional structured light center extraction techniques 

improves the accuracy of extracting structural gold centers. The 

method is divided into three steps. The initial step involves 

calibration, which aims to establish a correlation between image 

coordinates and world coordinates. The subsequent stage 

involves identifying the laser fringe area. This study employs a 

self-designed Multi-Att DeepLabV3+ encoder-decoder neural 

network architecture to extract the laser fringe region. The 

self-designed SE-ResSkipNet module is incorporated into the 

structure as the backbone. The decoder utilizes a parallel 

alternating dual attention mechanism. The third step involves 

extracting the center of the laser fringe utilizing the Steger 

algorithm, which is based on a Hessian matrix. Conducting 

experimental validation on a laser image dataset that is 

open-source. The experimental resluts indicate that the network 

architecture's mIoU, fwIoU, Acc, and Acc class evaluation 

metrics for complex laser fringe segmentation have shown 

improvements of 4.22%, 0.67%, 0.33%, and 4.96%, 

respectively. This algorithm demonstrates superior accuracy 

compared to other algorithms in laser fringe segmentation, 

playing a crucial role in the subsequent processes of 3D 

reconstruction and 3D measurement. 

 
Index Terms—Centerline Extraction, Encoder-decoder 

Network, Attention Mechanism, Steger Algorithm. 

 

I. INTRODUCTION 

ignificant advancements and progress have been 

achieved in the fields of medical and industrial design 

due to the development of 3D scanning and reconstruction 

technologies. For instance, structured light can be employed 

in 3D modeling to improve diagnostic procedures. It is 

utilized for scanning various body parts like teeth, ears, nose, 

and throat. In industrial design and manufacturing, structured 

light is extensively applied to measure large objects such as 

car parts or airplanes through 3D scanning. This method 

enables the acquisition of more accurate geometric 

information about the object.  

There exist three primary categories of center extraction 

techniques in structured light imaging: conventional methods 

[1], improved methods derived from traditional [2] 

approaches, and deep learning-driven strategies [3]. Various 
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conventional techniques for center extraction include Steger's 

algorithm, the polar method, edge-based methods, grayscale 

center of gravity method, curve fitting methods, among 

others. While these conventional approaches are 

conceptually simple and relatively straightforward to execute, 

they are vulnerable to noise interference, resulting in 

decreased accuracy and stability. The improved approaches, 

derived from traditional methods, primarily involve the 

incorporation of advanced techniques and innovative ideas to 

improve robustness and applicability. In contrast, extraction 

methods based on deep learning are characterized by their 

adaptability and generalizability, enabling them to acquire 

complex representations. Nan et al. [4] proposed an adaptive 

laser stripe centerline method that utilizes Steger's algorithm. 

The method efficiently extracts the stripe region by 

employing the adaptive threshold method. Subsequently, it 

identifies the edge line of the stripe region using stochastic 

Hough transform and calculates the width value of the optical 

stripe region by the normal line. Based on the width value, 

the optical stripe region is divided, and appropriate 

parameters are set for Steger's algorithm extraction. The 

experimental results demonstrate that, in comparison to both 

the skeleton refinement method and the traditional Steger 

algorithm, this approach effectively enables the extraction of 

the centerline of the laser stripe with improved accuracy and 

stability. Sun et al. [5] introduced a rapid and reliable laser 

stripe center extraction algorithm that relies on the gray 

moment algorithm. The method initially establishes a 1D 

model of light intensity by representing the uniform 

distribution of laser stripes. Subsequently, it calculates a 

closed-form solution for the centroid of each laser stripe 

cross-section based on Legendre's moment conservation law. 

Finally, the data is smoothed using Reinsch algorithm to 

preserve the original centroid features and mitigate noise 

interference. The results demonstrate that the method 

exhibits strong robustness and accuracy, enabling the 

effective extraction of the centerline of the laser stripe. The 

utilization of deep learning in the extraction process can 

significantly improve the accuracy of the extracted center. 

Deep learning exhibits robust learning capabilities, enabling 

it to effectively address challenges encountered by 

conventional algorithms in noisy and complex environments, 

showcasing remarkable adaptability. In comparison to 

conventional algorithms, deep learning models exhibit an 

advantage in terms of execution efficiency. Following this, Li 

Yuehua et al. [6] conducted a technique for extracting the 

center of a light bar using Backpropagation (BP) neural 

network. The study outlined the fundamental concept of 

employing BP neural network for light bar center extraction, 
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the process of identifying the optimal center point necessary 

for network training, and the algorithm for weight 

adjustments within the network. The study examines the 

impact of the number of neurons in the hidden layer (m), the 

number of hidden layers (h), and the training samples on the 

accuracy of center extraction. This method offers high 

accuracy and efficiency, making it capable of fulfilling the 

demands of extracting the center of complex light bars. 

In summary, this study proposes a neural network model 

that integrates encoder-decoder architecture with 

multi-attention mechanisms to classify pixels within an 

image, building upon traditional algorithms [7]. The 

algorithm's task flow for extracting the centerline involves 

several steps. Firstly, camera calibration is conducted [8]. 

Secondly, a neural network is utilized to detect the laser 

streak region [9]. Lastly, Steger's algorithm [10] is employed 

to extract the pixel point located at the center of the optical 

streak from the output image. In the subsequent stage, the 

semantic segmentation model is employed to delineate the 

laser stripe region. Within the realm of image segmentation, 

the depth model has been extensively utilized and can serve 

as a preliminary segmentation model for extracting the light 

stripe center. However, challenges persist in the realm of 

laser stripe extraction. These challenges include mitigating 

the impact of diverse noise sources, addressing issues arising 

from complex object surface shapes like bending and curving 

that may cause stripe breakage, overlap, or deformation, 

consequently compromising the accuracy of extraction 

outcomes. Additionally, achieving accurate extraction of the 

stripe center amidst a complex background without 

interference from other objects remains a significant concern. 

The semantic segmentation network model is employed to 

mitigate noise interference and accurately differentiate the 

pixels within the laser streak region from those in the 

background region. This approach aims to achieve a highly 

robust extraction of the laser streak center. In comparison to 

other network models, the designed model exhibits improved 

modeling capability, context-aware performance, detail 

preservation, flexible scalability, and adaptability. It has 

demonstrated significant achievements in experimental 

settings. To assess the model's efficacy, this study conducted 

tests using the open-source laser image dataset from Key 

Laboratory of Beijing University of Aeronautics and 

Astronautics (BUAA). The results indicate improvements 

across all metrics, resulting in increased accuracy. 

 

II. RELATED WORK 

A.  Camera Calibration 

Camera calibration plays a crucial role in the laser streak 

extraction process by determining both the internal 

parameters (such as focal length and principal point) and 

external parameters (such as camera rotation and translation) 

of the camera. Camera calibration establishes a relationship 

between image coordinates and world coordinates to ensure 

accurate 3D reconstruction or measurement. Firstly, it is 

essential to prepare a specialized calibration board, typically 

featuring a black and white checkerboard grid or a calibration 

board designed for a specific pattern. The calibration board 

features a checkerboard grid or pattern with predetermined 

dimensions. The calibration plate is subsequently positioned 

within the camera's field of view to guarantee that it 

completely occupies the image area. Utilize the camera to 

capture images from various perspectives and ensure the 

calibration plate is depicted in diverse poses through position 

adjustments. Image processing techniques are necessary for 

extracting the corner positions of each grid point on the 

calibration plate for every captured image.  

 

 

Fig. 1.  Structure of DeeplabV3+ neural network model
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Establish correspondences between image points and 

world points by associating the image coordinates of each 

corner point on the calibration plate with its respective 

predetermined world coordinates. Utilize the calibration 

algorithm to estimate the internal and external parameters of 

the camera based on the known image points. The calibration 

algorithm is utilized to estimate the internal and external 

parameters of the camera based on the known image points. 

Parameter optimization is conducted to improve the accuracy 

of the calibration. 

B. Deeplabv3+ Neural Network Modeling 

DeepLabV3+ [11] employs a sturdy backbone network for 

extracting features from an image, as depicted in Fig. 1. 

Common choices for this backbone network comprise 

ResNet, Xception, and other alternatives. The backbone 

networks have the capability to acquire various levels of 

feature representation from the input image. Pass the 

resultant feature maps generated by the backbone networks 

through an encoder. Typically, the encoder is composed of a 

series of Dilated Convolution layers. 

Cavity convolution expands the receptive field by 

incorporating voids within the convolution process, 

facilitating the inclusion of a wider spectrum of contextual 

details [12]. This improvement improves the overall accuracy 

of segmentation outcomes. In architectural design, the 

decoder assumes a crucial role in the process of upscaling the 

low-resolution feature maps generated by the encoder. Its 

primary function is to restore these feature maps to align with 

the resolution of the original image. This process concludes 

with the production of semantic segmentation results at the 

pixel level. DeepLabV3+ incorporates Spatial Pyramid 

Pooling for the purpose of multi-scale feature fusion. This 

approach entails conducting pooling operations at multiple 

scales, which enables the acquisition of contextual 

information across different levels. The feature maps 

undergo additional processing and are then combined with 

high-resolution feature maps to produce more accurate 

semantic segmentation results. 

 

III. LASER STRIPE CENTER EXTRACTION ALGORITHM 

DESIGN 

A. Camera Calibration Method for Accurate Laser Stripe 

Center Extraction 

The principle of camera imaging is illustrated in Fig. 2. In 

the 3D world coordinate system W W W WO X Y Z− , a 

transformation relationship exists between the camera 

coordinate system C C C CO X Y Z−  and the image coordinate 

system o xy− . Additionally, there is a pixel coordinate 

system uv  used to represent pixel points on an image. Let p   

represent any point in a real-life scenario, where p  is the 

imaging point, and f  denotes the focal length of the camera. 

By considering a point p  in a 3D space and the focal length 

f  of the camera, it is possible to transform the coordinate 

system and establish a mapping between them. The model is 

equipped with a normalization plane. Referring to the plane 

in which the image coordinate system undergoes isometric 

scaling. Achieving this scaling involves multiplying the 

coordinates in the image coordinate system by the camera's 

focal length f . This multiplication by the focal length f  

facilitates the conversion between the normalization plane 

and the image coordinate system. 

Assuming that point P is represented by the coordinates 

 , ,W W W WX X Y Z=  in the world coordinate system, 

 , ,C C C CX X Y Z=  in the camera coordinate system, and 

 ,u u uX X Y=  in the ideal projection plane. The process of 

transforming from the world coordinate system to the pixel 

coordinate system in an ideal state is depicted in Equation (1). 

This transformation achieves the mapping of a 3D scene onto 

a 2D image. 
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Fig. 2.  Schematic of camera imaging principles 
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where xf  and yf  are the focal lengths in the and directions, 

respectively;  0u  and 0v  are half size of the calibrated image; 

1S  is the camera's internal reference matrix; and 2S  is the 

external reference matrix. 
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Fig. 3.  Schematic of optical distortion in imaging systems 

IAENG International Journal of Computer Science

Volume 51, Issue 4, April 2024, Pages 437-446

 
______________________________________________________________________________________ 



 

The existence of imperfections in camera lenses and the 

phenomenon of light refraction lead to the occurrence of 

aberrations (Fig. 3). These aberrations primarily appear as 

radial and tangential aberrations. Radial distortion arises 

from departures from the optimal shape of the lens, leading to 

the manifestation of curved lines in the image. Tangential 

aberrations arise due to the misalignment between the lens 

and the imaging plane, causing straight lines in the captured 

image to appear distorted or skewed. Correcting these 

anomalies is crucial for improving the geometric accuracy 

and visual quality of an image. The aberration parameters, 

which are essential for the correction process, are acquired 

via calibration. These parameters delineate the particular 

aberration traits displayed by the camera lens. As a result, the 

adjusted image more accurately portrays the shape and size of 

the object, providing a more realistic and accurate visual 

representation. Given that aberrations manifest 

independently and concurrently, radial and tangential 

aberrations are typically analyzed collectively. 
2 2
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  (4) 

where ( , )x y   are the correct coordinates after removing the 

distortion; 
1 2 3, ,k k k  are the radial distortion coefficients; and 

1 2,p p  are the tangential distortion coefficients. 

The internal and external parameters of the camera, as well 

as the aberration parameters, can be derived from the 

aforementioned equations. This enables the computation of 

the 3D coordinates of the target point, offering essential 

geometric data required for attaining increased accuracy and 

usability across various settings. 

B. Self-designed Multi-Att DeepLabv3+ Encoder Module 

Multi-Att DeepLabV3+ Laser Stripe Detection Neural 

Network is a convolutional neural network specifically 

developed for semantic segmentation tasks. The main 

objective is to accurately extract regions of laser stripes. This 

network utilizes an encoder-decoder architecture, inspired by 

DeepLabV3+ model. It optimizes the utilization of the 

information presented in both the upper and lower text 

sections, while also guaranteeing the retention of complex 

details across the divided area. 

This study employs ResNet [13] as backbone, which is a 

deep residual network mitigates the expenses in contrast 

compared alternative foundational networks. ResNet 

addresses challenges such as vanishing gradients networks 

restricted limited capabilities power in deep network by 

utilizing through connections. This approach sustains 

maintaining superior capacity for feature extraction features 

compared conventional convolutional methods. 

convolutional. ResNet backbone network is utilized for 

extracting the feature maps. Upon feature map extraction, the 

utilization of multiscale dilated convolution and Atrous 

Spatial Pyramid Pooling (ASPP) modules serves as pooling 

mechanisms to capture elevated-level features. The 

multiscale dilation convolution technique improves the 

receptive field by elevating the dilation rate of the 

convolution kernel. This adjustment allows for the capture of 

contextual information at various scales. The distinctive 

features of the laser stripe, which exhibit a significant 

horizontal scale but a narrow width, highlight the inadequacy 

of a fixed receptive field in capturing contextual information 

across different scales. To address this issue, a reduced 

expansion rate is utilized to effectively capture complex 

details and small-scale targets. Employing a higher 

expansion rate is recommended for addressing larger-scale 

targets and efficiently collecting global contextual 

information. ASPP module plays a crucial role in this process. 

The approach involves the utilization of several parallel null 

convolutional branches, each operating at a different 

sampling rate, to effectively capture contextual information. 

Recognizing the limitations of relying exclusively on local 

information, it becomes evident that the pooling module's 

effectiveness in addressing diverse scale targets and 

contextual dependencies is improved through the integration 

of ASPP module and multiscale dilation convolution. This 

comprehensive approach ultimately improves the accuracy of 

the segmentation process. 

 The proposed model integrates the multi-attention 

mechanism [14] with long skip connections to improve 

feature representation. In prior approaches to laser center 

extraction, distant pixels are influential because of the 

long-range dependencies involved. Additionally, complex 

interplays between various channels are essential for specific 

extraction tasks. Overlooking these connections could result 

in either loss of information or duplication. Furthermore, the 

possible loss of essential global information during 

long-distance information transmission is a matter of concern. 

To address these challenges effectively, it is essential to 

integrate attention mechanisms and establish long-range 

connections within the model. The strategic integration is 

crucial for effectively managing the complexities presented 

by various challenges and for enhancing performance and 

resilience. The integration of attention mechanisms into the 

model improves the significance attributed to different 

channels, thereby increasing its ability to focus on these 

channels. This consequently leads to increased efficiency and 

improved accuracy in its overall performance. 

Specifically, Squeeze-and-Excitation (SE) attention 

mechanism is employed in the encoder, along with long skip 

connections. The utilization of SE attention involves 

aggregating global information onto channels through 

squeezing and then leveraging the importance of these 

channels to re-weight the feature map. Additionally, the 

incorporation of long jump connections enables the 

bypassing of multiple convolutional layers to directly pass 

input features to subsequent layers. The seamless integration 

of the attention module with the convolutional layers 

facilitates the development of more resilient models, leading 

to improved feature representation capabilities. Fig. 4 

illustrates the architecture of the encoder, comprising the 

ResNet network along with the parallel-connected dilated 

convolution and ASPP modules. The multi-scale dilated 

convolution module includes a 1×1 convolution layer and 

two 3×3 dilated convolution layers due to the specific 

structure of the laser bar. Initially, the 1×1 convolution layer 

is employed to decrease the computational load. Enhancing 

the feature extraction process can be achieved by 

incorporating a dilation convolution layer with dilation sizes 

of 3 and 18, respectively. Large-scale information can be 

extracted by employing a dilation size of 18, while detailed 

information can be extracted by using a dilation size of 3.  
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Fig. 4.  Structure of Multi-Att DeepLabV3+ encoder 

 

Lastly, incorporate a global average pooling layer. Global 

pooling enables the aggregation of information from feature 

channels to extract the overall features of the entire image. 

Another module in ASPP architecture consists of a 1×1 

convolution, a pooling pyramid, and average pooling. The 

initial branch features a 1×1 standard convolution, a type of 

convolutional layer that reduces the size of input feature 

maps to improve computational efficiency and regulate the 

parameter count. The second through fourth branches consist 

of ASPP layers with varying expansion rates, designed to 

improve the receptive field for better capturing contextual 

information from the laser fringes. This approach aims to 

improve the performance of fringe extraction. The final layer 

is the average pooling layer, utilized for integrating the 

extracted information from various scales. After converting 

the data into fixed-length feature vectors to maintain spatial 

invariance, the feature information is integrated using a 1×1 

convolutional layer after average pooling. Connecting the 

two modules in parallel can leverage their individual 

strengths to extract multi-scale contextual information, 

integrate and engage with contextual information of varying 

scales, improve the model's perceptual capabilities, and offer 

a wealth of global spatial information for laser stripe 

segmentation [15]. 

A novel module, SE-ResSkipNet, has been developed 

through the integration of the SE attention module and skip 

connections during the extraction of low-level semantic 

features from the ResNet network, as illustrated in Fig. 5. The 

architecture comprises a single convolutional layer, followed 

by two pooling layers, and two attention residual modules. 

One attention module is characterized by the utilization of 

two 1×1 convolutional kernels and one 3×3 convolutional 

kernel, whereas the other attention module employs two 3×3 

convolutional kernels. Max pooling and average pooling 

techniques are utilized to amalgamate the extracted features 

and diminish the spatial dimensions of the feature maps. The 

ReLU activation function was selected for its computational 

efficiency. Subsequently, a fully connected layer is utilized to 

establish the mapping of the results. 
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Fig. 5.  Structure of SE-ResSkipNet module 
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Fig. 6.  Structure of Multi-Att DeepLabV3+ decoder 

 

C. Self-designed Multi-Att DeepLabv3+ Decoder Module 

The decoder module is essential within the system as it is 

responsible for remapping the abstract features processed by 

the encoder back to their original spatial dimensions. The 

design of the decoder concurrently requires the practical 

retention of fundamental semantic information to maintain 

semantic consistency between the recovered data and the 

initial data. Through the decoder function, the system aims to 

optimize the essential features in the dimensionality 

reduction process, ensuring that the reconstructed output 

preserves quality and semantic coherence with the initial 

input data. The establishment of a solid foundation 

significantly improves the overall performance and 

effectiveness of the system. 

Fig. 6 depicts the decoder module, comprising the feature 

fusion module and two convolutional layers. The feature 

fusion stage integrates Pixel Attention Module (PAM) and 

Current Amplitude Modulation (CAM) attention 

mechanisms. PAM attention mechanism modifies the pixel 

weights by considering the pixel interdependencies within an 

image. This process improves the representation of 

correlations among pixels and facilitates the extraction of 

more significant image features. CAM attention computes 

channel correlations to derive the weights for each channel 

and consolidates the weighted features from various channels. 

This structural approach effectively leverages pixel and 

channel information, leading to improved feature extraction. 

The low-level semantic features extracted by ResNet are 

combined with the high-level semantic features extracted by 

the concatenated convolution module based on their 

respective channel dimensions. Subsequently, the spliced 

features should be processed utilizing a feature processing 

module. The convolution layer convolves the input features 

and incorporates the batch normalization layer to normalize 

the feature maps. The activation function is applied to the 

normalized feature maps to activate them. The processed 

feature maps are subjected to average pooling to reduce 

spatial dimensions and modify their sizes. The two attention 

modules are subsequently organized in parallel in an 

alternating manner, merging the output characteristics of 

each attention module with those of the two adjacent 

attention modules. The element-wise multiplication and 

addition operations interact to combine the processed 

features with the original features on an element-wise basis, 

facilitating feature fusion. The element-wise multiplication 

operation enables the processed features to be multiplied with 

the original features on an element-by-element basis, thereby 

highlighting the significance of the processed features. The 

operation of summing elements one by one involves adding 

the processed features to the original features on an 

element-by-element basis, thereby achieving the fusion and 

combination of features. Through the fusion operation, the 

information from both the original and processed features are 

integrated to generate the ultimate fused feature output. The 

model's performance and accuracy are improved by 

extracting more sophisticated and expressive feature 

representations through the fusion operation. The ultimate 

output is convolved with a 1×1 convolutional layer. 

The red region in the resulting figure indicates the location 

of the light bar in the original image. Consequently, the 

extraction of the red areas facilitates convenient access to the 

information pertaining to the light bar in the original image. 

D. Post-processing Algorithms 

The output of the convolutional network is an RGB image 

consisting of separate red, green, and blue channels [16]. By 

analyzing individual pixel points in the output image and 

assigning values according to a specified RGB channel, the 

exact position of the laser stripes can be identified. Given that 

the output image aligns with the original image in terms of 

size and color representation, it effectively filters out noise 

that is unrelated to the laser fringes. This process simplifies 

the data processing and isolates the pertinent features, leading 

to an image that displays the intended laser fringes. 

Following the extraction of the specified region, Steger's 

algorithm, which relies on Hessian matrix [17], is employed 

to isolate the center of the laser stripe [18]. Determine the 

normal direction by utilizing the Hessian matrix and apply 

Taylor polynomials to identify the critical points along the 

normal. The centroid being sought is the point representing 

the extreme minimum on the gray distribution curve of the 

stripe cross-section. This point is characterized by a 

first-order derivative of 0 and a second-order derivative that 

is negative. Equation (5) denotes the Hessian matrix 

corresponding to any pixel point ( , )x y . 

2 2

2

2 2

2

( , ) ( , )

( , ) ( , )
( , ) ( , )

xx xy

xy yy

g x y g x y

r rx x y
H x y z x y

r rg x y g x y

x y y

  
 

    =  =      
 

    

    (5)  

where ( , )g x y  is a 2D Gaussian function. When employing 

Gaussian function, Gaussian filter kernels of diverse sizes 

and standard deviations are employed to analyze different 
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regions of the image, thus effectively managing various 

levels of noise. This approach allows for the fine-tuning and 

optimization of the filtering effect, leading to improved noise 

removal and the retention of important image details. 

The eigenvalues of the solved Hessian matrix correspond 

to the poles in the direction normal to the light bar, with the 

point 
0 0( , )x y  as the reference, and the sub-pixel coordinates 

of the center point of the laser bar as ( , )x yp p . The sub-pixel 

coordinates of the center of the laser bar can be determined by 

applying equations (6) and (7). 

0 0( , ) ( , )x y x yp p x tn y tn= + +                       (6) 

2 22

x x y y

xx x xy x y yy y

r n r n
t

r n r n n r n

+
= −

+ +
                       (7) 

where xr  and yr  are the first-order partial derivatives of 

Gaussian function;
xxr , 

xvr  and 
vvr  are the second-order 

partial derivatives of Gaussian function; and 
xn  and yn  

denote the unit vectors in the direction of the stripe normal. 

If the offset ( , )x ytn tn  of the center point from the 

sub-pixel falls within the range of （（-0.5,0.5）,（-0.5,0.5）） 

for both dimensions, then the point corresponds to the center 

point of the laser streak image. 

The utilization of Steger's algorithm mitigates the error 

stemming from the uneven grayscale distribution of the 

optical stripes. The algorithm demonstrates a high level of 

extraction accuracy and effectively identifies the center of the 

laser stripes. 

 

IV. EXPERIMENTAL PROCESS 

The graphics card model employed in the deep learning 

segment of this experiment is RTX 3060 Ultra OC server. 

The operating system environment is the 64-bit Ubuntu 22.04 

LTS. The deep learning framework employed is PyTorch. 

Implement additional programs utilizing Visual Studio 2017 

and Matlab. The dataset accessible for this experiment is 

constrained. The public dataset provided by Key Laboratory 

of BUAA was chosen for assessing the experimental 

outcomes, comprising a total of 5,976 images. Divide the 

data into training and validation sets. 

A.  Preprocessing of Model Data 

Before commencing the training of the model, it is 

essential to preprocess the dataset. Data improvement 

techniques such as random flipping, rotating, Gaussian 

blurring, and adding noise are utilized to augment the images. 

The images should be labeled according to VOC format, and 

the evaluation of the proposed model's accuracy should 

include metrics such as mean Intersection over Union (mIoU), 

frequency-weighted Intersection over Union (fwIoU), 

Accuracy (Acc), and Class Accuracy (Acc class). mIoU 

metric is utilized to quantify the degree of overlap between 

the predicted segmentation outcomes and the ground truth 

segmentation results. Given the necessity to prioritize the 

overall segmentation accuracy, this is achieved through the 

computation of IoU for individual categories, followed by 

averaging them. Furthermore, fwIoU serves as an improved 

segmentation metric, refining mIoU by considering the class 

distribution within the dataset. Additionally, Acc is utilized 

to assess the model's categorization accuracy across the 

complete dataset, while Acc class evaluates the model's 

categorization accuracy for each specific class. 

The equations for mIoU and fwIoU are given as follows: 
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where k  is the number of object categories; ijp  is the 

number of real pixels with number  and the number of 

predicted pixels with number j ; 1k +  is the number of 

categories; and iip  is the true number. 

The equations for Acc and Acc class are expressed as 

follows: 
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B. Model Training and Evaluation 

To mitigate the risk of overfitting. Stochastic Gradient 

Descent (SGD) was utilized as the optimizer, and Rectified 

Linear Unit (ReLU) was employed as the activation function 

for optimization. The training procedure consisted of batches 

with a size of 8, amounting to a total of 500 iterations. To 

address the risk of overfitting. In addition to utilizing 

extensive loss functions like Dice Loss and Cross Entropy 

Loss Functions, a Dropout Layer was incorporated into the 

model. The inclusion of a Dropout Layer is essential for 

reducing the risk of overfitting and improving the 

generalization capacity of the model, thereby enhancing its 

performance on various datasets. 

To evaluate the influence of Multi-Att DeepLabV3+ 

network, ablation experiments were performed on the BUAA 

dataset. The experiments conducted a comparative analysis 

of the performance of the network model under study with 

Latent-Space Dynamic Neural Network (LSDNN) [19] 

model. The evaluation primarily centered on metrics 

including mIoU, fwIoU, Acc, and Acc class. After 500 

iterations, the results demonstrated significant improvements 

in all four evaluation metrics. Specifically, there was a 4.22% 

increase in mIoU, 0.67% in fwIoU, 0.33% in Acc, and a 

substantial improvement of 4.96% in Acc class. The results 

highlight the efficacy of Multi-Att DeepLabV3+ network in 

improving segmentation performance on BUAA dataset 

when compared to LSDNN model. 

 
TABLE I 

EVALUATION METRICS OF ABLATION EXPERIMENTS 

 mIoU fwIoU Acc Acc class 

LSDNN 

LSDNN+SE-ResSkipNet 
Multi-Att DeepLabv3+ 

82.76% 

83.52% 
86.98% 

97.47% 

97.87% 
98.14% 

98.71% 

98.77% 
99.04% 

85.97% 

86.46% 
90.93% 

 

Fig. 7 depicts the results of a quantitative assessment 

conducted through a comparative analysis with the original 
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model. Seventy-five numerical data points were collected at 

three-count intervals for this evaluation. Fig. 7(b) displays 

significant trend characteristics, showing decreased volatility 

in multiple indicators and an overall upward trend, indicating 

outstanding performance. The results demonstrate a 

significant improvement in the performance of the proposed 

model. These observations provide additional support for the 

conclusions regarding the improved performance of the new 

model and lay a robust groundwork for this research. 

 

 
(a)   LSDNN 
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(b)  Multi-Att DeepLabv3+ 

Fig. 7.  Quantitative comparison result 

 

Fig. 8 illustrates a comparison between the output image of 

the original network model and the obtained result. The laser 

stripes exhibit a more refined appearance in the output of this 

study. 

 

 
(a)   LSDNN 

 
(b)  Multi-Att DeepLabv3+ 

Fig. 8.  Laser strip segmentation comparison 

 

To ensure a comprehensive comparison in the proposed 

experiments, this study meticulously chose developed 

models for semantic segmentation, including U-Net [20], 

FCN [21], and SegNet [22]. To uphold the credibility and 

impartiality of the experimental data, the consistency in the 

hardware and software environment was ensured for both 

training and testing procedures. The experiments utilized 

consistent learning strategies and carried out an equal number 

of iterations. The table below illustrates a comparison of 

mIoU results obtained after an equivalent number of 

iterations, showcasing the improved accuracy of the 

proposed approach. 

 
TABLE II 

SEGMENTATION ACCURACY ACROSS DIFFERENT METHODS 

 mIoU 

U-Net 

FCN 
SegNet 

Multi-Att DeepLabv3+ 

83.24% 

84.36% 
82.43% 
86.98% 

 

In the proposed post-processing algorithm, this study 

conducted a comparison between the Steger method and 

alternative techniques such as the directional template and 

grayscale center of gravity methods. The results, as 

illustrated in Fig. 9, indicate the superior performance of the 

Steger method in accuracy and the continuity of centerline 

extraction. 

 

         
（a） Direction template （b） Steger Method   （c） Grayscale center of gravity  

Fig. 9.  Laser strip center extraction comparison 

 

To assess the computational complexity, a comparison was 

carried out of the extraction efficiency across the three 

methods. The table presented below illustrates the average 

time taken by each method for extracting the center of optical 

strip images. 

 
TABLE Ⅲ 

TIME EFFICIENCY COMPARISON FOR DIFFERENT EXTRACTION METHODS 

Method 
Direction  

Template 

Steger 

Method 

grayscale center  

of gravity 

Time 0.347 0.332 0.182 

 

While the algorithm employed in this study may exhibit 
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reduced running speed, it showcases improved performance 

in terms of extraction accuracy. The algorithm utilized in this 

context attains a favorable balance between speed and 

accuracy, thereby establishing a competitive edge. The 

prioritization of extraction accuracy over speed highlights its 

appropriateness for applications that value accuracy and 

high-quality outcomes. Therefore, this study employs a 

combination of deep learning algorithm and Steger algorithm 

to improve the accuracy and resilience of laser centerline 

extraction. This approach facilitates better feature 

information capture and enables seamless adaptation to 

diverse scenarios and demands. 

To ascertain the reliability of the proposed method, a 

comprehensive experimental analysis of the improved 

algorithm is conducted across various dimensions. The laser 

profile and multi-line laser image captured are presented 

below. 

 

 
(a)   Single line laser map 

 
(b)  Multiline laser map 

Fig. 10.  Laser strip image 

 

The study compares the impact of the original algorithm 

and the improved algorithm by extracting the central line 

from the single-line laser image. The optimized algorithm 

centerline demonstrates a superior alignment with the laser 

stripe image in the original image. This improved effect is 

evident not only in the accuracy of the central line fitting but 

also in the concentration of the outcomes. The improved 

algorithm improves the focus of the center line of the laser 

fringe, thereby facilitating a more accurate analysis of the 

deformation characteristics of the object surface. The results 

are depicted in Fig. 11 and 12. 

 

 
(a)   Original algorithm 

 
(b)  Improved algorithm 

Fig. 11.  Extraction effect comparison 

 
(a)   Original algorithm 

 
(b)  Improved algorithm 

Fig. 12.  Centerline extraction effect comparison 

 

The comparison between the running time of the original 

algorithm and the improved algorithm introduced in this 

study is conducted due to the elevated computational 

complexity of the algorithm. The objective of this study is to 

minimize the computational burden, reduce the runtime, and 

improve real-time performance through algorithm 

optimization. Table IV presents the average time taken by the 

two algorithms for the multiple extraction of five laser fringe 

images. 

 
TABLE Ⅳ 

COMPARATIVE ANALYSIS OF CENTERLINE EXTRACTION TIMES 

 1 2 3 4 5 

Original method 

Improved method 

0.681 

0.332 

0.836 

0.413 

0.815 

0.396 

0.782 

0.383 

0.764 

0.316 

 

The comparison results above indicate that the algorithm 

demonstrates higher accuracy in extracting the center of the 

laser line and significantly reduces the processing time. 

However, the extent of time reduction is dependent on the 

number of pixels involved. The algorithm can offer more 

dependable and accurate data for future practical applications 

based on this outcome. 

 

V. CONCLUSION 

To improve the efficacy of laser centerline extraction, this 

study employs Multi-Att DeepLabV3+ model for detecting 

optical strip images. This approach aims to mitigate the 

adverse effects of diverse interference information on the 

accuracy of optical strip extraction. The Steger algorithm is 

subsequently employed to extract the center of the laser stripe. 

The incorporation of deep learning models improves the 

flexibility of this approach in capturing complexity in laser 

images, thereby enabling more accurate extraction of laser 

centerlines. This advancement offers robust support for the 

field of laser measurement. Multi-Att DeepLabV3+ model 

incorporates the innovative SE-ResSkipNet convolution 

module, which has been applied and validated using the 

publicly available laser fringe dataset. The experimental 

results demonstrate that the suggested approach has 

improved the accuracy of laser fringe segmentation. The 

evluation metrics of mIoU, fwIoU, Acc, and Acc class 

demonstrated an increase of 4.22%, 0.67%, 0.33%, and 

4.96%, respectively. The experimental results demonstrate 

the efficacy of the self-designed model in accurately 

extracting laser line centers, showcasing clear advantages 

over alternative methodologies. The method employed in this 

study for extracting the entire centerline is deemed to be more 

accurate and resilient, thereby offering more accurate data for 

future applications. 
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